
HAL Id: hal-01134774
https://hal.science/hal-01134774v1

Submitted on 24 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Optimization of Multi-class Support Vector
Machines with MSVMpack

Emmanuel Didiot, Fabien Lauer

To cite this version:
Emmanuel Didiot, Fabien Lauer. Efficient Optimization of Multi-class Support Vector Machines with
MSVMpack. Modelling, Computation and Optimization in Information Systems and Management
Sciences (MCO 2015), May 2015, Metz, France. �hal-01134774�

https://hal.science/hal-01134774v1
https://hal.archives-ouvertes.fr

Efficient Optimization of Multi-class Support
Vector Machines with MSVMpack

Emmanuel Didiot and Fabien Lauer

LORIA, Université de Lorraine, CNRS, Inria,
Nancy, France

Abstract. In the field of machine learning, multi-class support vector
machines (M-SVMs) are state-of-the-art classifiers with training algo-
rithms that amount to convex quadratic programs. However, solving
these quadratic programs in practice is a complex task that typically
cannot be assigned to a general purpose solver. The paper describes
the main features of an efficient solver for M-SVMs, as implemented in
the MSVMpack software. The latest additions to this software are also
highlighted and a few numerical experiments are presented to assess its
efficiency.

Keywords: Quadratic programming, classification, support vector ma-
chines, parallel computing

1 Introduction

The support vector machine (SVM) [2, 14] is a state-of-the-art tool for binary
classification. While there is mostly one main algorithm for binary SVMs, their
multi-class counterparts have followed various development paths. As a result,
four main types of multi-class support vector machines (M-SVMs) can be found
in the literature [15, 4, 11, 8] while others are still developed.

From the optimization point of view, training an M-SVM amounts to solving
a convex quadratic program with particular difficulties that make the task un-
suitable for a general purpose solver. The paper describes how to deal with such
difficulties and how to obtain an efficient implementation, in particular regarding
parallel computing issues.

The described implementation was first released in 2011 as an open-source
software, MSVMpack (available at http://www.loria/~lauer/MSVMpack/) [10],
which remains, to the best of our knowledge, the only parallel software for M-
SVMs. We here present the inner details of this implementation and its latest
improvements.

Paper Organization. M-SVMs are introduced in Section 2 with their training
algorithm. Then, Section 3 details their efficient optimization, while the latest
additions to MSVMpack are exposed in Section 4. Finally, numerical experiments
are reported in Section 5 and Section 6 highlights possible directions for further
improvements.

2 E. Didiot and F. Lauer

2 Multi-class Support Vector Machines

We consider Q-category classification problems, where labels Y ∈ {1, . . . , Q} are
assigned to feature vectors X ∈ Rd via a relationship assumed to be of prob-
abilistic nature, i.e., X and Y and random variables with an unknown joint
probability distribution. Given a training set, {(xi, yi)}mi=1, considered as a real-
ization of m independent copies of the pair (X,Y), the aim is to learn a classifier
f : Rd → {1, . . . , Q} minimizing the risk defined as the expectation of the 0–1
loss returning 1 for misclassifications (when f(X) 6= Y) and 0 for correct classi-
fications (when f(X) = Y).

Given a feature vector x ∈ Rd, the output of an M-SVM classifier is computed
as

f(x) = arg max
k∈{1,...,Q}

hk(x) + bk,

where the bk ∈ R are bias terms and all component functions hk belong to some
reproducing kernel Hilbert space with the positive-definite function K : Rd ×
Rd → R as reproducing kernel [1]. As an example, the kernel function is typically
chosen as the Gaussian RBF kernel function K(x, x′) = exp

(
−‖x− x′‖2/2σ2

)
.

The training algorithm for an M-SVM depends on its type, considered here
as one of the four main types available in the literature, but can always be
formulated as a convex quadratic program. More precisely, the dual form of the
quadratic program is usually considered:

max
α∈C

Jd(α) = −1

2
αTHα+ cTα, (1)

where α ∈ RQm is the vector of dual variables, H and c depend on the type of
M-SVM and the training data, and C is a convex set accounting for all linear
constraints that also depend on the M-SVM type and the training parameters.
Given the solution α∗ to this quadratic program, the functions hk and the bias
terms bk become available.

The four main types of M-SVMs are the ones of Weston and Watkins [15]
(hereafter denoted WW), Crammer and Singer [4] (CS), Lee, Lin and Wahba
[11] (LLW) and the M-SVM2 of Guermeur and Monfrini [8] (MSVM2). We refer
to these works for a detailed discussion of their features and the derivation of the
corresponding dual programs (see also [7] for a generic M-SVM model unifying
the four formulations and [9] for a comparison of a subset of them).

3 Efficient Optimization

The main algorithm used in MSVMpack for solving (1) is the Frank-Wolfe al-
gorithm [6]. In this algorithm, each step is obtained via the solution of a linear
program (LP), as depicted in the following procedure minimizing −Jd(α).

1. Initialize t = 0, α(0) = 0.
2. Compute the gradient vector g(t) = −∇Jd(α(t)).

Efficient Optimization of M-SVMs with MSVMpack 3

3. Compute a feasible direction of descent as

u = arg max
v∈C

g(t)T v. (LP)

4. Compute the step length λ = min

{
1,

g(t)T (u− α(t))

(u− α(t))TH(u− α(t))

}
.

5. Update α(t+ 1) = α(t) + λ(u− α(t)).
6. t← t+ 1.
7. Compute U(t) and repeat from Step 2 until Jd(α(t))/U(t) > 1− ε.

Checking the Kuhn-Tucker (KKT) optimality conditions during training may
be too much time consuming for large data sets (large m). Thus, we measure
the quality of α(t) thanks to the computation of an upper bound U(t) on the
optimum Jd (α∗). Given an U(t) that converges towards this optimum, the stop-
ping criterion is satisfied when the ratio Jd(α)/U(t) reaches a value close to 1.
In MSVMpack, such a bound is obtained by solving the primal problem with
the primal variables hk fixed to values computed using the current α(t) instead
of α∗ in the formulas giving the optimal hk’s. This partial optimization requires
little computation for all M-SVMs except the M-SVM2, for which another simple
quadratic program has to be solved.

3.1 Decomposition Method

Despite the quadratic programming form of (1), solving large-scale instances
of such problems requires some care in practice. In particular, a major issue
concerns the memory requirements: the Qm-by-Qm matrix H is dense as it
is computed from the typically dense m-by-m kernel matrix K, and thus it
simply cannot be stored in the memory of most computers. This basic limitation
prevents any subsequent call to a general purpose solver in many cases.

Dedicated optimization algorithms have been proposed to train SVMs (see,
e.g., [3]) and they all use decomposition techniques, i.e., block-coordinate descent
or chunking, such as sequential minimal optimization (SMO) [12, 13]. The basic
idea is to optimize at each iteration only with respect to a subset of variables,
here corresponding to a subset {(xi, yi) : i ∈ S} of the data. With s the size of
the subset S = {S1, . . . , Ss} kept small, this makes training possible by requiring
at each step only access to an s-by-m submatrix KS of K with entries given by

(KS)ij = K(xSi
, xj), i = 1, . . . , s, j = 1, . . . ,m. (2)

From KS , all the information required to perform a training step can be com-
puted with little effort.

Working Set Selection. Most implementations of SVM learning algorithms
include a dedicated working set selection procedure that determines the subset
S and the variables that will be optimized in the next training step. Such proce-
dures are of particular importance in order to reduce the numbers of iterations

4 E. Didiot and F. Lauer

and of kernel evaluations required by the algorithm. In addition, these meth-
ods typically lead to convergence without having to optimize over all variables
thanks to the sparsity of SVM solutions (given an initialization of α with zeros).
In such cases, only a small subset of the kernel matrix need to be computed, thus
also limiting the amount of memory required for kernel cache (see Sect. 3.2).

A working set selection strategy was proposed in [4] in order to choose the
chunk of data considered in the next training step of the CS type of M-SVM.
This strategy is based on the KKT conditions of optimality applied to the dual
problem. The data points with maximal violation of the KKT conditions are
selected. This violation can be measured for each data point (xi, yi) by

ψi = max
k∈{j : αij(t)>0}

gik(t)− min
k∈{1,...,Q}

gik(t), (3)

where gik(t) is the partial derivative of Jd(α(t)) with respect to αik, the (iQ+k)th
dual variable which is associated to the ith data pair (xi, yi) and the kth category.

Unfortunately, there is no simple measure of the violation of the KKT condi-
tions for the other types of M-SVMs. Thus, for these, we use a random selection
procedure for the determination of S. 1

In the following, the subscript S is used to denote subvectors (or submatrices)
with all entries (or rows) associated to the working set, e.g., αS(t) contains all
dual variables αik, with i ∈ S and 1 ≤ k ≤ Q.

3.2 Kernel Cache

Kernel function evaluations are the most demanding computations in the train-
ing of an M-SVM. Indeed, every evaluation of K(xi, xj) typically involves at
least O(d) flops and computing the s-by-m submatrix KS of K at each training
step requires O(smd) flops.

Many of these computations can be avoided by storing previously computed
values in memory. More precisely, the kernel cache stores a number of rows of
K that depends on the available memory. When the solver needs to access a
row of K, either the row is directly available or it is computed and stored in the
kernel cache. If the cache memory size is not sufficient to store the entire kernel
matrix, rows are dropped from the cache when new ones need to be stored. While
most binary SVM solvers use a so-called “last recently used” (LRU) cache to
decide which kernel matrix row should be dropped, MSVMpack does not apply
a particular rule. The reason is that, for binary SVMs, efficient working set
selection methods often lead to many iterations based on the same rows, while
the random selection of MSVMpack does not imply such a behavior.

1 The implementation of Weston and Watkins model as proposed in [9] for the BSVM
software does include a working set selection strategy. However, this strategy relies
on a modification of the optimization problem in which the bias terms, bk, are also
regularized. Here, we stick to the original form of the problem as proposed in [15]
and thus cannot use a similar strategy.

Efficient Optimization of M-SVMs with MSVMpack 5

3.3 Parallel Computations

MSVMpack offers a parallel implementation of the training algorithms of the
four M-SVMs (WW, CS, LLW, MSVM2). This parallelization takes place at
the level of a single computer to make use of multiple CPUs (or cores) rather
than a distributed architecture across a cluster. The approach is based on a
simple design with a rather coarse granularity, in which kernel computations
and gradient updates are parallelized during training.

Precomputing the Kernel Submatrix. As previously emphasized, the ker-
nel computations, i.e., the evaluation of K(xi, xj), are the most intensive ones
compared to training steps and updates of the model (updates of α). In addition,
they only depend on the training data, which is constant throughout training.
Thus, it is possible to compute multiple kernel function values at the same time
or while a model update is performed. Technically, the following procedure is ex-
ecuted on NCPU CPUs (the steps truly running in parallel are shown in italic).

1. Select a working set S = {S1, . . . , Ss} ⊂ [[1,m]] of s data indexes.
2. Compute the kernel submatrix KS as in (2).
3. Wait for the M-SVM model to become available (in case another CPU is

currently taking a step and updating the model).
4. Take a training step and update the model, i.e., compute uS , λ and αS(t+

1) = αS(t)+λ(u−αS(t)) as in the Frank-Wolfe algorithm depicted in Sect. 3.
5. Release the model (to unblock waiting CPUs).
6. Loop from step 1 until the termination criterion (discussed in Sect. 3) is

satisfied.

Note that, for the CS model type, the working set selection is not random and
actually makes use of the model (see section 3.1). In this case, it cannot be easily
parallelized and the scheme above is modified to select the working set for the
next training step between steps 4 and 5, while step 6 loops only from step 2.

With this procedure, a CPU can be blocked waiting in step 5 for at most
(NCPU − 1) times the time of a training step. In most cases, this quantity is
rather small compared to the time required to compute the kernel submatrix
KS . In practice, this results in a high working/idle time ratio for all CPUs.

Computing the Gradient Update. The next most intensive computation
after the kernel function evaluations concerns the gradient vector g(t) that is
required at each step.

First, note that a naive implementation computing the required subset of
the gradient vector g(t) before each step with gS(t) = HSα(t) + cS , where HS

contains a subset of s rows of H, is ineffective as it involves all the columns of
HS . In addition, at every evaluation of the termination criterion, we require the
entire gradient vector, which would involve the entire matrix H.

A better strategy is to update the gradient at the end of each step with

g(t+ 1) = g(t) + H(α(t+ 1)− α(t)),

6 E. Didiot and F. Lauer

where
∀i /∈ S, k ∈ [[1, Q]] , αik(t+ 1)− αik(t) = 0,

resulting in only O(mQs) operations of the form:

∀i ∈ [[1,m]] , k ∈ [[1, Q]] , gik(t+ 1) = gik(t)−
∑
j∈S

∑
1≤l≤Q

Hjl(αjl(t+ 1)−αjl(t)).

This computation can be parallelized by splitting the gradient vector g ∈
RQm in Ng ≤ NCPU parts, each one of which is updated by a separate CPU.

MSVMpack automatically balance the number NK of CPUs precomputing
kernel submatrices and the number Ng of those used for the gradient update
along the training process. Indeed, at the beginning, the main work load is on
the kernel matrix (NK = NCPU), but as the kernel cache grows, less and less
computations are required to obtain a kernel submatrix. Thus, CPUs can be
redistributed to the still demanding task of updating the gradient (Ng increases
and NK = NCPU −Ng + 1). If the entire kernel matrix fits in memory, all CPUs
eventually work for the gradient update.

Cross Validation. K-fold cross validation is a standard method to evaluate
a classifier performance. After dividing the training set into Nfolds subsets, the
method trains a model on (Nfolds − 1) subsets, test it on the remaining subset
and iterates this for all test subsets. Thus, the cross validation procedure requires
training ofNfolds models and can also be parallelized with two possible scenarios.
In case the number of CPUs is larger than the number of models to be trained
(NCPU > Nfolds), each one of the Nfolds models is trained in parallel with
NCPU/Nfolds CPUs applying the scheme described above to compute the kernel
function values and gradient updates. Otherwise, the first NCPU models are
trained in parallel with a single CPU each and the next one starts training as
soon as the first one is done, and so on. When all models are trained, the Nfolds
test subsets are classified sequentially, but nonetheless efficiently thanks to the
parallelization of the classification described next.

The parallelized cross validation also benefits from the kernel cache: many
kernel computations can be saved as the Nfolds models are trained in parallel
from overlapping subsets of data. More precisely, MSVMpack implements the
following scheme. A master kernel cache stores complete rows of the global kernel
matrix computed from the entire data set. For each one of the Nfolds models,
a local kernel cache stores rows of a kernel submatrix computed with respect
to the corresponding training subset. When a model requests a row that is not
currently in the local kernel cache, the request is forwarded to the master cache
which returns the complete row with respect to the entire data set. Then, the
elements of this row are mapped to a row of the local cache. This mapping
discards the columns corresponding to test data for the considered model and
takes care of the data permutation used to generate the training subsets. In
this scheme, every kernel computation performed to train a particular model
benefits to other models as well. In the case where the entire kernel matrix fits
in memory, all values are computed only once to train the Nfolds models.

Efficient Optimization of M-SVMs with MSVMpack 7

Making Predictions on Large Test Sets. Finally, the classification of large
test sets can also benefit from parallelization via a straightforward approach.
The test set is cut into NCPU subsets and the classifier output is computed on
each subset by a different CPU.

3.4 Vectorized Kernel Functions

In many cases, data sets processed by machine learning algorithms contain real
numbers with no more than 7 significant digits (which is often the default when
writing real numbers to a text file) or even integer values. On the other hand,
the typical machine learning software loads and processes these values as double
precision floating-point data, which is a waste of both memory and computing
time. MSVMpack can handle data in different formats and use a dedicated kernel
function for each format. This may be used to increase the speed of kernel
computations on single precision floats or integers.2

In particular, proper data alignment in memory allows MSVMpack to use
vectorized implementations of kernel functions. These implementations make
use of the Single Instruction Multiple Data (SIMD) instruction sets available on
modern processors to process multiple components of large data vectors simul-
taneously. With this technique, the smallest the data format is (such as with
single-precision floats or short integers), the faster the kernel function is.

4 New Features in Latest MSVMpack

Since its first version briefly described in [10], MSVMpack was extended with
a few features. Notably, it is now available for Windows and offers a Matlab
interface. It also better handles unbalanced data sets by allowing the use of a
different value of the regularization parameter for each category.

The parallelized cross validation described in Section 3.3 is an important
new feature (available since MSVMpack 1.4) that improves the computational
efficiency in many practical cases. Also, the software defaults are now to use as
much memory and as many processors as available (early releases required the
user to set these values) and the dynamical balancing between CPUs assigned to
the kernel matrix and those assigned to the gradient updates was also improved.

5 Numerical Experiments

An experimental comparison of MSVMpack with other implementations of M-
SVMs is provided here for illustrative purposes. The aim is not to conclude on
what type of M-SVM model is better, but rather to give an idea of the efficiency
of the different implementations. The following implementations are considered:

2 Note that, in a kernel evaluation v = K(x, z), only the format of x and z changes and
the resulting value v is always in double precision floating-point format. All other
computations in the training algorithms also remain double-precision.

8 E. Didiot and F. Lauer

– J. Weston’s own implementation of his M-SVM model (WW) in Matlab
included in the Spider3,

– the BSVM4 implementation in C++ of a modified version of the same M-
SVM model (obtained with the -s 1 option of the BSVM software),

– K. Crammer’s own implementation in C of his M-SVM model (CS) named
MCSVM5,

– and Lee’s implementation in R of hers (LLW) named SMSVM6.

Note that both the Spider and SMSVM are mostly based on non-compiled code.
In addition, these two implementations require to store the kernel matrix in
memory, which makes them inapplicable to large data sets. BSVM constitutes
an efficient alternative for the WW model type. However, to the best of our
knowledge, SMSVM is the only implementation (beside MSVMpack) of the LLW
M-SVM model described in [11].

The characteristics of the data sets used in the experiments are given in Ta-
ble 1. The ImageSeg data set is taken from the UCI repository7. The USPS 500
data set is a subset of the USPS data provided with the MCSVM software. The
Bio data set is provided with MSVMpack. The CB513 01 data set corresponds to
the first split of the 5-fold cross validation procedure on the entire CB513 data set
[5]. MSVMpack uses the original MNIST data8 with integer values in the range
[0, 255], while other implementations use scaled data downloaded from the LIB-
SVM homepage9. BSVM scaling tool is applied to the Letter data set downloaded
from the UCI repository10 to obtain a normalized data set in floating-point data
format.

All methods use the same kernel functions and hyperparameters as summa-
rized in Table 1. In particular, for MCSVM, we used β = 1/C. When unspecified,
the kernel hyperparameters are set to MSVMpack defaults. Also, SMSVM re-
quires λ = log2(1/C) with larger values of C to reach a similar training error, so
C = 100000 is used. Other low level parameters (such as the size of the working
set) are kept to each software defaults. These experiments are performed on a
computer with 2 Xeon processors (with 4 cores each) at 2.53 GHz and 32 GB of
memory running Linux (64-bit).

The results are shown in Tables 2–3. Though no definitive conclusion can
be drawn from this small set of experiments, the following is often observed in
practice:

3 http://people.kyb.tuebingen.mpg.de/spider/
4 http://www.csie.ntu.edu.tw/~cjlin/bsvm/
5 http://www.cis.upenn.edu/~crammer/code-index.html
6 http://www.stat.osu.edu/~yklee/software.html
7 http://archive.ics.uci.edu/ml/datasets/Image+Segmentation
8 MNIST data sets are available at http://yann.lecun.com/exdb/mnist/. The data

are originally stored as bytes, but the current implementation of the RBF kernel
function in MSVMpack is faster with short integers than with bytes, so short integers
are used in this experiment.

9 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
10 http://archive.ics.uci.edu/ml/datasets/Letter+Recognition

Efficient Optimization of M-SVMs with MSVMpack 9

– Test error rates of different implementations of the same M-SVM model
are comparable. However, slight differences can be observed due to different
choices for the stopping criterion or the default tolerance on the accuracy of
the optimization.

– Training is slower with MSVMpack than with other implementations for
small data sets (with 15000 data or fewer). This can be explained by better
working set selection and shrinking procedures found in other implemen-
tations. For small data sets, these techniques allow other implementations
to limit the computational burden related to the kernel matrix. Training
with these implementations often converges with only few kernel function
evaluations.

– Training is faster with MSVMpack than with other implementations for large
data sets (with 60000 data or more). For large data sets, the true benefits
of parallel computing, large kernel cache and vectorized kernel functions as
implemented in MSVMpack become apparent. In particular, kernel function
evaluations are not the limiting factor for MSVMpack in these experiments
with this hardware configuration.

– Embedded cross validation is fast. Table 3 shows that a 5-fold cross valida-
tion can be faster with the parallel implementation that saves many kernel
computations by sharing the kernel function values across all folds.

– MSVMpack training is less efficient on data sets with a large number of
categories (such as Letter with Q = 26). However, for data sets with up to
10 categories (such as MNIST), MSVMpack compares favorably with other
implementations.

– Predicting the labels of a data set in test is faster with MSVMpack than with
other implementations (always true in these experiments). This is mostly
due to the parallel implementation of the prediction. For particular data
sets, data format-specific and vectorized kernel functions also speed up the
testing phase.

– MSVMpack leads to models with more support vectors than other implemen-
tations. This might be explained by the fact that no tolerance on the value
of a parameter αik is used to determine if it is zero or not (and if the corre-
sponding example xi is counted as a support vector).

The ability of MSVMpack to compensate for the lack of cache memory by
extra computations in parallel is illustrated by Table 4 for the WW model type
(which uses a random working set selection and thus typically needs to compute
the entire kernel matrix). In particular, for the Bio data set, changing the size
of the cache memory has little influence on the training time. Note that this is
also due to the nature of the data which can be processed very efficiently by the
linear kernel function for bit data format. For the CB513 01 data set, very large
cache sizes allow the training time to be divided by 2 or 3. However, for smaller
cache sizes (below 8 GB) the actual cache size has little influence on the training
time.

10 E. Didiot and F. Lauer

Table 1. Characteristics of the data sets.

Data set #classes #training #test data Training parameters
examples examples dim. format

ImageSeg 7 210 2100 19 double C = 10, RBF kernel, σ = 1
data normalized

USPS 500 10 500 500 256 float C = 10, RBF kernel, σ = 1

Bio 4 12471 12471 68 bit C = 0.2, linear kernel

CB513 01 3 65210 18909 260 short C = 0.4, RBF kernel

CB513 3 84119 5-fold CV 260 short C = 0.4, RBF kernel

MNIST 10 60000 10000 784 short C = 1, RBF kernel, σ = 1000
double data normalized, σ = 4.08

Letter 26 16000 4000 16 float C = 1, RBF kernel, σ = 1
data normalized

6 Conclusions

The paper discussed the main features of an efficient solver for training M-SVMs
as implemented in MSVMpack.

Future work will focus on implementing methods to ease the tuning of hy-
perparameters, such as the computation of regularization paths. Extending the
software to deal with cost-sensitive learning will also be considered. Another
possible direction of research concerns the parallelization in a distributed envi-
ronment in order to benefit from computing clusters in addition to multi-cores
architectures.

References

1. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer Academic Publishers, Boston (2004)

2. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Proc. of the 5th Annual Workshop on Computational Learning Theory.
pp. 144–152 (1992)

3. Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.): Large-Scale Kernel Ma-
chines. The MIT Press, Cambridge, MA (2007)

4. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)

5. Cuff, J.A., J., B.G.: Evaluation and improvement of multiple sequence methods
for protein secondary structure prediction. Proteins 34(4), 508–519 (1999)

6. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research
Logistics Quarterly 3(1–2), 95–110 (1956)

7. Guermeur, Y.: A generic model of multi-class support vector machine. International
Journal of Intelligent Information and Database Systems 6(6), 555–577 (2012)

8. Guermeur, Y., Monfrini, E.: A quadratic loss multi-class SVM for which a radius-
margin bound applies. Informatica 22(1), 73–96 (2011)

Efficient Optimization of M-SVMs with MSVMpack 11

Table 2. Relative performance of different M-SVM implementations.

Data set M-SVM Software #SV Training Test Training Testing
model error (%) error (%) time time

ImageSeg WW Spider 113 5.24 11.05 11s 3.3s
BSVM 98 2.38 9.81 0.1s 0.1s
MSVMpack 192 0 10.33 1.2s 0.1s

CS MCSVM 97 2.86 8.86 0.1s 0.1s
MSVMpack 141 0 9.24 3.3s 0.1s

LLW SMSVM 210 0.48 7.67 15s 0.1s
MSVMpack 182 0 10.57 23s 0.1s

MSVM2 MSVMpack 199 0 10.48 4.5s 0.1s

USPS 500 WW Spider 303 0.40 10.20 4m 19s 0.2s
BSVM 170 0 10.00 0.2s 0.1s
MSVMpack 385 0 10.40 2.5s 0.1s

CS MCSVM 284 0 9.80 0.5s 0.3s
MSVMpack 292 0 9.80 30s 0.1s

LLW SMSVM 500 0 12.00 5m 58s 0.1s
MSVMpack 494 0 11.40 1m 22s 0.1s

MSVM2 MSVMpack 500 0 12.00 22s 0.1s

Bio WW Spider out of memory
BSVM 2200 6.23 6.23 11s 4.6s
MSVMpack 4301 6.23 6.23 4m 00s 0.5s

CS MCSVM 1727 6.23 6.23 9s 4.2s
MSVMpack 3647 6.23 6.23 8s 0.5s

LLW SMSVM out of memory
MSVMpack 12467 6.23 6.23 2m 05s 1.1s

MSVM2 MSVMpack 12471 6.23 6.23 11m 44s 0.9s

CB513 01 WW Spider out of memory
BSVM 39183 19.46 25.70 1h 41m 52s 9m 02s
MSVMpack 42277 16.94 25.55 10m 31s 26s

CS MCSVM 41401 17.07 25.45 4h 12m 35s 27m 11s
MSVMpack 40198 16.93 25.41 4m 04s 32s

LLW SMSVM out of memory
MSVMpack 54313 22.14 27.65 11m 46s 32s

MSVM2 MSVMpack 62027 14.31 25.32 1h 08m 54s 47s

MNIST WW Spider out of memory
BSVM 13572 0.078 1.46 4h 03m 29s 2m 39s
MSVMpack 14771 0.015 1.41 2h 50m 29s 15s

CS MCSVM 13805 0.038 2.76 1h 54m 26s 4m 09s
MSVMpack 14408 0.032 1.44 49m 04s 15s

LLW SMSVM out of memory
MSVMpack 47906 0.282 1.57 4h 36m 45s 45s

MSVM2 MSVMpack 53773 0.027 1.51 10h 55m 10s 55s

Letter WW Spider out of memory
BSVM 7460 4.30 5.85 6m 20s 5s
MSVMpack 7725 3.14 4.75 24m 38s 3s

CS MCSVM 6310 2.03 3.90 2m 38s 4s
MSVMpack 7566 4.72 6.92 6m 54s 3s

LLW SMSVM out of memory
MSVMpack 16000 16.90 18.80 3h 56m 08s 4s

MSVM2 MSVMpack 16000 5.08 7.28 *48h 00m 00s 3s

*: manually stopped before reaching the default optimization accuracy.

12 E. Didiot and F. Lauer

Table 3. Results of a 5-fold cross validation on the CB513 data set. The times for
training and testing on a single fold are also recalled to emphasize the benefit of the
parallel cross validation.

M-SVM Cross validation Single fold
model error time training time test time

WW 23.63 % 21m 07s 10m 31s 26s

CS 23.55 % 12m 05s 4m 04s 32s

LLW 25.52 % 30m 29s 11m 46s 32s

MSVM2 23.36 % 2h 55m 05s 1h 08m 54s 47s

Table 4. Effect of the cache memory size on the training time of MSVMpack for the
WW model type.

Bio

Cache memory size in MB 10 60 120 300 600 1200
and in % of the kernel matrix < 1% 5% 10% 25% 50% 100%

Training time 5m 55s 6m 00s 6m 13s 4m 29s 3m 56s 4m 00s

CB513 01

Cache memory size in MB 1750 3500 8200 16500 24500 30000
and in % of the kernel matrix 5% 10% 25% 50% 75% 92%

Training time 31m 49s 30m 40s 26m 06s 23m 00s 15m 52s 10m 31s

9. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

10. Lauer, F., Guermeur, Y.: MSVMpack: a multi-class support vector machine pack-
age. Journal of Machine Learning Research 12, 2269–2272 (2011), http://www.

loria.fr/~lauer/MSVMpack

11. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association 99(465), 67–81 (2004)

12. Platt, J.: Fast training of support vector machines using sequential minimal op-
timization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods: Support Vector Learning, pp. 185–208. MIT Press (1999)

13. Shevade, S., Keerthi, S., Bhattacharyya, C., Murthy, K.: Improvements to the SMO
algorithm for SVM regression. IEEE Transactions on Neural Networks 11(5), 1188–
1193 (2000)

14. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc. (1995)

15. Weston, J., Watkins, C.: Multi-class support vector machines. Tech. Rep. CSD-
TR-98-04, Royal Holloway, University of London (1998)

