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Abstract9

Detailed and timely information on crop area, production and yield is important

for the assessment of environmental impacts of agriculture, for the monitoring of

the land use and management practices, and for food security early warning sys-

tems. A machine learning approach is proposed to model crop rotations which

can predict with good accuracy, at the beginning of the agricultural season, the

crops most likely to be present in a given field using the crop sequence of the

previous 3 to 5 years. The approach is able to learn from data and to integrate

expert knowledge represented as first-order logic rules. Its accuracy is assessed

using the French Land Parcel Information System implemented in the frame of

the EU’s Common Agricultural Policy. This assessment is done using different

settings in terms of temporal depth and spatial generalization coverage. The

obtained results show that the proposed approach is able to predict the crop

type of each field, before the beginning of the crop season, with an accuracy as

high as 60%, which is better than the results obtained with current approaches

based on remote sensing imagery.
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1. Introduction11

Detailed and timely information on crop area, production and yield is im-12

portant for the assessment of environmental impacts of agriculture (Tilman,13

1999), for the monitoring of the land use and management practices, and for14

food security early warning systems (Gebbers and Adamchuk, 2010). Yield15

production can be forecasted using models which need information about the16

surface covered by each type of crop (Resop et al., 2012).17

There are different ways of gathering this information, such as statistical18

surveys or automatic mapping using Earth observation remote sensing imagery.19

Statistical surveys are expensive to implement, since they need field work, which20

is time consuming when large areas need to be covered. The use of remote sens-21

ing imagery has been found to produce good quality maps when using high22

resolution satellite image time series (Inglada and Garrigues, 2010). These ap-23

proaches use supervised classification techniques which efficiently exploit satel-24

lite image time series acquired during the agricultural season. Describing the25

approach used for the supervised classification of satellite images is beyond the26

scope of this paper and the details can be found in (Inglada and Garrigues,27

2010), (Petitjean et al., 2012) or (Petitjean et al., 2014).28

As an example of these approaches, figure 1 presents a 5-class crop map29

obtained using a time series of 13 images acquired by the Formosat-2 satellite30

during 2009 over a study site near Toulouse in Southern France. The data set31

is described in Osman et al. (2012). The supervised classification is performed32

using a Support Vector Machine as described in Inglada and Garrigues (2010).33
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Figure 1: Example of crop map obtained by supervised classification of satellite image time
series. Only croplands are classified. Corn (red), wheat (yellow), rapeseed (purple), barley
(green), sunflower (brown). White areas represent non croplands.

The resulting classification has an accuracy close to 90%. However, this accuracy34

can only be achieved at the end of the agricultural season when all images35

are available. This delay in crop map production has led the remote sensing36

community to develop near-real-time approaches, where the maps are updated37

during the season every time a new image is available. Figure 2 shows the38

evolution of the accuracy of each map produced during the season. A point in39

the curve represents the accuracy obtained using all the images available up to40

a given date. In this particular example, one can observe that a quality close41
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Figure 2: Classification accuracy obtained with satellite image time series. Each cross repre-
sents a new image acquisition. The accuracy increases when more images are available.

to the maximum can be obtained before 200 days into the year. However, no42

information is available before the first image is acquired at the end of January.43

For many crop systems, the beginning of the season coincides with the end of44

Autumn or the beginning of Winter. In this period, satellite images are very45

likely to be cloudy and therefore of little use for crop mapping. Furthermore,46

the accuracy of the land cover classification obtained with only one image is47

below 40%, which is not enough for most applications.48

The goal of this paper is to introduce an approach which is able to produce49

land cover maps for agricultural areas at the beginning of the crop season with-50

out relying on remote sensing imagery. We propose to use the knowledge about51

the crop type which was present in every field the previous seasons to predict the52

crop grown the current year. The proposed approach uses a statistical model53
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for crop rotations.54

Crop rotations – specific sequences of crops in successive years – improve or55

maintain crop yield while reducing input demands for fertilizers and pesticides,56

and therefore they are widely used by farmers. This regularity on the agricul-57

tural practices allows predicting with some accuracy the type of crop present in58

a given field at one point in time if the previous crop sequence is known.59

Many crop rotation models exist, ranging from purely agronomic (crop-soil60

simulation models (Wechsung et al., 2000)), to approaches integrating expert61

knowledge and field data (Dogliotti et al., 2003). The complexity of these models62

makes them difficult to adapt to variable situations and evolving conditions.63

Crop rotations may evolve in time, either slowly due to for instance climate64

change impact in rain-fed crops, or very quickly due to environmental regulations65

dealing with the use of pesticides or water management. Economic factors, as66

for instance seed prices, can also introduce drastic changes. Hence, crop rotation67

models which can be easily updated and which can exploit the history of the68

different territories are needed.69

Yearly cropland mapping can be obtained either using farmers administra-70

tive declarations or maps produced using remote sensing data at the end of the71

season (like the one of figure 1). Therefore, the history of the fields can be72

known.73

We propose a machine learning approach to model crop rotations which can74

predict, at the beginning of a season, with good accuracy, the crops the most75

likely to be present in a given field, using the crop sequence of the previous 376
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to 5 years.77

We assess its accuracy using the French Land Parcel Information System78

RPG in different settings in terms of temporal depth and spatial generalization79

coverage.80

The paper is organized as follows. In section 2, we review several approaches81

for crop rotation modeling in the literature. Section 3 presents the proposed82

approach. In section 4, we present the type of data on which our approach83

relies and we define the experimental setup used for this work; then, we present84

the details of the assessment and analyze the results. The paper ends with a85

conclusion and some perspectives.86

2. Modeling crop sequences87

The predictive model presented in this work (section 3) aims at providing88

a first guess of crop type maps before the beginning of the crop season. Our89

model uses knowledge about crop rotations.90

Crop rotations have been intensively studied by both agronomists and economists91

leading to farm management models in the economics and life sciences models92

in agronomy. Some of them are presented in section 2.1.1. They often require93

inputs of sequences of crops grown on a specific field over several years. In94

recent years, there has been an increased focus on sustainable farming systems.95

This has led to an increase in the use of farm models used to assess the environ-96

mental impact of farming. In models of complete exploitations including crop97

production, it is important to consider the rotation of crops, since this has a98

major impact on the consequences of the crop production.99
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However, for the forecasting of crop type mapping, there are specific needs100

which are not covered by existing modeling approaches. These specific needs101

are:102

1. Field level information: the crop type has to be predicted for every indi-103

vidual field; aggregate data or regional trends are not enough.104

2. Different landscapes and different climatic conditions lead to different105

management practices. Therefore, regional information has to be com-106

bined with field-level history.107

3. The approach should be portable to different countries and regions of the108

globe with minimum adaptations. Therefore, it should be able to both,109

learn from data and to exploit expert knowledge. The approach should110

also be able to use only one of these 2 types of information in case the111

other one is not available.112

4. To cover very large areas, the approach must not rely exclusively on field113

surveys which are expensive in terms of time and manpower.114

5. The model should be able to evolve in time to take into account changing115

conditions which influence managing practices (climate change, regulatory116

constraints).117

To the best of our knowledge, no existing approach in the literature allows118

fulfilling all these requirements.119

2.1. Existing approaches in the literature120

Crop rotation modeling has been addressed in different ways. We may clas-121

sify these approaches in 2 groups:122
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1. the approaches using mainly theoretical knowledge, that is models from123

life sciences, economics or using expert knowledge by agronomists;124

2. the approaches which learn from data.125

2.1.1. Theoretical knowledge126

One simple example of theoretical knowledge is the ROTAT software tool127

(Dogliotti et al., 2003) which generates all possible rotations of the crops present128

in a particular area, and then applies a selection based on agronomic criteria129

provided by experts. This approach allows producing accurate results at the130

exploitation level, but not at the field level.131

The creation of transition matrices adapted to the agricultural landscape132

under study requires expert knowledge on the type of crop rotation to model133

and an understanding of the internal dynamics of crop successions. Such knowl-134

edge may be derived from research on decision-making by farmers about crop135

succession (Castellazzi et al., 2008). Castellazzi et al. use Markov chains with136

transition probabilities set by experts, but their values are limited to 0 and 1.137

The specialization of the models to particular sites needs adequate tools.138

For example Detlefsen et al. (Detlefsen and Jensen, 2007) propose the use of139

network modeling to find an optimal crop rotation for a given selection of crops140

on a given piece of land. This model can give advice about the appropriate141

crop to be grown on a field, but it needs information about the farm (surface,142

number of fields) and about the costs of farming operations (ploughing, etc.).143

This kind of information may not be available when mapping very large areas.144

Farm management models often produce average crop shares over a num-145
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ber of years, whereas models from the natural sciences often require inputs of146

sequences of crops grown on a specific field over several years.147

For instance, the SWIM model used by Wechsung et al. (Wechsung et al.,148

2000) can not be applied efficiently over large areas at the individual field level,149

since it needs very detailed information about specific parameters of the crops.150

The works of Klöcking et al. (Klöcking et al., 2003) or Salmon-Monviola et al.151

(Salmon-Monviola et al., 2012) fall in the category of models which perform152

stochastic simulations for scenarios, but not for accurate mapping at the field153

level.154

In interdisciplinary modeling, this difference can be an obstacle. To bridge155

this gap, an approach is presented in (Aurbacher and Dabbert, 2011) that allows156

disaggregating results from farm management models to the level required by157

many natural science models. This spatial disaggregation consists in deriving a158

spatial distribution of some information which is only available as a summary for159

a large area. Aurbacher et al. (Aurbacher and Dabbert, 2011) use Markov chains160

for the disaggregation at the field level. This approach needs detailed knowledge161

about the activity at the field and farm levels, as well as other economical162

information as for instance gross margin. This level of detail is difficult to163

obtain for large areas and therefore the approach is not suited to mapping.164

The integration of many types of knowledge is challenging, and one of the165

approaches for overcoming this difficulty is to use multi-agent systems, as for166

instance in the Maelia platform (Taillandier et al., 2011). This approach suffers167

from the same drawbacks as the previous ones: the need to access detailed168
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knowledge at the farm level.169

The main drawback of models based on theoretical knowledge is their in-170

ability to easily adapt to changing conditions, since these new conditions have171

to be accounted for in the models, or adaptive decision rules have to be imple-172

mented. However, some attempts have been made to take into account changes.173

For instance, Supit et al. (Supit et al., 2012) model climate change impacts on174

potential and rain-fed crop yields on the European continent using the outputs175

of three General Circulation Models in combination with a weather generator.176

However, this model is only able to evolve with respect to climate and not with177

respect to other types of changes.178

2.1.2. Automatic learning from data179

One way to overcome the problem of adaptation to changing environments180

or to specific areas, is to integrate field surveys or similar data in the models.181

There are models which are used to describe existing data, as for instance182

CarrotAge (Le Ber et al., 2006), which allows analyzing spatio-temporal data183

to study the cropping patterns of a territory. The results of CarrotAge are184

interpreted by agronomists and used in research works linking agricultural land185

use and water management. The underlying algorithms use Markov models.186

The main limitation of CarrotAge for our needs is that it does not perform crop187

prediction at the field level.188

Another example is the crop rotation model CropRota (Schönhart et al.,189

2011), which integrates agronomic criteria and observed land use data to gen-190

erate typical crop rotations for farms and regions. CropRota does not work at191
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the field level.192

Similar to the previous one, ROTOR (Bachinger and Zander, 2007) is a tool193

for generating and evaluating crop rotations for organic farming systems. It was194

developed using data from field experiments, farm trials and surveys and expert195

knowledge. Its originality is the integration of a soil–crop simulation model. As196

the two previous approaches, ROTOR does not perform predictions at the field197

level.198

As our goal is to map the croplands, we need not only to model the transi-199

tions of crops, but also to take into account the geospatial information available.200

Usually, the data available for integration in models comes from census and201

has no continuous spatial distribution. Many approaches for the spatialization202

of this kind of information exist, as for instance krigging (Flatman and Yfantis,203

1984). In the case of crop distribution, You et al. (You et al., 2006) proposed204

an approach to go from census data to raster information, but their work is not205

applied to the field level, which is needed in our case for crop mapping.206

Although limited to 3 crops, Xiao et al. (Xiao et al., 2014) used field level207

information to perform a regional scale analysis, but they did not perform fore-208

casting of the selected crops in the individual fields.209

Among the cited approaches, none of them fulfill the 5 constrains listed210

at the beginning of this section. However, some of these works have shown211

that statistical modeling of crop rotations in general, and Markovian models in212

particular are appropriate tools for crop type prediction. The drawback of the213

Markovian approaches used in the literature is that they are not easily updated214

12



when expert knowledge complementary to existing data is available.215

3. Modeling with Markov Logic216

We start (section 3.1) by justifying the use of Markovian approaches for crop217

rotation modeling and we point out their main limitation for our needs : the218

impossibility of easily integrating expert knowledge. We then present in section219

3.2 the Markov Logic approach which solves this issue. Finally, in section 3.3220

we describe how to use Markov Logic Networks to model crop rotations and to221

forecast future crops.222

3.1. Properties of the model223

At the beginning of section 2, the specific needs for the forecasting of crops224

at the field level were listed. After the literature review on crop rotation mod-225

els, the properties that a model for our application should possess can now be226

precised.227

1. Learning from past sequences, both at the field and at the regional scale.228

This allows taking into account regional trends together with specific field229

information.230

2. Exploiting the past information for every particular field (either using231

Land Parcel Information Systems or existing land-cover maps).232

3. Incorporating changes in practices without needing the compilation of new233

data bases containing examples of these evolutions. This allows the model234

to quickly evolve without the need of a time lag before being able to exploit235

information about changing conditions.236

13



As we saw in section 2, existing approaches to assess agricultural practices237

focus on the assessment of single crops or statistical data because spatially238

explicit information on practically applied crop rotations was lacking (Lorenz239

et al., 2013), but this is not the case anymore in the EU. For instance Letein-240

turier et al. (Leteinturier et al., 2006) used the land parcel management system241

implemented in the frame of EU’s Common Agricultural Policy to assess many242

common rotation types from an agro-environmental perspective. Also, in the243

USA, the USDA’s Cropland Data Layer provides annual crop cover data at 30244

m. resolution (Boryan et al., 2011).245

When learning from data representing sequential states of variables, the246

Markovian properties are often used. In a Markovian process, the next state de-247

pends only on the current state and not on the sequence of events that preceded248

it. This allows to efficiently learn the probability of any particular sequence of249

states by computing only the probability of transition between individual states.250

As a matter of fact, most of the approaches similar to those presented in section251

2.1.2 use these approaches.252

One of the most frequently used Markovian models are Bayesian Networks253

(BN) (Friedman and Koller, 2003; Heckerman et al., 1995) which are today one254

of the most promising approaches to Data Mining and Knowledge Discovery in255

databases. A BN is a graph (structure of the network) where each node is a256

random variable (for instance the crop grown on a particular field on a given257

year) and each edge represents the degree of dependence between the random258

variables (the probability of transition between states). Figure 3 illustrates some259
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examples of BN.260

A B C D

(a) First order Bayesian Network

A

B

C

D

(b) Second order Bayesian Network

A

B

C

D

(c) Third order Bayesian Network

A

B
C

D

(d) Common effect Bayesian Network

Figure 3: Examples of Bayesian Networks.

A Markov Random Field, MRF, (or Markovian Network, MN) is similar261

to a BN in its representation of dependencies (Kindermann et al., 1980); the262

differences being that BN are directed and acyclic, whereas MN are undirected263

and may be cyclic. Thus, a MN can represent certain dependencies that a BN264

cannot (such as cyclic dependencies); on the other hand, it cannot represent265

certain dependencies that a BN can (such as induced dependencies).266

BN and MRF need probability estimates which can be learnt from data.267

However, they cannot easily incorporate other types of knowledge as for in-268

stance logic rules. For instance, in the case of crop rotations, a new regulation269

about nitrates can change the patterns of the sequences. Changes in prices or a270
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reorientation towards bio-fuel production can lead to yet bigger changes. These271

expected changes can be expressed with rules, but no data is available for learn-272

ing until several agricultural seasons have passed. Furthermore, in some cases,273

the knowledge is easier to express in terms of a set of sentences or formulas in274

first-order logic (if-then rules), rather than in terms of transition probabilities275

between states. Therefore, an alternative or an extension to BN and MRF is276

needed.277

3.2. Markov Logic278

To combine knowledge from databases and knowledge from experts, inference279

approaches which are able to combine probabilistic learning and rule-based logic280

reasoning are needed. Combining probability and first-order logic in a single rep-281

resentation has long been a goal of Artificial Intelligence. Probabilistic graphical282

models like BN make it possible to efficiently handle uncertainty. First-order283

logic allows to compactly represent a wide variety of knowledge. The combi-284

nation of probabilistic and propositional models has been one research area of285

important activity since the mid 1990’s (Cussens, 2001; Puech and Muggleton,286

2003).287

Recently, Markov Logic (ML) (Richardson and Domingos, 2006) was in-288

troduced as a simple approach to combining first-order logic and probabilistic289

graphical models in a single representation. A Markov Logic Network (MLN)290

is a first-order knowledge base (KB) with a weight attached to each formula1.291

Together with a set of constants representing objects in the domain, it specifies292

1Logic formulas are also called rules or clauses.
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a ground MN2 containing one feature for each possible grounding of a first-order293

formula in the KB, with the corresponding weight. Inference in MLNs is per-294

formed by Monte Carlo Markov Chains (MCMC) over the minimal subset of the295

ground network required for answering the query. Weights are efficiently learned296

from relational databases by iteratively optimizing a pseudo-likelihood measure.297

Optionally, additional clauses are learned using inductive logic programming298

techniques. Also, clauses can be added if some prior or expert knowledge is299

available.300

A first-order logic KB can be seen as a set of hard constraints on the set of301

possible worlds: if a world does not respect one single formula, it has zero prob-302

ability. In MLN, these constraints are softened: if a world does not verify one303

formula in the KB it has a lower probability, but not zero. The more formulas a304

world respects, the more probable it is. Each formula has an associated weight305

that reflects how strong a constraint is: the higher the weight, the greater the306

difference in probability between a world that satisfies the formula and one that307

does not. The weights are not limited in range as probability values are.308

Models like MRF and BN can still be represented compactly by MLNs, by309

defining formulas for the corresponding factors.310

Efficient algorithms for learning the structure of the networks and the weights311

associated to the rules exist (Singla and Domingos, 2005) and they are made312

available by the authors as a free and open source software implementation (Kok313

2A ground MN is a MN without free variables in the logic formulas. It is also usually
referred as a possible world.
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et al., 2006) which makes possible the assessment of the approach for our needs.314

3.3. The proposed approach315

We propose to model each rotation of interest as one rule and use a MLN316

for the inference. Therefore, the rules do not need to be learned, but only their317

weights. Using data for a set of years, the weights of each rule are learned. The318

approach is validated by applying the inference.319

The crops of interest for our experiments are wheat, barley, corn, rapeseed320

and sunflower, which represent 78% of the surface in the study area. The rules321

are expressed as follows in the case of a 4 year rotation cycle:322

{Ca
n−3, C

b
n−2, C

c
n−1} → Cd

n, ω,

which means that the rule which says that a sequence of crop a, followed by

crop b, followed by crop c leads to crop d the following year has a weight ω. The

notation can be simplified as

{a, b, c, d, ω}.

The weights ω have to be learned for each possible sequence of crops that has323

to be modeled. This type of rules corresponds to the same kind of dependency324

which can be modeled by a common effect BN (figure 3d).325

4. Experiments and results326

4.1. Description of the available data and the area of study327

4.1.1. The French RPG LPIS328

The information about the crop rotation used for the assessment of the model329

was obtained from the Registre Parcellaire Graphique, RPG, a topographical330
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Land Parcel Information System (LPIS) containing the agricultural parcels and331

the corresponding crops grown.332

At the national French level, it contains about 7 million parcels. The system333

was implemented in 2002 in application of EU directives. It is annually updated334

by farmers themselves. The information of interest associated to each parcel is:335

• the geographical outline of the parcel and an identifier;336

• the district where the parcel is located;337

• the type of the crop grown a particular year using a 28 class nomenclature;338

• the administrative type of the exploitation;339

• the age class of the owner for individual owners.340

One particularity of the RPG is that the parcels may correspond either to341

individual fields or to groups of small fields. These groups may be composed by342

fields where different crops are present. In these cases, the spatial distribution343

is not given and only the proportion of each crop surface is known.344

For the experiments presented here, only individual fields where a single345

crop is grown were used. This made the analysis easier and the amount of346

data remained sufficient for the statistical approach to be robust. However, a347

statistical bias might appear because of the use of a subset of the fields. To348

solve this issue, techniques have been proposed for the estimation of the spatial349

distribution of the crops within a group of fields (Inglada et al., 2012) and they350

could be used in the future.351
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It is also worth noting that the RPG was used here to have access to a352

very large geographical area during several years and assess the properties of353

the proposed model, but other sources of data, as for instance land-cover maps354

from previous years as the one illustrated in figure 1, could be used without loss355

of generality.356

4.1.2. Study area and time frame357

For our study, we used 7 years of data (2006-2012) over a large region in the358

South of France (figure 4). This amount of data allowed us to assess the model359

in terms of temporal stability, temporal depth of the rotations as well as spatial360

homogeneity of the areas.361

We used 3 areas of study which are depicted on figure 4:362

1. a small area of 20 km× 20 km (red rectangle) which has rather homoge-363

neous pedo-climatic conditions with about 1700 parcels studied;364

2. a medium sized region (dark gray area including the small area) with365

about 15500 parcels studied and where soils have different types and a366

sensible North-South climatic gradient is present;367

3. a large sized area (light gray area plus the 2 previous ones) with about368

72000 parcels studied and presenting a wide variety of soils, landscapes369

and climatic conditions.370

4.2. Experimental setup371

4.2.1. Assessment372

To assess the capabilities of MLN to give useful information for forecasting373

the grown crops at the field level, we used the data base presented in section374
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Figure 4: The 3 study regions: in red a 20 km× 20 km area (small), in dark gray the medium
area and in light gray the large area.

4.1. We studied the influence of the length of the considered rotations as well375

as the extent of the area over which the modeling was performed.376

To assess the influence of the rotation length, we analyzed 3 different cases:377

4 year rotations (that is knowledge of the previous 3 years to forecast the forth378

one), 5 year rotations and 6 year rotations.379

Finally, to assess the impact of the extent of the area (eco-climatic conditions,380

pedology, etc.), we used the 3 regions presented in figure 4.381

4.2.2. Evaluation382

To evaluate the quality of the crop prediction, classical tools from the ma-383

chine learning field were used: the confusion matrix and the Kappa coefficient.384

The confusion matrix (also known as contingency table) is a double entry385

table where row entries are the actual classes (crop in the reference data) and386
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column entries are the predicted classes. Each cell of the table contains the387

number of elements of the row class predicted by the classifier as belonging to388

the column class.389

The diagonal elements in the matrix represent the number of correctly pre-390

dicted individuals of each class, i.e. the number of ground truth (reference)391

individuals with a certain class label that actually obtained the same class label392

during prediction.393

The off-diagonal elements represent misclassified individuals or the classi-394

fication errors, i.e. the number of ground truth individuals that ended up in395

another class during classification.396

Part of the agreement between the classifier’s output and the reference data397

can be due to chance. The Kappa coefficient (κ) expresses a relative difference398

between the observed agreement Po and the random agreement which can be399

expected if the classifier was random, Pe.400

κ =
Po − Pe

1− Pe

where

Po =
1

n

r∑
i=1

nii

is the agreement and

Pe =
1

n2

r∑
i=1

ni.n.i

κ is a real number between -1 and 1 and can be interpreted as follows:401
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Agreement κ

Excellent > 0.81

Good 0.80 - 0.61

Moderate 0.60 - 0.41

Weak 0.40 - 0.21

Bad 0.20 - 0.0

Very bad < 0

402

4.3. Assessment of the proposed approach403

4.3.1. Examples of obtained rotations404

To give the reader a sense of the difference between crop rotation frequency405

and the knowledge modeled by the MLN, the 20 most frequent rotations in the406

small study area for a 4 year cycle are presented in table 1, and the 20 rules407

with the highest weights for the same area and the same period are presented408

in table 2.409

In terms of frequency of the rotations, the first thing we note is that the first410

and the second rotations are the same with a shift of one year. It is interesting411

to note that these 2 rotations have very high weights in table 2 and these weight412

are not very different if we take into account that there is a 1.6 ratio in terms413

of frequency. We can also see that the corn mono-culture is very frequent and414

the corresponding rule has also a very high weight.415

Looking at the first 3 rows of both tables, one may deduce that rule weights416

yield similar information to frequency of occurrence of rotations. However, this417
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2009 2010 2011 2012 number
1 sunflower wheat sunflower wheat 405
2 wheat sunflower wheat sunflower 253
3 corn corn corn corn 113
4 sunflower wheat sunflower barley 46
5 wheat rapeseed wheat rapeseed 46
6 wheat rapeseed wheat sunflower 46
7 wheat sunflower wheat rapeseed 38
8 rapeseed barley wheat rapeseed 34
9 rapeseed wheat sunflower wheat 34
10 sunflower wheat rapeseed wheat 26
11 rapeseed wheat rapeseed wheat 26
12 barley wheat sunflower wheat 26
13 barley wheat rapeseed barley 24
14 sunflower barley wheat sunflower 24
15 wheat sunflower barley sunflower 22
16 sunflower wheat wheat sunflower 21
17 wheat sunflower barley wheat 21
18 barley wheat sunflower barley 19
19 wheat rapeseed barley wheat 18
20 barley sunflower wheat sunflower 16

Table 1: Most frequent rotations in the small area with their corresponding number of occur-
rences.

is not the case, since the rules represent a conditional probability3 of the last418

crop of the sequence with respect to the sequence of the 3 crops which precede419

it. For instance, rules where corn is present appear in the table (limited to the420

20 rules with the highest weights) even if corn is only present in one of the most421

frequent sequences.422

4.3.2. Overview of the behavior423

With the data set used, there were 27 different combinations in terms of424

area, rotation length and particular sets of years. Tables 3, 4 and 5 give an425

3Although weights are not restricted to the [0 − 1] intervals as probabilities are. In the
same way, the sum of all weights does not have to be 1 as with probabilities. This latter
property allows introducing new knowledge not represented in the data when available.
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2009 2010 2011 2012 weight
1 sunflower wheat sunflower wheat 0.752
2 corn corn corn corn 0.699
3 wheat sunflower wheat sunflower 0.601
4 wheat barley wheat barley 0.355
5 corn corn rapeseed barley 0.333
6 corn corn rapeseed rapeseed 0.331
7 corn rapeseed corn rapeseed 0.322
8 corn corn rapeseed wheat 0.319
9 corn rapeseed corn barley 0.317
10 corn corn rapeseed sunflower 0.312
11 sunflower wheat barley sunflower 0.309
12 rapeseed corn corn rapeseed 0.305
13 corn corn barley barley 0.305
14 wheat barley wheat corn 0.304
15 rapeseed corn corn barley 0.302
16 barley wheat sunflower rapeseed 0.302
17 corn rapeseed corn sunflower 0.3
18 corn barley corn barley 0.3
19 wheat barley wheat rapeseed 0.298
20 barley wheat sunflower corn 0.297

Table 2: Higher weight rules in the small area with their corresponding weights ({a, b, c, d, ω}).
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Small region
- 2009 2010 2011 2012

4 years 0.51 0.58 0.54 0.60
5 years - 0.57 0.53 0.61
6 years - - 0.54 0.55

Table 3: κ coefficient values for the small region

overview of the results, in terms of κ coefficients, for the small, the medium and426

the large regions respectively.427

The first observation we can make is that most of the κ values were in the428

high fifties, which is a moderate to good prediction of the crops. It is not429

surprising to note that the predictions for the small area were the best and430

those for the large area were the worse, since the eco-pedo-climatic conditions431

which govern agricultural practices are more homogeneous in the small area.432

However, the results of the medium area were very close to those of the small433

area.434

In terms of rotation length, we can observe that 4 and 5 years were equivalent435

for the small and medium regions and that 6 years was worse than 5 which could436

be explained by the high number of rotations to model in the longer case (4096437

combinations with respect to 1024).438

Finally, we can observe that the predictions for the year 2011 were the ones439

with the lower quality independently of the area and of the length of the rota-440

tions. This may be explained by the fact that 2009 suffered from an anomalous441

weather which forced many farmers in the South of France to change the planned442

winter wheat for a Summer crop like sorghum or sunflower. This modification443

of practices impacted the statistical representativity of the data.444
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Medium region
- 2009 2010 2011 2012

4 years 0.53 0.57 0.51 0.58
5 years - 0.57 0.52 0.59
6 years - - 0.51 0.54

Table 4: κ coefficient values for the medium region

Large region
- 2009 2010 2011 2012

4 years 0.50 0.56 0.52 0.58
5 years - 0.50 0.46 0.53
6 years - - 0.43 0.43

Table 5: κ coefficient values for the large region

In the following paragraphs, the details of the confusion matrices are ana-445

lyzed to gain some insight on the behavior of the model.446

4.3.3. Area447

We focused our interest on the differences of prediction quality between the448

different regions of different size. In order not to multiply the combinations, we449

used the results for the length of 5 years and analyzed the confusion matrices450

which resulted from the averaging the results of the predictions for 3 years (2010451

to 2012).452

The confusion matrices for the small, the medium and the large areas are453

presented on tables 6, 7 and 8 respectively.454

The first thing we can highlight is that there were no major differences455

between the small and the medium regions as it was already noted in the overall456

κ coefficient tables above. The confusion matrices allowed us to check that this457

stability was reproduced even at the level of the individual crops and their458

specific confusions.459
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- Wheat Corn Barley Rapeseed Sunflower
Wheat 73 5 8 5 9
Corn 5 80 5 4 6

Barley 24 6 32 8 30
Rapeseed 7 5 12 29 46
Sunflower 15 17 28 21 20

Table 6: Confusion matrix for the small region

In terms of confusions, we can see that sunflower was the most difficult crop460

to predict and more so when the area was very large. In this latter case, the461

prediction accuracy was lower than random (which would be of 20%). During462

the past decade, sunflower yields have been steadily decreasing in this region463

and it is increasingly becoming an opportunity crop to use when the planned464

winter crop could not be sowed.465

At the opposite, wheat and corn were very well predicted and this was mostly466

because they are the principal crops grown in the area. Rapeseed was much467

confused with sunflower, since they are usually chosen for economic reasons468

rather than for agronomic ones. We also see that barley was often predicted469

as wheat, which is easy to explain because these 2 crops are both straw cereals470

(and therefore interchangeable form the agronomic point of view) and as stated471

before, wheat is the most prominent one of those 2. The confusion was stable472

between areas, but barley was less well predicted when the area was larger473

mainly because of increasing confusions with rapeseed. The good prediction of474

corn remained stable independently of the size of the area.475
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- Wheat Corn Barley Rapeseed Sunflower
Wheat 74 6 7 5 9
Corn 5 80 4 5 6

Barley 23 9 27 11 30
Rapeseed 7 7 11 26 49
Sunflower 18 18 24 22 18

Table 7: Confusion matrix for the medium region

- Wheat Corn Barley Rapeseed Sunflower
Wheat 65 8 8 8 10
Corn 6 79 4 5 6

Barley 23 13 22 13 29
Rapeseed 11 10 13 21 45
Sunflower 19 20 24 22 16

Table 8: Confusion matrix for the large region

4.3.4. Length476

We limited the study to the medium area and we analyzed the influence of477

the length of the sequences used for the model (column 2012 of table 4). The478

results are presented in tables 9, 10 and 11 for the rotations using 4, 5 and 6479

years respectively.480

The trends that we observe are the following:481

• the longest sequences were the most difficult to predict, which is not sur-482

prising, since the number of possible combinations is higher and therefore483

the probability of each one is lower;484

• the prediction of corn was good and stable for the different rotation485

lengths, since most of the corn in the area is grown as mono-culture;486

• the prediction of wheat was good but decreased with the length of the487

sequence;488
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- Wheat Corn Barley Rapeseed Sunflower
Wheat 83 4 3 3 7
Corn 5 75 5 4 11

Barley 27 5 12 13 43
Rapeseed 6 7 8 15 64
Sunflower 17 16 17 23 27

Table 9: Confusion matrix for a 4 year sequence.

- Wheat Corn Barley Rapeseed Sunflower
Wheat 80 4 4 4 7
Corn 5 76 4 7 8

Barley 26 7 28 8 31
Rapeseed 6 8 13 24 49
Sunflower 16 15 25 23 21

Table 10: Confusion matrix for a 5 year sequence.

• rapeseed and sunflower were often confused and their respective prediction489

accuracies had inverse trends: rapeseed benefited from longer sequences,490

while sunflower was best predicted with shorter sequences;491

• in the previous paragraphs, we observed an important amount of barley492

being predicted as wheat, and we saw that this confusion diminished when493

the areas were larger; here we see that this confusion was stable with494

respect to the length of the sequence, however the prediction of barley495

benefited from medium length sequences, mainly because the reduction of496

the confusion with rapeseed.497

4.3.5. Simulating drastic changes498

In the previous experiments we showed the ability of MLN to predict the499

crops knowing the past history of the fields. However, from the application500

point of view, this kind of use is similar to the use of BN, the main advantage501
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- Wheat Corn Barley Rapeseed Sunflower
Wheat 68 8 7 7 10
Corn 7 75 4 6 8

Barley 24 7 25 10 34
Rapeseed 7 7 12 33 41
Sunflower 19 19 15 27 20

Table 11: Confusion matrix for a 6 year sequence.

of MLN being the possibility to have straightforward access to human readable502

rules instead of having a graphical model which is difficult to interpret when503

there are many nodes.504

However, the use of MLN was proposed because they are able to combine505

statistical learning with first-order logic rules. This particular property of MLN506

is interesting to introduce knowledge for which no historical data is available. In507

the case of early crop mapping, this situation may happen due to new regulations508

or economic reasons, like seed prices.509

Unfortunately, this kind of behavior was not present in our data set, and510

therefore, we chose to simulate it. The following experiment was carried out.511

We assumed that for an arbitrary reason, one type of rotation which had been512

frequent in the past became nearly non existent from a given point in time. We513

introduced this expected behavior by strongly modifying the weight of the rule514

related to this particular rotation. We then analyzed how the probability of the515

crops to be predicted spread among the possible types of crops.516

Of course, this kind of event is extreme and not likely to occur as such, but517

it allowed illustrating the flexibility of the proposed approach.518

For this experiment, we used the MLN obtained by performing the training519
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- Original Modified
Corn 0.60 0.0014

Wheat 0.11 0.28
Sunflower 0.11 0.28
Rapeseed 0.088 0.22

Barley 0.089 0.23

Table 12: Predicted probabilities for each crop for the rotation {Ccorn
n−3 , C

corn
n−2 , C

corn
n−1 } → Cd

n
with the original weight and the modified one.

on the medium sized region and using the years from 2008 to 2011 (used to520

predict the crops in 2012).521

We chose the sequence {corn, corn, corn, corn} whose weight was 0.699 and522

modified it to have a weight of −∞. It is interesting to note that only this523

rule was modified. We then analyzed the predicted probability by the MLN for524

different rotations in the case where we kept the original weight for the rule or525

we used the modified weight.526

Table 12 shows the predicted probability for class d on year n for the rules527

{Ccorn
n−3 , C

corn
n−2 , C

corn
n−1 } → Cd

n for the original (learned from data) weight and528

the modified one. As one can see, the original setting predicted corn with a529

probability of 0.6, the other classes having a very low probability. In the case530

where {corn, corn, corn, corn} was nearly non existent, corn was predicted with531

a probability which was practically zero, while the other classes were predicted532

with similar probability, but those which previously had higher probabilities533

(wheat and sunflower) still had higher chances than rapeseed and barley.534

It is worth noting that no re-learning from the data had to be done, so this535

kind of changes can be introduced in the model at no cost.536
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It was also necessary to check that the modification of a particular rule did537

not have effect on other rules. To verify the correct behavior of the model, we538

applied the same kind of analysis to other rules. In the case of one of the most539

frequent rotations of the study area {sunflower, wheat, sunflower, wheat},540

which is described by the rules {Csunflower
n−3 , Cwheat

n−2 , Csunflower
n−1 } → Cd

n, there541

was no modification of the probabilities after changing the weight of the rule542

{corn, corn, corn, corn}.543

The same behavior occurred for the set of rules {Cwheat
n−3 , Cbarley

n−2 , Cwheat
n−1 } → Cd

n.544

Finally, a family of rules containing 2 consecutive years of corn was not modified545

either.546

In the case of a BN, this modification would have required to modify the547

training data and learn the transition probabilities again, since it is impossible548

to modify the probability of a particular sequence of events without modifying549

all the rest.550

The point here is not that the probabilities of the other crops did not change.551

In a realistic setting, the relative proportion of other crops may evolve due to552

economic or agronomic reasons. If knowledge about these evolutions is available553

(for instance, a Summer crop will be replaced by another Summer crop), it can554

be easily introduced in the model. The main advantage of MLN with respect to555

other statistical models like BN is that the changes are limited to the particular556

set of rules directly related to the events and these changes are not propagated557

to unrelated rules in the model.558
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5. Conclusions559

In this paper we presented a model which allows predicting the crop grown560

on a field when the crops grown the previous 3 to 5 years are known. This kind561

of prediction is useful for the production of crop maps at the field level at the562

beginning of the agricultural season.563

Our model applies machine learning techniques using a Land Parcel Infor-564

mation System, or any other kind of land cover maps from previous years, to565

model crop rotation patterns. With respect to other models existing in the liter-566

ature, our approach allows combining automatic learning from data with expert567

knowledge and make predictions at the field level. We have demonstrated with568

an illustrative example that this property allows introducing constraints that569

cannot appear in historical data, like for instance new regulations which may570

change agricultural practices.571

We assessed the behavior of the model in terms of scale (area covered) and572

crop rotation length. We concluded that, in terms of statistical accuracy, the573

results are good and can be used as a first guess for early crop mapping. The574

obtained results showed that the proposed approach is able to predict the crop575

type of each field, before the beginning of the crop season, with an accuracy576

which can go up to 60%, which is better than the results obtained with current577

approaches based on remote sensing imagery.578

One application of this model would be to use it to complement other tech-579

niques for crop mapping as for instance remote sensing image classification.580

Remote sensing image time series can achieve good results if enough images are581

34



available, usually towards the end of the season. The prediction of the most582

probable crop could allow achieving good results earlier in the season.583

The results presented here open perspectives in terms of exploitation of the584

approach, as for instance including other information as digital elevation models,585

climatic data or soil type maps.586
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