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Abstract— A powerful approach to sparse representation, dic-

tionary learning consists in finding a redundant frame in which

the representation of a particular class of images is sparse. In

practice, all algorithms performing dictionary learning iteratively

estimate the dictionary and a sparse representation of the images

using this dictionary. However, the numerical complexity of dic-

tionary learning restricts its use to atoms with a small support.

A way to alleviate these issues is introduced in this paper, con-

sisting in dictionary atoms obtained by translating the composi-

tion of K convolutions with S-sparse kernels of known support.

The dictionary update step associated with this strategy is a non-

convex optimization problem, which we study here.

A block-coordinate descent or Gauss-Seidel algorithm is pro-

posed to solve this problem, whose search space is of dimension

KS, which is much smaller than the size of the image. Moreover,

the complexity of the algorithm is linear with respect to the size

of the image, allowing larger atoms to be learned (as opposed to

small patches). An experiment is presented that shows the ap-

proximation of a large cosine atom with K = 7 sparse kernels,

demonstrating a very good accuracy.

1 Introduction

The problem we introduce in this paper is motivated by the dic-

tionary learning (DL) field. DL was pioneered by [8, 9] and has

received a growing attention since then. The principle behind

DL is to find a representation for data that makes it simpler,

sparser. We invite the reader to consult [4] for more details

about sparse representations and DL. The archetype of the DL

strategy is to look for a dictionary as the solution of the follow-

ing optimization problem

argmin
D,(xi)1≤i≤I

I
∑

i=1

‖Dxi − yi‖
2
2 + f(xi),

where yi are the learning database, D is the dictionary ma-

trix, whose columns are the atoms, and f is a sparsity-inducing

function. The resulting problem can be solved (or approxima-

tively solved) by many methods including MOD [5] and K-

SVD [1]. All these approaches rely on alternatively updating

the codes xi and the dictionary D.

Our primary motivation for considering the observation

model (1) comes from computational issues. Usually, DL is ap-

plied to small patches, because of the computational cost of re-

peatedly computing of the matrix-vector products Dxi, which

is worse than O(N2). Moreover, the cost of the dictionary up-

date is usually worse than O(N3).
We propose a model where the learned atoms are a compo-

sition of K convolutions with S-sparse kernels. The interest

for such a constraint is to provide numerically effective dictio-

naries and allow to consider larger atoms. Indeed, the search

space is only of dimension KS, which is typically smaller than

the size of the target atom.

The present work focuses on the dictionary update step of

one atom. In this context, the code x is known. Our goals are

both to approximate a large target atom κ with our model and

to obtain target atoms whose manipulation is numerically effi-

cient. This translates into a non-convex optimization problem.

2 Problem formulation

Let consider an observed d-dimensional signal y of (RN )d, as-

sumed to result from the convolution of a known input signal

x ∈ (RN )d with an unknown target kernel κ ∈ (RN )d, con-

taminated by an additive noise b following the linear model

y = κ ∗ x+ b, (1)

where ∗ stands for the circular discrete convolution1 in dimen-

sion d. For instance, the unknown target kernel κ ∈ (RN )d

may refer to the unknown impulse response of a 1D-filter or,

conversely, to the point spread function of a 2D-filtering oper-

ator.

The problem addressed in this paper consists of approximat-

ing the unknown kernel κ by a composition of convolutions

with K ≥ 2 sparse kernels (hk)1≤k≤K ∈ ((RN )d)K

κ ≈ κ̂ , h1 ∗ · · · ∗ hK . (2)

The kernels h1, . . . ,hK are constrained to have less than a

fixed number S of non-zero elements, i.e., they are assumed

to be at most S-sparse. As stated before, this assumption aims

at providing a cost-effective dictionary by reducing the compu-

tations for x ∗ κ. Furthermore, the locations of their non-zero

elements in {0, . . . , N}d are assumed to be known or pre-set.

More precisely, the support of the kth kernel (i.e., the locations

of the non zero elements of hk), denoted supp
(

hk
)

, is con-

strained to a fixed set of discrete indexes Sk

supp
(

hk
)

⊂ Sk , ∀k ∈ {1, . . . ,K} (3)

An example of indexes for 1D convolution kernel would be

Sk = {k − 1, 2k − 1, . . . , Sk − 1}. (4)

Assuming that the noise vector b is an independent and iden-

tically distributed Gaussian sequence, approximating the un-

known convolution kernel κ from the observed measurements

y can be formulated as the following optimization problem

(P0) :

{

argmin
h∈((RN )d)K ‖y − h1 ∗ · · · ∗ hK ∗ x‖22,

subject to supp
(

hk
)

⊂ Sk , ∀k ∈ {1, . . . ,K}

where ‖·‖2 stands for the usual Euclidean norm in (RN )d. The

problem (P0) is non convex. Thus, depending on the values

of K, (Sk)1≤k≤K , x and y, it might be difficult or impossible

1All the elements of (RN )d are extended over Zd by periodization.
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to find a good approximation of a global minimizer of (P0).
Our objectives are to study if such a problem bends itself to

global optimization, and to assess the approximation power of

the computed compositions of convolutions.

3 Block-coordinate descent

The problem (P0), as formulated in the previous section, is un-

handy for global optimization. As detailed in [2], it has irrele-

vant stationary points and is non-convex (though infinitely dif-

ferentiable). To adress these issues, a scalar weight λ is intro-

duced and kernels are constrained to have a unit norm. More-

over, we elect a block-coordinate formulation in order to solve

the problem with a Gauss-Seidel type algorithm (called Alter-

nate Least Squares, sharing many similarities with the one used

in [7]).

(Pk) :

{

argminλ∈R,h∈RN ‖y − λh ∗ xk‖22,
subject to supp (h) ⊂ Sk and ‖h‖2 = 1

with

xk = h1 ∗ · · · ∗ hk−1 ∗ hk+1 ∗ · · · ∗ hK ∗ x, (5)

where the kernels hk′

are fixed ∀k′ 6= k. The problem (Pk)
is linear and can be expressed as a matrix-vector product con-

sidering only the elements of h that belong to its support: The

idea is to alternatively solve (Pk) by iterating on k. The support

constraint significantly reduces the search space of the problem,

and thus the amount of calculations needed to solve it for a sta-

tionary point. Algorithm 1 shows an overview of the resolution

of (Pk). The computational complexity associated with a pas-

sage in the while loop is O((K + S)KSNd), i.e., it is linear

with respect to the size Nd of the signal. The detailed steps to

solving (Pk) are given in [2].

Algorithm 1: ALS algorithm

Input:

y: target measurements;

x: known coefficients;

(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .

Output:

(hk)1≤k≤K : convolution kernels such that

h1 ∗ . . . ∗ hK ≈ κ.

begin

Initialize the kernels ((hk
p)p∈N )1≤k≤K ;

while not converged do

for k = 1 ,. . . , K do

Update hk and λ with a minimizer of (Pk) ;

4 Synthetic example

In this section, we show an experiment consisting of approxi-

mating a 2D cosine atom κ in an image y of size 64× 64 (i.e.,

d = 2 and N = 64). Such an atom can be seen as a large local

cosine or a Fourier atom, both widely used in image processing.

The interest of this atom is that it covers the whole image and

is of a rather large support, making it difficult to handle with

existing dictionary learning strategies.

κp = cos

(

2π
〈p, (2, 5)〉

N

)

, ∀p ∈ {0, . . . , 63}2.

The code x is a sparse image whose elements are chosen in-

dependent and identically distributed according to a Bernoulli-

Gaussian distribution, widely used in sparse signal and image

deconvolution [3, 6, 10]. Therefore, y contains a few weighted

translations of the cosine atom κ
2. The target y is built with

additive Gaussian noise of variance σ2 = 0.5. Kernel supports

have been set to a simple 5× 5 square, linearly dilated with k,

similar to the 1-D example given in (4).

Figures 1 and 2 show the cosine image y, its approximation

λx∗h1∗· · ·∗hK , the actual atom κ and λh1∗· · ·∗hK , for K =
7 and S = 25. The results obtained here are quite accurate even

though the cosine image was corrupted by additive noise.

Figure 1: Cosine approximation with K = 7, S = 25, and Gaussian noise of

variance σ2 = 0.5. Cosine image y (left) and approximation λx∗h1
∗· · ·∗hK

(right).

Figure 2: Cosine approximation with K = 7, S = 25, and Gaussian noise of

variance σ2 = 0.5. True atom κ (left) and approximation λh1
∗ · · · ∗ hK

(right).

5 Conclusion

This work shows that simple atoms can be accurately approxi-

mated with a composition of convolutions. The kernels used in

the approximation are constrained to be sparse (i.e., with sparse

supports), leading to a computationally efficient algorithm, de-

spite the non-convexity of the function to optimize. This effi-

ciency was illustrated on a 2D-cosine function, but similar ex-

periments conducted with archetypal kernels (e.g., wavelets or

curvelets) show similar performances [2].

The proposed modeling and algorithmic schemes open new

perspectives on the general problem of dictionary learning.

More specifically, it seems reasonable to derive a DL technique

which recovers large structured dictionary whose atoms consist

of compositions of convolutions.

Finally, how to choose, set or draw the kernel supports re-

mains a large and yet unexplored issue, that may have signifi-

cant impact on the method performances.

2A sum of cosines of same frequency and different phases will yield a co-

sine of unchanged frequency.
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