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Abstract

The statistical modelling of spatial extremes has recently made major advances. Much of its focus so far has been
on the modelling of the magnitudes of extreme events but little attention has been paid on the timing of extremes. To
address this gap, this paper introduces the notion of extremal concurrence. Suppose that one measures precipitation
at several synoptic stations over multiple days. We say that extremes are concurrent if the maximum precipitation
over time at each station is achieved simultaneously, e.g., on a single day. Under general conditions, we show
that the finite sample concurrence probability converges to an asymptotic quantity, deemed extremal concurrence
probability. Using Palm calculus, we establish general expressions for the extremal concurrence probability through
the max-stable process emerging in the limit of the componentwise maxima of the sample. Explicit forms of the
extremal concurrence probabilities are obtained for various max-stable models and several estimators are introduced.
In particular, we prove that the pairwise extremal concurrence probability for max-stable vectors is precisely equal
to the Kendall’s τ. The estimators are evaluated by using simulations and applied to study the concurrence patterns
of temperature extremes in the United States. The results demonstrate that concurrence probability can provide a
powerful new perspective and tools for the analysis of the spatial structure and impact of extremes.

Keywords: Max-stable process, Poisson point process, Slyvniak formula, Concurrence, Kendall’s τ, Temperature.

1 Introduction
While most of the time extreme value analysis focuses on the magnitude of extreme events, i.e., how large extremes
events are, little interest has been paid to their genesis. This paper tries to fill in this gap by looking at what we shall call
concurrency of extremes, e.g., have two locations been impacted by the same extreme event or was it a consequence
of two different ones? For example, one could observe daily rainfall at various weather stations and would like to
quantify the risk that the rainfall extremes over a spatial domain are due to a single extreme event, i.e., a large storm,
affecting the entire area. Although potentially rare, such events have great socio-economic consequences and their
probabilities should be assessed precisely.

More formally, given a sequence X1, . . . , Xn of independent copies of a stochastic process X defined on a compact
set X ⊂ Rd, d ≥ 1, we say that extremes are sample concurrent at locations s1, . . . , sk ∈ X, k ≥ 2, if

max
i=1,...,n

Xi(s j) = X`(s j), j = 1, . . . , k, (1)

for some ` ∈ {1, . . . , n}. Clearly this means that only the observation X` contributes to the pointwise maxima at
locations s1, . . . , sk. It occurs with probability

pn(s1, . . . , sk) = P

[
for some ` ∈ {1, . . . , n} : max

i=1,...,n
Xi(s j) = X`(s j), j = 1, . . . , k

]
, (2)
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henceforth referred to as sample concurrence probability.
Provided that X has continuous margins it is not difficult to see that

pn(s1, . . . , sk) = nE
[
F {X(s1), . . . , X(sk)}n−1

]
,

where F is the multivariate cumulative distribution of {X(s1), . . . , X(sk)}. Interestingly, concurrence of extremes event
is invariant under increasing transformations of the marginals so that the concurrence probability does not depend on
the marginal distributions of X but only on its dependence structure, i.e., the copula C associated to F.

One drawback of the sample concurrence probability pn(s1, . . . , sk) is that it varies with the number of observations
n. Surprisingly, however, we prove in Theorem 1 below that, under mild regularity conditions, this quantity stabilizes
to a universal large sample limit

pn(s1, . . . , sk) −→ p(s1, . . . , sk), n→ ∞. (3)

Throughout this paper, we will call the limiting probability p(s1, . . . , sk) the extremal concurrence probability. This
asymptotic quantity is naturally expressed in terms of a max-stable process η emerging in the limit of the normalized
maxima in (1), as n→ ∞. A direct, intuitive, and equivalent definition of the extremal concurrence probability can be
given in terms of the spectral representation of this max-stable process η.

Following de Haan [1984], Penrose [1992] and Schlather [2002], let

η(s) = max
i≥1

ζiYi(s) s ∈ X, (4)

where {ζi : i ≥ 1} are the points of a Poisson process on (0,∞) with intensity measure ζ−2dζ, Yi are independent
copies of a non negative stochastic process with continuous sample paths such that E{Y(s)} = 1 for all s ∈ X and
E{sups∈X Y(s)} < ∞. It is often more convenient to rewrite (4) into

η(s) = max
ϕ∈Φ

ϕ(s), s ∈ X, (5)

where Φ = {ϕi : i ≥ 1} with ϕi = ζiYi is a Poisson point process on C0, the space of non negative continuous functions
on X. Within this framework, we now say that extremes are concurrent at s1, . . . , sk ∈ X if

η(s j) = ϕ`(s j), j = 1, . . . , k, (6)

for some ` ≥ 1, and similarly to the definition of the sample concurrence probability (2), the extremal concurrence
probability is defined by

p(s1, . . . , sk) = P
{
for some ` ≥ 1: η(s j) = ϕ`(s j), j = 1, . . . , k

}
. (7)

When k = 2 the extremal concurrence probability p(s1, s2) coincides with the dependence measure considered
in Weintraub [1991] to study mixing properties of max-stable processes. Another well known measure of dependence
is the pairwise extremal coefficient [Schlather and Tawn, 2003; Cooley et al., 2006]

θ(s1, s2) = − logP{η(s1) ≤ 1, η(s2) ≤ 1}, s1, s2 ∈ X. (8)

Interestingly, the extremal concurrence probability and the pairwise extremal coefficient share connections. For in-
stance Proposition 5.1 in Stoev [2008] implies

1
2
{2 − θ(s1, s2)} ≤ p(s1, s2) ≤ 2{2 − θ(s1, s2)}, (9)

and we shall see later that the properties of the extremal concurrence probability are similar to that of the pairwise
extremal coefficient.

The structure of the paper is as follows. In Section 2 we make connections between sample concurrence probabil-
ities and their extremal counterparts and derive their properties. Section 3 gives closed forms for various parametric
max-stable models, and Section 4 introduces various estimators for the sample/extremal concurrence probabilities. The
proposed estimators are then analyzed in a simulation study in Section 5 and applied to US continental temperature
extremes in Section 6.
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2 Concurrence of extremes
In this section we show that sample concurrence probabilities converge to extremal concurrence ones under rather
mild domain of attraction conditions. We then provide formulas for the extremal concurrence probability based on the
spectral representation of the associated max-stable process and establish their basic properties.

2.1 Sample and extremal concurrence
Concurrence of extremes can be defined through the more general notion of a hitting scenario, which reflects precisely
how many different events contribute to the componentwise maximum. Let X1, . . . , Xn be a sequence of independent
copies of a stochastic process X defined on X and s1, . . . , sk ∈ X be different locations. We suppose that X has
continuous marginals to ensure that {X1(s j), . . . , Xn(s j)} has no ties almost surely and that the maximum is uniquely
reached. Let Mn(s) = maxi=1,...,n Xi(s) be the componentwise maximum and consider the sets Ci = { j : Mn(s j) =

Xi(s j)}, i = 1, . . . , n, that account for the location where the i-th component Xi dominates the rest. Some of these sets
may be empty, but from the above discussion, with probability one the non-empty ones are disjoint and form a random
partition of {1, . . . , k}. This partition πn = {Ci : Ci , ∅} will be referred to as the sample hitting scenario.

By analogy with extremal concurrence, one can define an extremal hitting scenario associated to a max-stable
process by using the underlying Poisson point process [Wang and Stoev, 2011; Dombry et al., 2013; Dombry and
Éyi-Minko, 2013]. More precisely, for η as in (5), the extremal hitting scenario π is defined as the random partition of
{1, . . . , k} such that two indices j1, j2 ∈ {1, . . . , k} are in the same component of π if and only if

arg max
i≥1

ϕi(s j1 ) = arg max
i≥1

ϕi(s j2 ).

Whatever type of concurrence is considered, i.e., sample concurrence (1) or extremal concurrence (6), extremes are
said concurrent if and only if πn = {1, . . . , k} or π = {1, . . . , k}. The next theorem shows the convergence of the sample
hitting scenario to the extremal one.

Theorem 1. Assume that [h1{X(s1)}, . . . , hk{X(sk)}] belongs to the maximum domain of attraction of {η(s1), . . . , η(sk)},
for some strictly increasing deterministic functions hi, i = 1, . . . , k. Then, the sample hitting scenario πn converges
weakly as n→ ∞ to the extremal hitting scenario π associated to the max-stable process η.

Proof. Let X1, X2, . . . be a sequence of independent copies of X observed at some locations s = (s1, . . . , sk) ∈ Xk,
k ≥ 2. For brevity we will use componentwise algebra (sum, maximum, etc.) and write X(s) = {X(s1), . . . , X(sk)}.
Since the hitting scenario is invariant to strictly increasing deterministic transformations of the marginals, we can
assume without loss of generality that hi(x) = x, i = 1, . . . , k. By assumptions the componentwise maxima Mn(s) =

{maxi=1,...,n Xi(s1), . . . ,maxi=1,...,n Xi(sk)} converge in distribution

Mn(s) − bn(s)
an(s)

−→ η(s), n→ ∞,

where an(s) > 0 and bn(s) ∈ R. It is well known that the above convergence is equivalent to the convergence of the
point process

Φn =

{
Xi(s) − bn(s)

an(s)
: i = 1, . . . , n

}
⊂ Rk.

to a Poisson point process Φ on [0,∞)k\{0}where the convergence is meant in the space of point measures Mp([0,∞]k\

{0}) equipped with the metric of vague convergence [Resnick, 1987].
Consider the mapping

Π : Mp([0,∞]k \ {0}) −→Pk

Ψ 7−→ Π(Ψ),

where Pk is the set of all possible partitions of {1, . . . , k} and Π(Ψ) is the hitting scenario associated to the collection of
functions Ψ = {ψi : i ∈ I}, I ⊆ N. Clearly, πn = Π(Φn) and π = Π(Φ). Since the map Π is well defined and continuous
at each point Ψ ∈Mp([0,∞]k \ {0}) for which the maxima are uniquely defined, see Appendix A.1, we can apply the
continuous mapping theorem to show that the weak convergence Φn → Φ entails the weak convergence πn → π. �
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Remark. A direct consequence of Theorem 1 is that, provided the stochastic process X is in the domain of attraction
of some max-stable process η, the sample concurrence probability converges to its extremal counterpart, i.e.,

pn(s1, . . . , sk) = P [πn = {1, . . . , k}] −→ P [π = {1, . . . , k}] = p(s1, . . . , sk), n→ ∞,

and proves (3).

2.2 General formulas and properties of extremal concurrence probabilities
The following theorem gives an expression for the extremal concurrence probability p(s1, . . . , sk).

Theorem 2. We have

p(s1, . . . , sk) = EY

[EỸ

{
max

j=1,...,k

Ỹ(s j)
Y(s j)

}]−1 , (10)

where Y and Ỹ are independent copies of the stochastic process appearing in (4).

Proof. Let Λ denotes the intensity mesaure of the C0-valued Poisson point process Φ in (5) given by

Λ(A) =

∫ ∞

0
P(ζY ∈ A)ζ−2dζ,

for all Borel set A ⊂ C0. We have

p(s1, . . . , sk) = P {∃ϕ ∈ Φ : ϕ(s1) = η(s1), . . . , ϕ(sk) = η(sk)}

=

∫
C0

P
{
f (s j) > η̃(s j), j = 1, . . . , k

}
Λ(d f ) (11)

= EY

[∫ ∞

0
P
{
η̃(s j) < ζY(s j), j = 1, . . . , k

}
ζ−2dζ

]
= EY

(∫ ∞

0
exp

[
−EỸ

{
max

j=1,...,k

Ỹ(s j)
ζY(s j)

}]
ζ−2dζ

)
= EY

[EỸ

{
max

j=1,...,k

Ỹ(s j)
Y(s j)

}]−1
where η̃ and Ỹ are independent copies of η and Y respectively. Note that the second equality uses Slyvniak’s formula,
the fourth one the cumulative distribution of the max-stable process η̃ and the last one the expectation of an inverse
exponential random variable. �

Remark. By the seminal paper of de Haan [1984] (see also Stoev and Taqqu [2005]; Kabluchko [2009]), any continu-
ous in probability max-stable process can be represented as

{η(s) : s ∈ X} d
=

{
max

i≥1
ζi fs(ui) : s ∈ X

}
, (12)

where { fs : s ∈ X} is a collection of non-negative integrable functions on the space (U,U, ν). Here {(ζi, ui) : i ≥ 1} is a
Poisson point process on (0,∞) × U with intensity ζ−2dζν(du).

The functions { fs : s ∈ X} are known as spectral functions of η and (12) as de Haan’s spectral representation. When
ν is a probability measure, one can view Y(s) = fs as random variables on the probability space (U,U, ν) and then (12)
becomes (4). Conversely, any representation (12) can be cast in the form (4) with a change of variables. Depending on
the context one representation may be more convenient than the other. In terms of (12), the concurrence probability
formula in (10) becomes

p(s1, . . . , sk) =

∫
U

[∫
U

{
max

j=1,...,k

fs j (ũ)
fs j (u)

}
ν(dũ)

]−1

ν(du), (13)

and the proof is essentially the same.
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One could expect from Definition 6 and Theorem 2 that the extremal concurrence probability depends on the
distribution of the spectral process Y in (4) or the choice of spectral functions in (12). These representations are not
unique, but we will see in the theorem below that the extremal concurrence probability p(s1, . . . , sk) depends only on
the distribution of the max-stable process η and not on the choice of the specific spectral representation.

Theorem 3. For s1, . . . , sk ∈ X, k ≥ 2, we have

p(s1, . . . , sk) =

k∑
r=1

(−1)r
∑

J⊆{1,...,k}
|J|=r

Eη̃
[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]
, (14)

where η̃ is an independent copy of η. In particular when k = 2,

p(s1, s2) = 2 + Eη̃
[
logPη

{
η(s j) ≤ η̃(s j), j = 1, 2

}]
. (15)

Proof. Starting from (11) and applying the inclusion-exclusion formula, we have

p(s1, . . . , sk) = Eη̃
[
Λ

({
f (s j) > η̃(s j) for some j ∈ {1, . . . , k}

})]
= Eη̃


k∑

r=1

∑
J⊆{1,...,k}
|J|=r

(−1)r+1Λ
({

f (s j) > η̃(s j), j ∈ J
}) .

Since the cumulative distribution function of η is Pη
{
η(s j) ≤ η̃(s j), j ∈ J

}
= exp

[
−Λ

({
f (s j) > η̃(s j), j ∈ J

})]
, we get

p(s1, . . . , sk) =

k∑
r=1

(−1)r
∑

J⊆{1,...,k}
|J|=r

Eη̃
[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]
.

The simplification when k = 2 is straightforward because when |J| = 1 we have

Eη̃
[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]
= Eη̃

{
−η̃(s j)−1

}
= −1,

as η̃(s j)−1 is a standard exponential random variable. �

In the remaining part of this section, we investigate some properties of the extremal concurrence probabilities.
Surprisingly, although the two notions are different, we encounter strong similarities with the extremal coefficient (8).
We recall that the extremal coefficient θ(s1, s2) takes values in [1, 2], the lower and upper bounds correspond to perfect
dependence and independence respectively. The next proposition states a similar result for the extremal concurrence
probability.

Proposition 1. For all s1, s2 ∈ X, we have

i) p(s1, s2) = 0 if and only if η(s1) and η(s2) are independent;

ii) p(s1, s2) = 1 if and only if η(s1) and η(s2) are almost surely equal.

The proof uses the following generalization and improvement of the upper bound in (9).

Lemma 1. For all s1, . . . , sk ∈ X, k ≥ 2, we have p(s1, . . . , sk) ≤ E
{
min j=1,...,k Y(s j)

}
.

Proof. In the context of Theorem 2, we have (by conditioning on Y)

EỸ

{
max

j=1,...,k

Ỹ(s j)
Y(s j)

}
≥ max

j=1,...,k
Y(s j)−1EỸ

{
Ỹ(s j)

}
=

{
min

j=1,...,k
Y(si)

}−1

,

since EỸ {Ỹ(s j)} = 1. This, in view of (10) implies the desired result. �
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Proof of Proposition 1. Equation (9) implies that p(s1, s2) = 0 if and only if θ(s1, s2) = 2 which is equivalent to
the independence of η(s1) and η(s2). When p(s1, s2) = 1, Lemma 1 entails Y(s1) = Y(s2) almost surely so that
η(s1) = η(s2) almost surely. It is easy to prove the converse implication: if η(s1) and η(s2) are almost surely equal, the
same holds for Y(s1) and Y(s2) so that p(s1, s2) = 1. �

Interestingly p(s1, . . . , sk) can be expressed via the extremal coefficients of another max-stable process.

Proposition 2. Let η be a simple max-stable process as defined in (4) and η̃, η̃1, η̃2, . . . independent copies of it.
Consider the simple max-stable process

ξ(s) = max
i≥1

ζi
Yi(s)
η̃i(s)

, s ∈ X,

then

p(s1, . . . , sk) =

k∑
r=1

(−1)r+1
∑

J⊆{1,...,k}
|J|=r

θξ(s j, j ∈ J),

where θξ(s j, j ∈ J) = − logP{ξ(s j) ≤ 1, j ∈ J}. In particular p(s1, s2) = 2 − θξ(s1, s2).

Proof. Clearly ξ is a simple max-stable process since both Y and η̃ are non negative and E{Y(s)/η̃(s)} = 1 for all s ∈ X.
We have

Eη̃
[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]
= −Eη̃

[
EY

{
max

j∈J

Y(s j)
η̃(s j)

}]
= logPξ

{
ξ(s j) ≤ 1, j ∈ J

}
= −θξ(s j, j ∈ J).

�

The next corollary lists some properties of the extremal concurrence probability function that closely parallel those
of the extremal coefficient function. In view of Proposition 2, the proof follows as in Schlather and Tawn [2003] or
Cooley et al. [2006].

Corollary. Let p : h 7→ p(o, h) be an extremal concurrence probability function associated to a stationary max-stable
process in X for some arbitrary origin o ∈ X and h ∈ X. Then the following assertions hold.

i) The function h 7→ p(h) is positive semidefinite;

ii) The function h 7→ p(h) is not differentiable at the origin unless p(h) = 1 for all h ∈ X;

iii) If d ≥ 1 and if η is isotropic, then h 7→ p(h) has at most a jump at the origin and is continuous elsewhere;

iv) {2 − p(h1 + h2)} ≤ {2 − p(h1)}{2 − p(h2)} for all h1, h2 ∈ X;

v) {2 − p(h1 + h2)}α ≤ {2 − p(h1)}α + {2 − p(h2)}α − 1 for all h1, h2 ∈ X and 0 ≤ α ≤ 1;

vi) {2 − p(h1 + h2)}α ≥ {2 − p(h1)}α + {2 − p(h2)}α − 1 for all h1, h2 ∈ X and α < 0.

We conclude this section with an unexpected result that relates the bivariate extremal concurrence probability with
the well known Kendall’s τ.

Theorem 4. For any max-stable process η, we have p(s1, s2) = τwhere τ = E
[
sign{η(s1) − η∗(s1)}sign{η(s2) − η∗(s2)}

]
is the Kendall’s τ of {η(s1), η(s2)} and η∗ is an independent copy of η.

Proof. Let W = F{η(s1), η(s2)} where F is the bivariate cumulative distribution function of {η(s1), η(s2)}. From (15)
we have p(s1, s2) = 2 + E

(
log W

)
. But since {η(s1), η(s2)} is a bivariate max-stable random vector, we know that

P(W ≤ w) = w − (1 − τ)w log w, 0 ≤ w ≤ 1 [Ghoudi et al., 1998] and hence, after some simple calculations,
p(s1, s2) = τ. �
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3 Formulas for extremal concurrence probabilities
In this section we gather formulas for the extremal concurrence probabilities for some popular models of max-stable
random vectors and processes. As we will see, it is not always possible to get explicit formulas, and in such situations,
we propose to use Monte-Carlo methods.

3.1 Closed forms
Example 1 (Logistic model). The concurrence probability for the k-variate logistic model, i.e., with cumulative dis-
tribution

F(z1, . . . , zk) = exp

−
 k∑

j=1

z−1/α
j


α
 , 0 < α ≤ 1, z1, . . . , zk > 0,

is p(s1, . . . , sk) =
∏k−1

j=1(1 − α/ j).

Recall that for this model independence is reached when α = 1 while perfect dependence occurs as α ↓ 0 and, as
expected, for such situations we have p(s1, . . . , sk) = 0 and p(s1, . . . , sk) = 1 respectively.

Proof. It is not difficult to see that the multivariate logistic model corresponds to the case where Y in (4) is a pure
noise process with margins such that P{Y(s) < y} = exp[−{Γ(1 − α)y}−1/α] where Γ is the Gamma function. Using
Theorem 2, we have

p(s1, . . . , sk) = EY

[EỸ

{
max

j=1,...,k

Ỹ(s j)
Y(s j)

}]−1 = EY

([
− log F{Ỹ(s1), . . . , Ỹ(sk)}

]−1
)

= EY




k∑
j=1

Y(s j)−1/α


−α =

Γ(k − α)
Γ(k)Γ(1 − α)

=

k−1∏
j=1

(1 − α/ j),

where the fourth equality used the fact that
∑k

j=1 Y(s j)−1/α is a Gamma random variable with scale Γ(1 − α)1/α and
shape k for which negative moments are known. �

Example 2 (Max-linear model). Consider the max-linear model η(s) = maxm=1,...,n ϕm(s)Zm, where Z1, . . . ,Zn are
independent unit Fréchet random variables and some functions {s 7→ ϕm(s) ∈ C0,m = 1, . . . , n} such that

∑n
m=1 ϕm(s) =

1 for all s ∈ X. We have

i) The concurrence probability equals

p(s1, . . . , sk) =

n∑
`=1

p`(s1, . . . , sk), p`(s1, . . . , sk) =

 n∑
m=1

max
j=1,...,k

ϕm(s j)
ϕ`(s j)


−1

, (16)

with the convention that 0/0 = 0, a/0 = ∞ if a > 0, and 1/∞ = 0.

ii) The probability that component ` dominates at sites s1, . . . , sk is given by the term p` in (16), i.e.,

p`(s1, . . . , sk) = P
{
η(s j) = ϕ`(s j)Z`, j = 1, . . . , k

}
(17)

Proof. Part i) is an immediate consequence of (13). Indeed, let U = {1, . . . , n} be equipped with the counting measure
ν{1} = · · · = ν{n} = 1. By taking fs(m) = ϕm(s), m ∈ U, we obtain that the max-linear model has the representa-
tion (12). The integral expression of the concurrence probability in (13) then becomes a sum of the terms p` in (16).

Part ii) shows an intriguing fact that the concurrence probability p(s1, . . . , sk) for the max-linear model is the sum
of the probabilities that one of the n components dominates the rest. Indeed, by the max-stability property and the
independence of the unit Fréchet random variables Zm’s, we have that the right-hand side of (17) equals

P

{
max
m,`

max
j=1,...,k

ϕm(s j)
ϕ`(s j)

Zm ≤ Z`

}
= P(aZ1 ≤ Z2),

where a =
∑

m,` max j=1,...,k ϕm(s j)/ϕ`(s j). Equation (17) follows from the fact that P(aZ1 ≤ Z2) = (1 + a)−1, a ≥ 0. �

7



Example 3 (Chentsov random fields). Suppose that the process Y(s) = 1A(s), where A ⊂ Rd is a random set. Then,
by analogy with the theory of symmetric α-stable process [Samorodnitsky and Taqqu, 1994, Chap. 8], the max-stable
process

η(s) = max
i≥1

ζi1Ai (s), s ∈ X,

where Yi ≡ 1Ai are independent copies of Y ≡ 1A, will be referred to as a Chentsov max-stable random field on X.
For a Chentsov-type max-stable process we have

p(s1, . . . , sk) = P ({s1, . . . , sk} ⊂ A | {s1, . . . , sk} ∩ A , ∅) , (18)

or less formally that the extremal concurrence probability is the conditional probability that the sites s1, . . . , sk are
covered by the random set A given that at least one of the sites is covered.

Proof. The result is an immediate consequence of Theorem 2. Since the outer expectation in (10) can be restricted to
the event {min j=1,...,k Y(s j) > 0}, we have

p(s1, . . . , sk) = EY

[EỸ

{
max

j=1,...,k

1Ã(s j)
1A(s j)

}]−1

1{min j=1,...,k 1A(s j)>0}


= EY

[EỸ

{
max

j=1,...,k
1Ã(s j)

}]−1

min
j=1,...,k

1A(s j)

 (19)

=
E

{
min j=1,...,k 1A(s j)

}
E

{
max j=1,...,k 1A(s j)

} ,
where in the second relation we used the fact that 1{min j=1,...,k 1A(s j)} = min j=1,...,k 1A(s j) and that the event mini=1,...,k 1A(si) >
0 is equivalent to {1A(s1) = 1, . . . , 1A(sk) = 1}. This proves (18). �

Example 4 (Extremal processes). The max-stable process {η(s) : s ∈ [0, 1]} is an extremal process if it has stationary
and independent max-increments, i.e.,

{η(s1), . . . , η(sk)} d
= [s1Z1,max{s1Z1, (s2 − s1)Z2}, . . . ,max{s1Z1, . . . , (sk − sk−1)Zk}] ,

where 0 < s1 < · · · < sk and Z1, . . . ,Zk are independent unit Fréchet random variables. It can be shown that

η(s) d
= max

i≥1
ζi1[Ui,1](s), s ∈ [0, 1],

where Ui’s are independent U(0, 1) random variables. Using our previous result on Chentsov random fields, we have
for all 0 < s1 < · · · < sk ≤ 1

p(s1, . . . , sk) =
P ({s1, . . . , sk} ⊂ [U, 1])
P ({s1, . . . , sk} ∩ [U, 1] , ∅)

=
P(U ≤ s1)
P(U ≤ sk)

=
s1

sk
,

where U ∼ U(0, 1). This result is not surprising since for this simple case, extremes are concurrent at locations
0 < s1 < · · · < sk < 1 if η(s) has no jumps in the interval [s1, sk]. Hence using the independence and stationarity
of the max-increments, the probability of the latter event is P{s1Z1 ≥ (sk − s1)Z2} = s1/sk, where Z1 and Z2 are two
independent unit Fréchet variables.

Example 5 (Indicator moving maxima). In the context of (12), if fs(u) = 1As (u), for some sequence of measurable
deterministic sets As, by using (13), we obtain as in (19) that

p(s1, . . . , sk) =
ν(∩ j=1,...,kAs j )
ν(∪ j=1,...,kAs j )

. (20)
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In the simple case fs(u) = 1A(u − s), i.e. As = s + A with some deterministic set A, where ν is the Lebesgue measure
on Rd, (20) implies

p(s, s + h) = p(h) =
|A ∩ (h + A)|
|A ∪ (h + A)|

=
cA(h)

2|A| − cA(h)
,

where |A| denotes the d-dimensional volume of A and cA(h) = |A∩ (h + A)|. The latter function and hence the extremal
concurrence probability function p(h) can then be obtained in closed form for many different sets. For example, in the
case η is isotropic, i.e., A = {s ∈ Rd : ‖x‖ ≤ r} is the centered ball of radius r > 0 in Euclidean space, using the formula
for the volume of the cap, we obtain

cA(‖h‖) = CdrdB(d+1)/2,1/2

{
‖h‖(2r − ‖h‖)

2r2

}
, Cd =

πd/2

Γ(1 + d/2)
,

where Ba,b(x) = B(a, b)−1
∫ x

0 ua−1(1 − u)b−1du is the cumulative distribution function of a Beta(a, b) random variable.

3.2 Monte-Carlo methods
It may happen that for some parametric max-stable models, explicit forms for extremal concurrence probabilities are
not available but hopefully it is often possible to use Monte-Carlo methods to approximate the theoretical extremal
concurrence probabilities with arbitrary precision. A naive strategy would consist in using (10) to devise a Monte-
Carlo estimator, but it is wiser to take advantage of the closed forms of max-stable processes cumulative distributions,
i.e.,

P
{
η(s j) ≤ z j, j = 1, . . . , k

}
= exp{−Vs1,...,sk (z1, . . . , zk)}, z1, . . . , zk > 0,

where Vs1,...,sk is an homogeneous function of order −1. Rewriting (10), we found

p(s1, . . . , sk) = EY

([
− logPη̃

{
η̃(s j) ≤ Y(s j), j = 1, . . . , k

}]−1
)

= EY

({
Vs1,...,sk [Y(s1), . . . ,Y(sk)]

}−1
)

(21)

which can easily be estimated by sampling independent copies of Y and computing the sample mean. We can often
make use of antithetic variables to get more precise estimates. Note that specific choice of the spectral process Y can
lead to better strategies as we will illustrate in the following examples.

Example 6 (Brown–Resnick model). Let η be a Brown–Resnick stationary random field on X driven by a Gaussian
process [Kabluchko et al., 2009]. That is, the processes Yi in (4) are equal in distribution to

Y(s) = exp{W(s) − γ(s)}, s ∈ X, (22)

where W is a zero mean Gaussian random field with stationary increments and semi-variogram γ, i.e. 2γ(h) =

E{W(h)2} = E[{W(s + h) −W(s)}2], s, h ∈ X.
For this model, the bivariate extremal concurrence probability function is given by

p(o, h) = E
([

Φ(Z) + exp
{
γ(h) −

√
2γ(h)Z

}
Φ

{ √
2γ(h) − Z

}]−1
)
, (23)

where Z ∼ N(0, 1) has the standard normal distribution with cumulative distribution function Φ. As expected p(o) = 1
and p(h)→ 0 as ‖h‖ → ∞ provided that the semi-variogram is unbounded, i.e., γ(h)→ ∞ as ‖h‖ → ∞.

Proof. Without loss of generality, for Brown–Resnick processes we can assume that in (4) we have Y(o) = 1 almost
surely. The bivariate cumulative function is given by P{η(0) ≤ z1, η(h) ≤ z2} = exp{−Vh(z1, z2)}, z1, z2 > 0 with

Vh(z1, z2) =
1
z1

Φ

√γ(h)/2 +
1√

2γ(h)
log

z2

z1

 +
1
z2

Φ

√γ(h)/2 +
1√

2γ(h)
log

z1

z2

 .
Equation (21) together with the fact that {Y(o),Y(h)} has the same distribution as {1, e

√
2γ(h) Z−γ(h)} entails

p(o, h) = E
(
{Vh[Y(o),Y(h)]}−1

)
= E

{(
Vh

[
1, exp

{ √
2γ(h) Z − γ(h)

}])−1
}
.

Equation (23) follows after straightforward simplifications. �

9



A popular special case of the the Brown–Resnick family of models is the moving maximum storm model intro-
duced by Smith [1990] known also as the Gaussian extremal process. Consider the spectral representation (12), where
U = Rd and ν is the Lebesgue measure. Taking fs(u) = ϕΣ(s − u), where ϕΣ is the multivariate Normal density with
zero mean and covariance matrix Σ, we obtain the max-stable process

η(s) = max
i≥1

ζiϕΣ(s − ui), s ∈ X. (24)

Then, the following are true:

i) The process η belongs to the family of degenerate Brown–Resnick models in (22) with W(s) = s>Z, s ∈ Rd and
Z ∼ N(0,Σ−1).

ii) Consequently, the concurrence probability function of η is given by (23) with γ(h) = h>Σ−1h/2.

Proof. Let η be a Brown–Resnick process with variogram 2γ(h) = h>Σ−1h, that is, we can assume without loss of
generality that in the spectral characterization we have Y(s) = exp(s>Σ−1Z − s>Σ−1s) with Z ∼ N(0,Σ). Then for all
s1, . . . , sk ∈ X and z1, . . . , zk > 0 we have

− logP{η(s j) ≤ z j, j = 1, . . . , k} = EZ

{
max

j=1,...,k
z−1

j exp
(
s>j Σ−1Z −

1
2

s>j Σ−1s j

)}
= (2π)−k/2|Σ|−1/2

∫
Rd

max
j=1,...,k

z−1
j exp

(
−

1
2

y>Σ−1y + s>j Σ−1y −
1
2

s>j Σ−1s j

)
dy

=

∫
Rd

max
j=1,...,k

z−1
j ϕΣ(s j − y)dy.

The last relation equals the negative log cumulative distribution function of the moving maxima in (24). �

Example 7 (Schlather and extremal-t processes). Let η be an extremal-t process on X, i.e., the processes Yi in (4) are
equal in distribution to

Y(x) = cν max{0,W(s)}ν, cν =
√
π2−(ν−2)/2Γ

(
ν + 1

2

)−1

s ∈ X,

where ν ≥ 1 and W is a stationary standard Gaussian process with correlation function ρ. The Schlather process is
obtained when ν = 1.

The corresponding extremal concurrence probability function is

p(o, h) = E

[Tν+1(T ) + {ρ(h) + σ(h)T }−νTν+1

{
−
ρ(h)
σ(h)

+
1

σ(h)(ρ(h) + σ(h)T )

}]−1

1{ρ(h)+σ(h)T>0}


where σ(h) =

√
{1 − ρ(h)2}/(1 + ν) and T is a Student random variable with ν + 1 degrees of freedom and cumulative

distribution function Tν+1.

Proof. For the notational convenience, we write shortly ρ = ρ(h), σ = σ(h). To obtain the desired result, we use a
different spectral representation. Comparing the two cumulative distribution functions, one can show that

{η(o), η(h)} d
= max

i≥1
ζi{Ỹi(o), Ỹi(h)}

with Ỹi, i ≥ 1, i.i.d. copies of the bivariate random vector

{Ỹ(o), Ỹ(h)} =

2(1,max{0, ρ + σT }ν), with probability 1/2
2(0, c), with probability 1/2
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with c = 1 − E[max(0, ρ + σT )ν] such that E(Ỹ) = (1, 1). Equation (21) yields

p(o, h) = E
([

Vh{Ỹ(o), Ỹ(h)}
]−1

)
= E

([
Vh{1, (ρ + σT )ν}

]−1 1{ρ+σT>0}

)
,

with [Davison et al., 2012]

Vh(z1, z2) =
1
z1

Tν+1

− ρσ +
1
σ

(
z2

z1

)1/ν
 +

1
z2

Tν+1

− ρσ +
1
σ

(
z1

z2

)1/ν
 ,

and straightforward simplifications give the announced result. �

4 Statistical inference and asymptotic properties

4.1 Sample concurrence probability estimators
In this section we define a sample concurrence probability estimator by blocking the data and study its basic properties
as well as the optimal choice of the block-size. We conclude with a methodological improvement of the estimator
based on permutation bootstrap.

Let Xi = {Xi(s j) : j = 1, . . . , k}, i = 1, . . . , n, be random vectors in Rk, k ≥ 2. Partition the data into non-overlapping
blocks of size m < n, and define the sample concurrence probability estimator

p̂m ≡ p̂m(X1, . . . , Xn) =
1

[n/m]

[n/m]∑
r=1

max
`=1,...,m

1{maxi=1,...,m Xi+(r−1)m≤X`+(r−1)m}. (25)

The max statistic above is simply an indicator of whether or not we have concurrence in the r-th block, i.e., whether
one of the vectors dominates the componentwise maximum of the rest in the r-th block of size m.

Assuming that X1, . . . , Xn are independent and identically distributed, the above estimator is the sample mean of
[n/m] independent Bernoulli(pm) random variables, where pm is as in (2) with n replaced by m. Therefore,

E( p̂m) = pm, Var( p̂m) =
pm(1 − pm)

[n/m]
,

i.e., p̂m is a unbiased estimator for pm.
As argued in the introduction, a major drawback of the sample concurrence probability pm is that it depends on the

sample size m and it is thus more sensible to focus on the limiting extremal concurrence probability p = p(s1, . . . , sk).
The sample concurrence probability estimator p̂m is biased for p with mean squared error

MSE(p̂m) = (pm − p)2 +
pm(1 − pm)

[n/m]
. (26)

Although the bias term pm−p is difficult to estimate in general, for the max-stable case a precise expression is available.

Proposition 3. Assume that X is a max-stable process, then pm is non-increasing in m and satisfies

0 ≤ pm − p ≤
(1 − p)

m
, m ≥ 1.

Furthermore, if p < 1, then there exists an integer r ∈ {1, . . . , k − 1} and a positive constant cr ∈ (0, 1 − p], such that
(pm − p) ∼ cr/mr as m→ ∞.

The proof expresses (pm− p) via the distribution of the extremal hitting scenario and is postponed to Appendix A.2.
The above result suggests that an asymptotically optimal choice of the block size can be made to minimize the rate

of the mean squared error in (26). In view of Proposition 3, for the general case 0 < p < 1,

MSE( p̂m) =

( cr

mr

)2
+

p(1 − p)m
n

+ o(m−2r) + O(m/n)
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Taking the derivative with respect to m we see that the optimal rate corresponds to 2rc2
r m−2r−1 ∼ p(1 − p)n−1, as

n→ ∞. Hence the block size that asymptotically minimizes the mean squared error is

mMSE(n) ∼
{

2rc2
r n

p(1 − p)

}1/(2r+1)

, n→ ∞. (27)

For this rate-optimal mean squared error we obtain MSE( p̂m) ∝ n−2r/(2r+1).

Remark. The constants r, cr and p in (27) are unknown. The precise expressions for r and cr involve multiple
concurrence probabilities, i.e., when two or more events contribute to the maximum. In principle, pilot estimates of
these parameters could be obtained and used as plug-ins in (27). Since the cases r ≥ 2 correspond to very specific
dependence structures, in practice, we recommend using the conservative choice r = 1 and cr = 1.

The following result establishes the asymptotic behavior of the sample concurrence probability estimator. The
proof is given in Appendix A.3.

Theorem 5. Suppose that 0 < p < 1 and let m = m(n) be such that n/m(n) → ∞ and m(n)/n1/(2r+1) → λ ∈ (0,∞] as
n→ ∞. Then √

n/m( p̂m − p) −→ N
{ cr

λr+1/2 , p(1 − p)
}
, n→ ∞

where 1/∞ is interpreted as zero.

Remark. In Theorem 5, we encounter a typical tradeoff between rate-optimality and bias. In particular, the mean
squared error optimal choice of m as in (27) corresponding to λ = (2rcr)2/(2r+1){p(1 − p)}−1/(2r+1) yields the limit
distribution

N


√

p(1 − p)
2r

, p(1 − p)

 ,
which has non-zero mean. On the other hand, the rate sub-optimal choices where λ = ∞ yield Normal unbiased limits.

In the case p = 0, we have no optimal block size or optimal rate estimation. Still, the following asymptotic result
can be useful.

Theorem 6. Suppose that p = 0 and let m = m(n) be such that n/m(n) → ∞ and m(n)/n1/(r+1) → λ ∈ (0,∞] as
n→ ∞. If λ < ∞, then

(n/m) p̂m −→ Poisson(cr/λ
r+1), n→ ∞.

Otherwise, if λ = ∞, then P( p̂m = 0) → 1 as n → ∞ and hence an p̂m → 0 in probability as n → ∞ for any sequence
an > 0.

Remark. When k = 2 it is possible to get an unbiased estimator for p based on a slight modification of p̂m. Indeed for
this specific case, (36) implies that p = (mpm − 1)/(m − 1) and hence the estimator

p̃m =
mp̂m − 1

m − 1
(28)

is unbiased for p as p̂m is unbiased for pm.

We conclude this subsection with a brief methodological improvement of the sample concurrence probability
estimator p̂m based on permutation bootstrap. The idea is to compute the estimator p̂m for several independent random
permutations of the sample X1, . . . , Xn. Then the average of the resulting estimator would have a lower variance and
the same mean pm.

Formally, this procedure is justified by the following simple observation based on Rao–Blackwellization. Consider
the lexicographic linear order in Rk, denoted ≺, and let X(1) ≺ X(2) ≺ · · · ≺ X(n) be the sorted sample obtained from
X1, . . . , Xn. The independence of the Xi’s and the continuity of their marginals entails that the above ordering is strict
with probability one.

Let T {X1, . . . , Xn} = (X(1), . . . , X(n)). It can be shown that T is a sufficient statistic for the parameter pm =

pm(s1, . . . , sk) and the Rao–Blackwell theorem implies the following propostion.
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Proposition 4. For p̂∗m = E( p̂m | T ) we have E
(
p̂∗m

)
= pm and

E
{(

p̂∗m − pm
)2
}
≤ E

{
( p̂m − pm)2

}
. (29)

Moreover we have
p̂∗m =

1
n!

∑
σ∈S n

p̂m{Xσ(1), . . . , Xσ(n)}, (30)

and where S n denotes the set of all permutations of {1, . . . , n}.
An alternative expression for p̂∗m is

p̂∗m =
1(
n
m

) n∑
i=1

(
di

m − 1

)
(31)

where di =
∑n

k=1 1{Xk<Xi} and
(

di
m−1

)
= 0 if di < m − 1.

Proof. Let f (x; pm), x ∈ Rk, be the density of X = {X(s1), . . . , X(sk)} with respect to some dominating measure λ. The
fact that for the likelihood, we have

L(pm; Xi, i = 1, . . . , n) =

n∏
i=1

f (Xi; pm) =

n∏
i=1

f (X(i); pm),

shows that T = {X(1), . . . , X(n)} is a sufficient statistic for pm. The inequality in (29) follows by appealing to the
Rao–Blackwell Theorem or simply applying the conditional form of Jensen’s inequality.

The independence of the Xi’s and the lack of ties (with probability one) in the lexicographic order imply

P{Xσ(i) = X(i), i = 1, . . . , n} =
1
n!
,

for all σ ∈ S n. This shows that p̂∗n = E( p̂m | T ) is expressed as in (30).
By the definition of the sample concurrence probability estimator, we get

p̂∗m =
1
n!

∑
σ∈S n

1
[n/m]

[n/m]∑
r=1

1{sample concurrence occurs within (Xσ(i+(r−1)m) : i = 1, . . . ,m)}

=
1(
n
m

) ∑
S∈Pm(n)

1{sample concurrence occurs within (Xi : i ∈ S )}

where Pm(n) is the collection of all subsets S ⊂ {1, . . . , n} of m elements. Given a subset S ∈ Pm(n) and i0 ∈ S , it is
easy to see that Xi0 dominates (Xi)i∈S if and only if S \ {i0} is included in the set {k = 1, . . . , n; Xk < Xi0 }. We deduce
that for a given index i0, the number of subset S ∈ Pm(n) such that Xi0 dominates (Xi)i∈S is equal to

(
di0

m−1

)
. Formula (31)

follows easily. �

The above result shows that the estimator p̂∗m is superior to p̂m in terms of mean squared error. From a numerical
point of view, formula (31) is much more computationally efficient than (30). We shall refer to p̂∗m as to the sample
concurrence probability bootstrap estimator. It is significantly better, in practice, than the simple sample concurrence
probability estimator p̂m and therefore in applications we recommend using only p̂∗m. As indicated above, in the case
of bivariate concurrence, the bias of p̂m can be removed. As in Relation (28), we obtain the following unbiased
modification of p̂∗m for the case of pairwise concurrence

p̃∗m =
mp̂∗m − 1

m − 1
. (32)

The respective performances of p̂m, p̂∗m and p̃∗m are analyzed in Section 5.

13



4.2 Extremal concurrence probability estimators
Although the sample concurrence probability can be easily estimated, deriving an estimator for the extremal concur-
rence probability seems at first sight difficult since in (10) the stochastic processes Y and Ỹ are not observable. Recall
that for statistical purposes we often assume that the pointwise block maxima, e.g. pointwise annual maxima, are
distributed according to some max-stable process and thus we observe η but not Y . Fortunately, Theorem 3 enables us
to estimate p(s1, . . . , sk) without the need of observing Y .

Based on η1, . . . , ηn independent copies of η, one possible estimator for p(s1, . . . , sk) is to consider the sample
counterpart of (14), i.e.,

p̂(s1, . . . , sk) =

k∑
r=1

(−1)r
∑

J⊆{1,...,k}
|J|=r

1
n

n∑
i=1

log

1
n

n∑
k=1

1{ηk(s j)≤ηi(s j), j∈J}

 . (33)

In the innermost summation, we include the index k = i to ensure that the logarithm is always well defined.
Although estimator (33) seems natural it has undesirable properties since it is not linear in the data and is thus likely to
show some bias for small sample sizes. Also the study of its asymptotic properties seems delicate. However, to reduce
the bias of this estimator, it is always possible to use a Jackknife procedure.

Fortunately, in the bivariate case, it is possible to get an unbiased estimator based on Theorem 4. This theorem
suggests the simple estimator p̂ ≡ p̂(s1, s2) = τ̂, where τ̂ is the Kendall’s τ statistic, i.e.,

p̂ ≡ τ̂ =
2

n(n − 1)

∑
1≤i< j≤n

sign{ηi(s1) − η j(s1)}sign{ηi(s2) − η j(s2)}, (34)

that is well known to be unbiased and such that [Dengler, 2010, Theorem 4.3]
√

n(τ̂ − τ) −→ N(0, σ2
τ), σ2

τ = 15Var[F{η(s1), η(s2)} − F{η(s1)} − F{η(s2)}].

Although the asymptotic variance σ2
τ is hard to evaluate as it requires knowledge of the dependence structure, in

practice it can be accurately and consistently estimated using Jacknife [Schemper, 1987].

4.3 Integrated concurrence probabilities and area of concurrence cell
As we will see in Section 6, the above methodology can be used to provide bivariate concurrence probability maps
s 7→ p(s0, s) centered at a given location s0. Such maps show how fast the dependence in extremes decreases when
moving away from s0. A drawback of this approach is that one may produce one such map for every choice of an
origin s0 and the choice of an origin is hence quite arbitrary. To bypass this issue, we propose to consider the integrated
concurrence probability

I(s0) =

∫
s∈X

p(s0, s)ds, s0 ∈ X.

Intuitively, this quantity measures how fast the dependence in extremes decreases when moving away from s0. In-
terestingly, it can be related to the notion of concurrence cell and its area. Consider the Poisson process representation
of the max-stable random field η = {η(s) : s ∈ X} in (5). Recall that we have a concurrence of extremes at sites s0 and
s if η(s0) = φ(s0) and η(s) = φ(s), for the same φ ∈ Φ. Let C(s0) denotes the random set of all sites s that are in a
concurrence relation with s0. This set will be referred to as the concurrence cell containing the site s0.

Proposition 5. For any site s0 ∈ X, we have I(s0) = E{|C(s0)|} where |C(s0)| is the d-dimensional volume of C(s0).

Proof. Observe that the concurrence probability satisfies p(s0, s) = E
{
1C(s0)(s)

}
and that the volume of the concurrence

cell is given by

|C(s0)| =
∫
X

1C(s0)(s)ds.

The result follows by applying the Tonelli–Fubini’s theorem. �
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Figure 1: Evolution of the root mean squared error for p̂m (left) and p̂∗m (right) as the block size m and the sample size
n increase. These estimates were obtained from 2000 Monte-Carlo samples sampled from a Brown–Resnick model
with semivariogram γ(h) = h/1.627. This semivariogram was chosen such that the theoretical extremal concurrence
probability is p = 0.5. The red circles indicate the optimal block sizes as defined by (27) and their corresponding
optimal root mean squared error (26).

We will provide and discuss in Section 6 some maps of the integrated concurrence probability s0 7→ I(s0) that
allow to evaluate at each location s0 the dependence in extremes around s0. For a detailed study of the properties of
the concurrence cells associated to a max-stable random field and of the tessellation of the entire domain generated by
the concurrence cells, please refer to the recent work of Dombry and Kabluchko [2014].

5 Simulation study
In this section, we analyze the performance of the pairwise sample concurrence probability estimators p̂m, p̂∗m and p̃∗m
defined in (25), (31) and (32) respectively, and that of their extremal counterpart p̂ in (34). Since the latter estimator
relies on the max-stability assumption while the former three assume that observations belong to the max-domain of
attraction, we need to handle both situations. The first one is well known and consists in sampling from max-stable
processes using the methodology of Schlather [2002]. In the second situation, to be able to control the degree to which
the model differs from a max-stable one, we consider the following partial maxima

η̃(s) =
1
n0

max
i=1,...,n0

U−1
i Yi(s), s ∈ X, (35)

where Yi are as in (4), U1, . . . ,Un0 independent U(0, 1) random variables and for some suitable n0 ∈ N. By construc-
tion, η̃ belongs to the max-domain of attraction of η in (4) and in some sense can be viewed as a truncation of the
spectral representation in (4) (see, e.g., the proof of Proposition 3.1 in Stoev and Taqqu [2005].)

We first focus only on the sample concurrence probability estimators, i.e., p̂m and p̂∗m, and analyze their perfor-
mance with respect to the block size m and the sample size n. Based on a Monte-Carlo simulation, Figure 1 shows the
evolution of the root mean squared error as the block size grows. As expected, both estimators become increasingly
more efficient as the sample size grows and, as seen from (29), the permutation estimator p̂∗m is more efficient than
p̂m—independently of the block size m and the sample size n. The circles on the plot indicate the asymptotically
optimal block size in (27), which are valid olnly for max-stable data. As expected the observed optimal block sizes
are in good agreement with the theoretical ones. In practice, however, since the data are not exactly max-stable, we

15



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

p

R
o
o
t 
m

e
a
n
 s

q
u
a
rr

e
d
 e

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

p
R

o
o
t 
m

e
a
n
 s

q
u
a
rr

e
d
 e

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

p

R
o
o
t 
m

e
a
n
 s

q
u
a
rr

e
d
 e

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

p

R
o
o
t 
m

e
a
n
 s

q
u
a
rr

e
d
 e

rr
o
r

n0 = 1
n0 = 2

n0 = 5
n0 = 10

n0 = 20
n0 = ∞

Figure 2: Evolution of the root mean squared error for p̂ as the theoretical extremal concurrence probability p and the
number of spectral function n0 in (35) increase. These estimates were obtained from 2000 Monte-Carlo samples of
size n with, from left to right, n = 25, 50, 100, 500.

recommend using slightly larger values of m so as to ensure that the block-maxima are closer to a max-stable model
but also to take into account that data usually exhibit serial dependence, e.g., daily observations.

We now investigate the performance of the extremal concurrence estimator p̂. Figure 2 shows the evolution of
the root mean squared error as the number of spectral functions n0 in (35) and the theoretical extremal concurrence
probability increase. As expected, as the sample size n grows, the estimator p̂ becomes much more efficient. Interest-
ingly, for small sample sizes, p̂ appears to be fairly robust to the lack of max-stability in the data, i.e., n0 < ∞. This
is not true anymore for larger sample sizes since, as expected, p̂ becomes increasingly more efficient as the number of
spectral functions increases.

Finally, we compare the performance of the sample concurrence probability estimators p̂∗m and p̃∗m with their
extremal concurrence counterpart p̂. To compare the two types of estimators on a fair basis, we analyze their behaviour
when the simulated data are either perfectly max-stable or non max-stable, but in the domain of attraction of a max-
stable distribution.

Figure 3 shows boxplots of the sample p̂∗m, unbiased sample p̃∗m and extremal concurrence probability estimators p̂,
based on 2000 Monte-Carlo realizations of both a Brown–Resnick and extremal-t models. Recall that we focus here on
pairwise concurrence probabilities. In this case, the extremal concurrence probability coincides with Kendall’s τ and
therefore, the estimator p̂ in (34) is in fact unbiased for the case of max-stable data. This is confirmed by the results in
Figure 3. As expected, the variability of all estimators decreases as the sample size grows; the extremal concurrence
probability estimator being the most precise one. Since the simulated data are max-stable, we can see that the sample
concurrence probability estimator is biased even when the sample size is large while the remaining two estimators are,
as expected, unbiased. Overall the extremal concurrence probability appears to be the best estimator provided that the
data are max-stable.

To corroborate this finding, Table 1 reports Monte-Carlo sample means and standard deviations of these estimators
as the assumption of max-stability becomes more accurate, i.e., as the number n0 of spectral functions in (35) grows.
As expected, when the max-stability assumption is most unreasonable, i.e., n0 = 1, all estimators show a substantial
bias with the extremal concurrence probability estimator p̂ having the largest bias while the unbiased sample one
p̃∗m the lowest. As the assumption of max-stability becomes increasingly more accurate, the bias of the unbiased
sample concurrence and extremal concurrence estimators improve. When this assumption holds exactly (indicated
by n0 = ∞), both of these estimators exhibit essentially no bias as stipulated by the theory and seen in Figure 3.
The sample concurrence probability estimator appears to be biased in all situations—the bias being less significant
as the number of spectral functions is larger. Interestingly, whatever the estimator considered, the bias and variance
appear to increase as the theoretical extremal concurrence probability value p becomes smaller. Overall the extremal
concurrence probability estimator p̂ in (34) has the lowest variability.
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Figure 3: Boxplots of the sample (red /middle), unbiased sample (green / right) and extremal (grey / left) concurrence
probability estimators at distance lags h = 1, 2, 3, 4. The boxplots were obtained from 2000 independent estimates.
From left to right: the sample size is respectively 25, 50, 100 and 500. The top panel corresponds to an extremal-t
model with ν = 5, and correlation function ρ(h) = exp(−h/10). The bottom panel corresponds to a Brown–Resnick
model with semi variogram γ(h) = h/3. For each panel, the solid line represents the corresponding theoretical extremal
concurrence probability function.

6 Concurrence of temperature extremes in continental USA
In this section, we apply the developed methodology to estimate the probabilities of concurrence associated with
extreme temperatures—both extreme cold and hot events. The data consists of daily temperature minima and maxima
recorded at 424 weather stations over the period 1911–2010. The spatial distribution of these stations is given in
Figure 4. This data set, as a subset of the United States Historical Climatological Network USHCN [2014], was
chosen as it meets very high data quality standards and involves fewer than 2.4% missing values while spanning the
entire territory of continental US. It can be freely downloaded from http://cdiac.ornl.gov/.

To avoid any seasonal influence on our results we decided to analyze minima and maxima for each season sepa-
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Figure 4: Left: Spatial distribution of the 424 weather stations. The triangles indicate the selected stations for the
analysis—upward: daily maxima, downward: daily minima. Right: The seasonal extrema time series of the selected
stations.
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Table 1: Performance of the sample ( p̂∗m), unbiased sample ( p̃∗m) and extremal ( p̂) concurrence probability estimators.
The table report the sample mean and the standard deviation in paren based on 2000 Monte-Carlo replicates. The
data are either simulated from an extremal-t model with correlation function ρ(h) = exp(−h/10) and ν = 5 degrees of
freedom or from its truncated representation with n0 extremal functions. Throughout this simulation study the block
size is held fixed to m = 10, independently of the sample size n.

p = 0.25 p = 0.50 p = 0.75
p̂∗m p̃∗m p̂ p̂∗m p̃∗m p̂ p̂∗m p̃∗m p̂

Sample size n = 20
n0 = 1 0.41 (0.24) 0.35 (0.26) 0.47 (0.13) 0.64 (0.22) 0.60 (0.24) 0.71 (0.09) 0.83 (0.15) 0.81 (0.17) 0.87 (0.05)
n0 = 10 0.34 (0.24) 0.27 (0.25) 0.31 (0.14) 0.57 (0.23) 0.52 (0.26) 0.58 (0.12) 0.79 (0.17) 0.77 (0.19) 0.80 (0.07)
n0 = 15 0.33 (0.24) 0.27 (0.25) 0.30 (0.15) 0.56 (0.23) 0.52 (0.26) 0.56 (0.12) 0.78 (0.17) 0.76 (0.19) 0.78 (0.07)
n0 = ∞ 0.33 (0.24) 0.27 (0.25) 0.25 (0.15) 0.55 (0.24) 0.50 (0.26) 0.50 (0.13) 0.77 (0.18) 0.75 (0.20) 0.75 (0.08)

Sample size n = 50
n0 = 1 0.41 (0.13) 0.35 (0.14) 0.47 (0.08) 0.65 (0.10) 0.61 (0.12) 0.71 (0.05) 0.84 (0.07) 0.82 (0.07) 0.87 (0.03)
n0 = 10 0.34 (0.13) 0.26 (0.14) 0.31 (0.09) 0.57 (0.12) 0.52 (0.13) 0.57 (0.07) 0.79 (0.08) 0.76 (0.09) 0.80 (0.04)
n0 = 15 0.33 (0.13) 0.25 (0.14) 0.29 (0.09) 0.56 (0.12) 0.51 (0.13) 0.56 (0.07) 0.78 (0.08) 0.76 (0.09) 0.79 (0.04)
n0 = ∞ 0.32 (0.13) 0.25 (0.14) 0.24 (0.09) 0.54 (0.12) 0.49 (0.14) 0.50 (0.08) 0.77 (0.09) 0.74 (0.09) 0.75 (0.05)

Sample size n = 100
n0 = 1 0.41 (0.08) 0.35 (0.09) 0.46 (0.06) 0.65 (0.07) 0.61 (0.07) 0.71 (0.03) 0.83 (0.04) 0.82 (0.04) 0.87 (0.02)
n0 = 10 0.34 (0.09) 0.26 (0.10) 0.31 (0.06) 0.57 (0.08) 0.52 (0.09) 0.57 (0.05) 0.78 (0.05) 0.76 (0.05) 0.80 (0.03)
n0 = 15 0.33 (0.09) 0.26 (0.10) 0.29 (0.06) 0.56 (0.08) 0.51 (0.09) 0.55 (0.05) 0.78 (0.05) 0.76 (0.06) 0.78 (0.03)
n0 = ∞ 0.33 (0.09) 0.25 (0.10) 0.25 (0.07) 0.55 (0.08) 0.50 (0.09) 0.50 (0.05) 0.78 (0.05) 0.75 (0.06) 0.75 (0.03)

rately. We focus on the concurrence of extreme cold (minima) during the Fall and Winter seasons—generally color-
coded in blue; and extreme hot (maxima) during the Spring and Summer seasons—generally color-coded in red. The
right panel of Figure 4 shows the times series of these seasonal extrema for four selected weather stations. These
stations were selected as they recorded the top seasonal records over the whole spatial and temporal domains. We can
see that all four time series of seasonal extremes (cold in blue and hot in red) at these stations appear to be stationary
without any clear temporal trend. This is in contrast with the generally accepted trend of about 0.2◦C per decade for
average temperatures [Stocker et al., 2013].

Figure 5 plots the estimated spatial distribution of the extremal concurrence probabilities function for each season,
relative to the chosen station. More precisely, for a given origin location s0, the maps display estimates of the pairwise
concurrence probability p(s0, s) as a function of s. These maps were obtained by first computing the estimator (34)
over all 423 pairs of stations (s0, s) and then interpolated using thin plate splines (on logit scale) provided by the R
package fields [Nychka et al., 2014]. As expected, the highest concurrence probability occurs in the neighbourhood
of the selected stations independently of the season. The areal extent of high concurrence probabilities, however, seem
to be larger for minimum temperatures (cold extremes) than for maximum temperatures (hot extremes). This finding
is consistent with the physical notion of entropy, i.e., when the ambient temperature is higher (Spring and Summer
seasons), the entropy is greater and hence involves less spatial dependence than for cooler temperatures leading to
smaller probability of simultaneous extremes. This difference can be also attributed to the fact that extreme cold
temperatures are often due to high-pressure systems, which tend to linger longer and cover a larger spatial area than
warm fronts giving rise to concurrence of extreme hot events.

Although Figure 5 displays interesting patterns, it has the drawback of being dependent on the choice of the origin,
i.e., the selected station. As stated in Section 5, it is possible to bypass this hurdle by considering the area of concur-
rence cell. Figure 6 plots the estimated spatial distribution of the concurrence cell area for the preindustrial period,
i.e., 1910–1975, and the postindustrial one, i.e., 1976–2010. To emphasize the possible impact of anthropogenic in-
fluences, the ratio of these two cell areas is also reported. We can see that during the last sixty years the expected cell
area for winter minima have increased of about 30% over the whole USA while there is a decrease of about the same
amount for summer maxima. These findings indicates that today’s climate shows cold spells that have a larger impact
than in the beginning of the 20th century while hot spells are more localized. Our results agree with the conclusions
drawn by Field et al. [2012] who states that “there is evidence from observations gathered since 1950 of change in
some extremes”. These changes in the concurrence patterns of summer extremes can be attributed to global warm-
ing since an increase in entropy generally leads to more “mixing” in the system and hence less dependence leading
to smaller areas of concurrence. The changes in concurrence patterns of extreme cold events, however, are harder
to explain. They may be triggered by structural changes in important climatological mechanisms such as the Arctic
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Figure 5: Maps of the extremal concurrence probability for the four selected stations. Top left: Fall (September,
October November), top right: Winter (December, January, February), bottom left: Spring (March, April, May) and
bottom right: Summer (June, July, August).
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Figure 6: Estimated spatial distribution of the expected extremal concurrence cell areas—in squared degree, i.e.,
around 1000 km2. From left to right: 1910–1950, 1951–2010, and their ratio (1951–2010 at the numerator). Top:
Winter minima, bottom: Summer maxima.
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Figure 7: Spatial distribution of the estimated concurrence cell areas anomalies in squared degree, i.e., around
1000 km2 for winter minima (top) and summer maxima (bottom). The data were stratified into three classes: El
Niño, La Niña and the base class “La Nada”. The left panels show the anomalies for El Niño, the right ones La Niña.

Oscillation.
Finally, we consider another cut of the data by stratifying according to an important climate phenomenon known

as the El Niño Southern Oscillation (ENSO). Positive ENSO (El Niño) refers to the event of a warm-up of the surface
water in the central and east-central equatorial Pacific ocean. It is well known that years with high ENSO have a
general warming effect in North America during the winter season. The opposite effect of negative ENSO (La Niña)
is characterized by a cool-down in the same area of the Pacific and it generally leads to unusually cold winters in
the northwestern part of the US, northern California and the north-central states Graham [1999]. Figure 7 shows
estimates of concurrence cell areas anomalies for winter minima and summer maxima. These anomalies were defined
as pointwise deviations from the expected cell area obtained from La Nada seasons, i.e., neither El Niño nor La Niña
seasons. We can see that La Niña does not seem to have an impact on the spatial coverage of winter minima but that
El Niño seems to induce more massive cold extremes over the whole USA. For the summer season, La Niña seems to
reduce the spatial extent of heat waves over the whole USA while El Niño has a less pronounced impact—although it
generally yields larger spatial coverages especially along the East coast.

7 Discussion
In this paper we introduced a new framework for the analysis of dependence of extremes: the extremal/sample concur-
rence probability. This tool plays a similar role to that of the extremal coefficient but has the benefit, as a probability,
of being more interpretable and intuitive. Theoretical properties and closed forms of these concurrence probabilities
have been established and several estimators have been proposed. A simulation study has shown that the proposed
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estimators work well in practice and that they give a new insight about the dependence of extremes, such as the spatial
distribution of the expected concurrence cell area of extreme temperature in the continental US.
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A Proofs

A.1 Proof of the continuity of Π in Theorem 1
Consider a sequence Ψn → Ψ in Mp([0,∞]k \ {0}) and let Ψ = {ψi : i ≥ 1} and Ψn = {ψn,i : i ≥ 1}. As compact subsets
of [0,∞]k \ {0} are bounded away from 0, we can choose ε > 0 such thatmaxi≥1 ψi(s j) > ε, j = 1, . . . , k

ψi(s j) , ε, j = 1, . . . , k, i ≥ 1.

Then Kε = [0,∞]k \ [0, ε)k is a compact set, Ψ ∩ Kε has finitely many points ψ1, . . . , ψNε
and no point of Ψ lies on

the boundary ∂Kε. The convergence Ψn → Ψ entails that for n large enough, Ψn ∩ Kε has the same number of points
ψn,1, . . . , ψn,Nε

that can be reordered in such a way that ψn,i → ψi as n→ ∞, i = 1, . . . ,Nε.
Assume that the maxima max1≤i≤Nε

ψi(s j), j = 1, . . . , k, are uniquely attained. Then the hitting scenario Π(Ψ)
is well defined and depends only on {ψi : i = 1, . . . ,Nε}. By the convergence ψn,i → ψ, for large n the maxima
max1≤i≤Nε

ψn,i(s j) are uniquely attained so that the hitting scenario Π(Ψn) is well defined and depends only on {ψn,i : i =

1, . . .Nε}. It is not difficult to see (although tedious to write formally) that the convergence {ψn,i : i = 1, . . . ,Nε} →

{ψi : i = 1, . . . ,Nε} implies Π(Ψn) = Π(Ψ) for large n. This proves the announced continuity for the mapping Π.

A.2 Proof of Proposition 3
We shall prove below the following formula, which may be of independent interest.

Lemma 2. In the context of Proposition 3, we have

pm = p +

k∑
`=2

P(|π| = `)m1−` (36)

where π is the extremal hitting scenario and |π| its number of components.

Proposition 3 follows directly from (36). Indeed, the monotonicity of pm is immediate and since p = P(|π| = 1),
we have

0 ≤ pm − p =

k∑
`=2

P(|π| = `)
m`−1 ≤

1
m

k∑
`=2

P(|π| = `) =
(1 − p)

m
.

If p < 1, then at least one of the probabilities P(|π| = `), ` = 2, . . . , k is non-zero and by (36) the asymptotic equivalence
(pm − p) ∼ cr/mr, m→ ∞ holds where r ∈ {1, . . . , k − 1} is the smallest integer, such that cr = P(|π| = r + 1) > 0.

Proof of Lemma 2. Since Z1, . . . ,Zm are independent with the same distribution as η, we can suppose from (5) that

Zi(s) = max
φ∈Φi

φ(s), s ∈ X,
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with Φ1, . . . ,Φm independent copies of Φ. By max-stability, η̄ = m−1 max1≤i≤m Zi has the same distribution as η and
Φ̄ = ∪1≤i≤m{m−1φ, φ ∈ Φi} has the same distribution as Φ. We consider the following events

A = {sample concurrence occurs for Z1, . . . ,Zm}

B = {extremal concurrence occurs for η̄}

Clearly, P(A) = pm and P(A) = P(A ∩ B) + P(A ∩ Bc) with Bc the complementary set of B. We analyze the two terms
separately.

Observe first that if extremal concurrence occurs then we also have sample concurrence. Indeed, if B occurs,
then one function of Φ̄ dominates all the others at (s1, . . . , sk). This function is of the form m−1φ with φ ∈ Φi, for
some i = 1, . . . ,m, showing that Zi dominates Z1, . . . ,Zm, i.e., we have sample concurrence. Hence B ⊂ A and
P(A ∩ B) = P(B) = p. We now consider the second term and the event A ∩ Bc, i.e., sample concurrence occurs in
Z1, . . . ,Zm but not extremal concurrence for η̄. Let π̄ be the hitting scenario of η̄. We know that Bc is equivalent to
|π̄| ≥ 2, i.e. the maximum at locations (s1, . . . , sk) is attained by at least two functions in Φ̄. These functions are of the
form m−1φ j, 1 ≤ j ≤ `, with ` = |π̄| and φ j ∈ Φi j for some 1 ≤ i j ≤ m. If A is also realized, i.e., some Zi dominates
Z1, . . . ,Zm, then we must have i1 = · · · = i` = i. Note, however, that since the point processes Φi, i = 1, . . . ,m are
independent and identically distributed, any given function m−1φ ∈ Φ̄ ≡ ∪m

i=1m−1Φi, independently from the others,
has equal chance of coming from any one of the m point processes m−1Φi, i = 1, . . . ,m. Therefore, the probability that
all ` functions contributing to the maximum at sites (s1, . . . , sk) are assigned to component i is m−`. Since there are m
possible choices for the index i, we deduce

P(A ∩ Bc) =

k∑
`=2

P(|π̄| = `)m1−`.

Equation (36) follows. �

A.3 Proofs of Theorems 5 and 6
In the context of these two theorems, we have

pm − p ∼ crm−r, m→ ∞, (37)

for some r ∈ {1, . . . , k − 1} and cr > 0—cf. Proposition 3. Let S n = [n/m] p̂m =
∑[n/m]

i=1 ξi,n, where ξi,n are iid
Bernoulli(pm).

Proof of Theorem 5. Let Bn = Var(S n) = [n/m]pm(1 − pm) and introduce the cumulative distribution function

Fn(x) = P
[
B−1/2

n {S n − E(S n)} ≤ x
]
≡ P


√

[n/m]
pm(1 − pm)

(p̂m − pm) ≤ x

 , x ∈ R.

The Berry–Essen theorem (see e.g. Theorem V.2.3 in Petrov [1975]) implies that

sup
x∈R
|Fn(x) − Φ(x)| ≤ ALn, (38)

where A is an absolute constant, Φ(x) denotes the standard Normal cumulative distribution function and

Ln = B−3/2
n

[n/m]∑
i=1

E
(
|ξi,n − pm|

3
)
.

Using that E(|ξi,n − pm|
3) ≤ pm(1 − pm) and straightforward algebra, we obtain

Ln ≤
[
(n/m)pm(1 − pm)

]−1/2 . (39)
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Since 0 < p < 1, we have pm(1 − pm) ∼ p(1 − p) > 0 as n→ ∞ and, for an arbitrary choice of m = m(n) = o(n) as
n→ ∞, we have Ln → 0. This, in view of (38) yields√

n/m(p̂m − pm) −→ N{0, p(1 − p)}. (40)

By using (37) and Slutsky’s theorem, we obtain the final result. �

Proof of Theorem 6. In case λ < ∞, since p = 0, from (37), we have pm ∼ cr/mr, n→ ∞, and hence

[n/m]pm ∼ crn/m(r+1) −→ cr/λ
(r+1), n→ ∞. (41)

Thus, the standard Poisson convergence for the Binomial(pm, [n/m]) random variables S n = [n/m]p̂m yields the result.
When λ = ∞, by (41), we have xn = [n/m]pm → 0 as n→ ∞. Therefore,

P( p̂m = 0) = (1 − pm)[n/m] =

(
1 −

xn

[n/m]

)[n/m]

∼ exp(−xn) −→ 1, n→ ∞,

which completes the proof. �
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sionnelles. Canad. J. Statist., 26(1):187–197.

Graham, S. (1999). NASA: Earth Observatory. Web resource: http://earthobservatory.nasa.gov/Features/
LaNina/.

Kabluchko, Z. (2009). Spectral representations of sum- and max-stable processes. Extremes, 12(4):401–424.

23

http://arxiv.org/abs/1410.2584v2
http://earthobservatory.nasa.gov/Features/LaNina/
http://earthobservatory.nasa.gov/Features/LaNina/


Kabluchko, Z., Schlather, M., and de Haan, L. (2009). Stationary max–stable fields associated to negative definite
functions. Annals of Probability, 37(5):2042–2065.

Nychka, D., Furrer, R., and Sain, S. (2014). fields: Tools for spatial data. R package version 7.1.

Penrose, M. D. (1992). Semi-min-stable processes. Annals of Probability, 20(3):1450–1463.

Petrov, V. V. (1975). Sums of independent random variables. Springer-Verlag, New York-Heidelberg. Translated from
the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82.

Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New York.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Processes: Stochastic Models with Infinite Vari-
ance. Chapman and Hall, New York, London.

Schemper, M. (1987). Nonparametric estimation of variance, skewness and kurtosis of the distribution of a statistic by
jackknife and bootstrap techniques. Statist. Neerlandica, 41(1):59–64.

Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5(1):33–44.

Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial extremes: Properties and
inference. Biometrika, 90(1):139–156.

Smith, R. L. (1990). Max-stable processes and spatial extreme. Unpublished manuscript.

Stocker, T., , Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P., editors (2013). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group
I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA.

Stoev, S. and Taqqu, M. S. (2005). Extremal stochastic integrals: a parallel between max–stable processes and α−stable
processes. Extremes, 8:237–266.

Stoev, S. A. (2008). On the ergodicity and mixing of max-stable processes. Stochastic Process. Appl., 118(9):1679–
1705.

USHCN (2014). United States Historical Climatological Network: Daily temperature extremes for the period 1911–
2010 in continental USA. Data resource: http://cdiac.ornl.gov/ftp/us_recordtemps/sta424/.

Wang, Y. and Stoev, S. A. (2011). Conditional sampling for spectrally discrete max-stable random fields. Advances in
Applied Probability, 443:461–483.

Weintraub, K. S. (1991). Sample and ergodic properties of some min–stable processes. The Annals of Probability,
19(2):706–723.

24

http://cdiac.ornl.gov/ftp/us_recordtemps/sta424/

	Introduction
	Concurrence of extremes
	Sample and extremal concurrence
	General formulas and properties of extremal concurrence probabilities

	Formulas for extremal concurrence probabilities
	Closed forms
	Monte-Carlo methods

	Statistical inference and asymptotic properties
	Sample concurrence probability estimators
	Extremal concurrence probability estimators
	Integrated concurrence probabilities and area of concurrence cell

	Simulation study
	Concurrence of temperature extremes in continental USA
	Discussion
	Proofs
	Proof of the continuity of  in Theorem 1
	Proof of Proposition 3
	Proofs of Theorems 5 and 6


