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Jocelyn Chanussot, Fellow, IEEE, and Pierre Comon, Fellow, IEEE.

Abstract

New hyperspectral missions will collect huge amounts of hyperspectral data. Besides, it is possible now to

acquire time series and multiangular hyperspectral images. The process and analysis of these big data collections will

require common hyperspectral techniques to be adapted or reformulated. The tensor decomposition, a.k.a. multiway

analysis, is a technique to decompose multiway arrays, that is, hypermatrices with more than two dimensions (ways).

Hyperspectral time series and multiangular acquisitions can be represented as a 3-way tensor. Here, we apply Canonical

Polyadic tensor decomposition techniques to the blind analysis of hyperspectral big data. In order to do so, we use a

novel compression-based nonnegative CP decomposition. We show that the proposed methodology can be interpreted

as multilinear blind spectral unmixing, a higher order extension of the widely known spectral unmixing. In the

proposed approach, the big hyperspectral tensor is decomposed in three sets of factors corresponding to spectral

signatures, their spatial distribution and temporal/angular changes. We provide experimental validation using a study

case of the snow coverage of the French Alps during the snow season.

Index Terms

Big data, hyperspectral, nonnegative tensor decomposition, CP decomposition, compression, time series.

I. INTRODUCTION

Imaging spectroscopy [1] (a.k.a. hyperspectral imaging) is concerned with the measurement, analysis, and

interpretation of spectra acquired from a given scene or object [2]. The impact of hyperspectral imaging in remote

sensing during the last two decades has been huge [2]–[4]. The interest of the remote sensing community in the

subject has grown up to be comparable to that of radar technology, with a clear increasing trend in the former

and a stabilization or decrease in the latter [5]. The International Spaceborne Imaging Spectroscopy Technical

Committee (ISIS TC) of IEEE GRSS has recently informed of an increasing number of terrestrial space-based

civilian imaging spectroscopy missions currently in preparation or in the planning phase [6]. In addition to the
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Earth Observation (EO) missions, remote sensing hyperspectral imaging has been used for planetological studies [7]

and deep space exploration [8]. Also, it has proved useful for industrial and laboratory applications, using small

commercial instruments.

Hyperspectral images (HSI) are usually stored in a nonnegative matrix form, X ∈ RN×D
+ , where N denotes the

number of pixels in the image and D denotes the number of spectral bands. For most of the modern hyperspectral

sensors, the number of acquired spectral bands is in the order of hundreds, O (D) ≈ 102, e.g., EnMAP1, PRISMA2 or

HYPERION3 sensors capture between 220 and 238 spectral bands covering the spectrum in a range of wavelengths

between 0.4µm and 2.5µm. However, it is expected that future sensors will collect thousands of bands, e.g.,

IASI sensor4 captures 8461 spectral bands in wavelengths covering the range 3.62 − 15.5µm. The number of

pixels composing a HSI are usually in the order of hundreds of thousands, O (N) ≈ 106. The high spatial and

spectral dimensionality of the HSI makes their analysis very computationally costly. Furthermore, new missions and

sensor developments are making it possible to collect time series of hyperspectral data, e.g. MODIS mission5, and

multiangular images, e.g. CRISM mission6. The huge amount of hyperspectral data that will be delivered in the near

future encouraged us to consider hyperspectral image analysis from a big data point of view. These hyperspectral

big data will pose new challenges to hyperspectral image analysis. For instance, new techniques to extract the

low-rank relevant information will be necessary.

Here, we propose to make use of techniques from tensor analysis [9] (a.k.a. multiway or multiarray analysis) to

face this challenge. Time series or multiangle hyperspectral big data could be understood as nonnegative tensors,

X ∈ RN×D×T
+ , where N , D and T denote the dimensionality of the spatial, spectral and time/angle ways,

respectively. One of the most successful techniques to decompose tensors in low-rank terms is the Canonical

Polyadic decomposition (CP) [10], sometimes coined Candecomp/Parafac [11]. The CP decomposition could be

understood as an extension of the linear unmixing of 2-way (spatial and spectral) hyperspectral data [12] to the

multilinear unmixing of multiway (more than two) hyperspectral tensors. Conventional spectral unmixing aims to

decompose an hyperspectral image into the spectral signatures of the materials present in the image and their

spatial distributions, known respectively as endmembers and fractional abundances. Hence, we introduce in Section

II the CP decomposition as a technique for blind spectral unmixing of hyperspectral big data. Rank-one factors

are expected to be related to spatial abundances, spectral signatures and changes in time/angle. The proposed

methodology is blind in the sense that no a priori information is needed, for example, when the spectral signatures

of the materials in the image are unknown.

Often, conventional spectral unmixing techniques make use of a set of spectral signatures of materials taken on

1http://www.enmap.org/
2http://www.asi.it/en/activity/earth observation/prisma
3http://eo1.usgs.gov/sensors/hyperion
4http://wdc.dlr.de/sensors/iasi/
5http://modis.gsfc.nasa.gov/
6http://crism.jhuapl.edu/
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the field or in lab, and collected in a spectral library [13]. Otherwise, the endmembers are estimated from the data

using geometrical or statistical spectral unmixing algorithms [12]. Then, the estimation of the spatial fractional

abundances is modeled as an optimization problem usually solved by a constrained least squares algorithm. Some

recent methods have proposed to jointly estimate the endmembers and their fractional abundances [14], [15].

The proposed methodology allows to jointly unmix big data hyperspectral time series or multiangle acquisitions,

decomposing the data into a set of spectral, spatial and time factors, that eventually play the role of endmembers,

fractional abundances and time/angle changes.

An important aspect of HSIs is that they relate to physical quantities of the objects composing the scene, e.g.,

the radiance or the reflectance, which are real nonnegative. In addition, the modeling assumed involves spectral,

abundance, or scaling quantities, which are also nonnegative. Hence, it is desirable to impose all terms in the CP

decomposition described in Section II to be nonnegative. Moreover, there are some practical issues that should be

addressed when computing the nonnegative CP decomposition of hyperspectral tensors. In fact, the big data nature

of hyperspectral tensors makes the computational cost of nonnegative CP decomposition algorithms prohibitive for

real applications. Thus, it is necessary to develop special-purpose algorithms able to reduce memory requirements

and to speed up computations, while enforcing nonnegativity of the CP decomposition. Recently, a solution to this

issue has been proposed in [16], as well as two compression-based nonnegative CP decomposition algorithms. This

issue is addressed in the paper.

A. Contribution

We propose the use of compression-based nonnegative CP decomposition algorithms to analyze big hyperspectral

data tensors, i.e. hyperspectral time series or hyperspectral multiangle acquisitions. The proposed methodology

could be interpreted as an extension of the linear spectral unmixing to higher orders, that is, a multilinear spectral

unmixing. We provide quantitative and qualitative evidence of the validity of the proposed methodology, using a

dataset obtained by the MODIS hyperspectral sensor during the 2012 snow season in the French Alps.

The remainder of the paper is organized as follows. In Sec. II we overview the topic of tensor decompositions,

a.k.a. multiway analysis. In Sec. III we propose an adaptation of the CP decomposition to hyperspectral big data.

In Sec. IV we provide experimental evaluation of the proposed methodology using a study case of a hyperspectral

time series of MODIS acquisitions. Finally, we give some conclusions in Sec. V.

II. TENSOR DECOMPOSITION / MULTIWAY ANALYSIS

A. Rank revealing decomposition

For our need, a third order tensor X of size N ×D × T will be merely assimilated to its representation by a

three-way array Xijk, 1 ≤ i ≤ N , 1 ≤ j ≤ D, 1 ≤ k ≤ T . Note that tensors of order two are then just matrices.

Among the set of tensors, the class of so-called decomposable tensors play a central role. These tensors, also

sometimes called pure or elementary, may be seen as a discretization of functions whose variable separate:

Dijk = aibjck.

March 23, 2015 DRAFT
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It is worth noting that there are obviously infinitely many ways to write a decomposable tensor as a product of

single-index components, because of scaling indeterminacies. In fact, one can replace aibjck by (ai/α)(bj/β)(αβck)

for any pair of nonzero scalars (α, β). Any finite tensor can be written as a finite sum of decomposable tensors:

X =

R∑
r=1

λrD(r), (1)

where λr are real strictly positive. The rank of tensor X is defined as the minimal number R of terms necessary for

the equality above to hold exactly. In that case, expression (1) is called the Canonical Polyadic (CP) decomposition

of X . Decomposable tensors have then, by definition, a rank equal to 1. This definition of rank is consistent with

the usual definition of matrix rank, when tensors of order two are considered. In practice, it may be useful to impose

tensors D(r) to be of unit norm. With this normalization, λr can be compared to singular values in the case of

tensors of order two.

A first consequence of the nonnegativity constraint is that it has an impact on the value of the tensor’s rank. In

fact, the (matrix or tensor) rank computed in R+ may be strictly larger than the rank computed in R [17], [18].

For this reason, when all quantities involved in the CP decomposition are real nonnegative, the minimal value of

R is called the nonnegative rank.

B. Factor matrices

Another writing of the CP decomposition makes it more explicit that the data tensor X is related to a diagonal

tensor L via a multilinear transform. To see this, denote Dijk(r) = AirBjrCkr, where factor matrices A, B and

C are of size N ×R, D ×R and T ×R, respectively. Then, it is easy to show that (1) can be rewritten as:

Xijk =

R∑
r=1

AirBjrCkrλr. (2)

Now define L as the diagonal tensor of size R × R × R containing the R scaling factors λr. Then, we agree to

denote compactly the polyadic decomposition (2) as

X = (A,B,C) ·L. (3)

The major difference between (1) and (2-3) is that the latter made use of one writing of D(r) among others, and

hence cannot pretend to be unique because of this arbitrary choice. On the other hand, this writing is unavoidable

when implementing numerical algorithms, hence its importance. This issue will be addressed in Subsection II-D.

C. Approximation

In practice, the data tensor is subject to modeling errors or measurement noise, and it is convenient to find its

best rank-R approximation by minimizing the following objective function

Υ(A,B,C,L) = ‖X − (A,B,C) ·L‖, (4)

for some well chosen norm, instead of attempting to compute the exact CP decomposition (2). It is now known

that tensors of order 3 or larger do not always admit a rank-R approximate, when R > 1, especially in R or C.

March 23, 2015 DRAFT
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But fortunately, it has been shown in [18] that this obstacle does no longer holds for nonnegative tensors, and that

the problem is well-posed in R+: best lower nonnegative rank approximates always exist.

D. Uniqueness

The exact CP decomposition (1) is unique if the rank R is not too large. In fact, several sufficient upper bounds

have been proposed in the literature [19], [20]. In particular, from [20] we know that almost every 3rd order tensor

of rank smaller than the bound Ro below has a unique CP decomposition:

Ro =

⌈
NDT

N +D + T − 2

⌉
. (5)

However, uniqueness results available in the literature apply only to the exact CP decomposition, and not to an

approximation like (4), which must unavoidably be computed in practice. Therefore, we shall also rely on a recent

result of [21], which states that almost every nonnegative tensor of nonnegative rank larger than R admits a unique

best approximate of nonnegative rank R, which in turn has a unique CP decomposition if condition R < Ro holds

true.

III. HYPERSPECTRAL BIG DATA CP DECOMPOSITION

A. Extending the linear unmixing model

The linear unmixing model is the simplest and most widely used model for recovering spectra and abundances

of a scenery from an hyperspectral image. By imposing some constraints on the factors, the bilinear decomposition

becomes unique, and the recovered factors bear physical meaning as actual spectra and abundances. In fact, the

linear unmixing model is a particular case of CP decomposition where the data tensor X is a matrix, i.e. T = 1,

and additional constraints are added. Thus in the presence of a third variability source, say time or angle, it is

natural to study the constrained CP decomposition of multiway hyperspectral data.

However, unlike its bilinear counterpart, the multiway model cannot be a priori deduced from a physical reasoning.

Indeed, a multiplicative model will not explain the sophisticated temporal or angular evolution of different materials

which includes appearance/disappearance and strong non-linearities. For this reason, applying the CP decomposition

to X should rather be understood as decomposing the data on rank-one meaningful linear subspaces maximizing

the explained variance, very much like a non-orthogonal PCA. Yet, knowing the bilinear model bears physical

interpretability. We hope the recovered factors A, B and C can be interpreted respectively as spatial, spectral and

time/angle ways of R materials. Moreover, the same material might be decomposed in two or more rank-one factors

to capture its complex variability. Also, nonnegativity constraints should be imposed on all three factor matrices to

ensure both algorithmic convergence and physical interpretability.
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B. Nonnegative CP approximation

It is well known in the optimization community that computing the nonnegative CP decomposition of a positive

tensor is a difficult problem. Given a multiway data set X , we want to solve the following minimization problem:

argmin ‖X − (A,B,C) ·L‖2F
w.r.t. A,B,C

s.t. A � 0,B � 0,C � 0,

(6)

where ‖ · ‖F denotes the Frobenius norm. This problem is highly non-convex, yet many algorithms provide rather

precise but costly computation, and these algorithms can be divided into two main classes:

• All-at-once gradient-based descent, e.g. [22]: all CP parameters are updated at the same time using a gradient

scheme (standard or conjugate gradient) and nonnegativity constraints are implemented through barriers or soft

penalizations.

• Alternating minimization: the cost function is minimized in an alternating way for each factor (A, B or C)

while the others are fixed. The most commonly used method for nonnegative CP decomposition is alternating

nonnegative least squares (ANLS), e.g. [23].

C. Handling big data through compression

Now in hyperspectral imaging, as stated in the introduction, the usual dimensions of the data tensor are huge. In

this setting, the workhorse techniques described briefly above can fail to handle all the data within the memory of

the computer, or can converge very slowly.

Large tensors decomposition is actually a hot topic in the tensor decomposition area, especially when constraints

are included in the optimization problem. An approach to handle large tensor decomposition is through the use of

compression. The general idea is that the original data array X can be equivalently represented by one or a few

arrays X c with reduced dimensions Nc ×Dc × Tc. The compressed tensor is then decomposed by solving

argmin Υ = ‖X c − (Ac,Bc,Cc) ‖2F
w.r.t. Ac,Bc,Cc,

(7)

whereAc,Bc,Cc are compressed versions of the original factor matrices, with reduced number of rows Nc, Dc, Tc,

but the same number of columns R. For simplification purposes the diagonal matrix of scalings is absorbed in Cc.

Note that, after the compressed factors are obtained, a decompression operation is carried out to recover the factors

in the original dimensions.

In the literature, two main approaches have been proposed to compress the tensor array. The first proposed

approach [24, p. 92] is through an approximation of the High Order Singular Value Decomposition (HOSVD). The

HOSVD [25] approximates the original data in the following way

X ijk ≈
Nc,Dc,Tc∑

lmn

U ilV jmW kn [X c]ijk , (8)

March 23, 2015 DRAFT
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or using the same notation as in the CP model

X ≈ (U ,V ,W )X c, (9)

where U , V and W are matrices with orthogonal unit-norm columns. In practice, these matrices are obtained

by truncating the first Nc, Dc and Tc left singular vectors of the 3 unfoldings of X (unfoldings are different

concatenations of matrix slices of the tensor, see e.g [9] and references therein). Note that, in this case, the

compressed and uncompressed factors are related in the following way:

A ≈ UAc, B ≈ V Bc, C ≈WCc, (10)

which shows that U , V and W can be seen as decompression operators.

The second approach, called PARACOMP [26], consists in generating multiple compressed tensors through

multiple U i, V i and W i, but in this case, these matrices are neither deterministic, neither data dependent. The vectors

forming the columns of these matrices are independently drawn from an independent and identically distributed

multivariate Gaussian distribution. Since there are multiple compressed factors Ai
c, the uncompressed factors are

obtained by merging the results. After correcting the permutations between different Ai
c, the results are merged

through the solution of a linear system of equations. For example, factor A is obtained by solving

[
U1 · · · U I

]>
A =


A1

c

...

AI
c

 . (11)

D. Algorithms for large hyperspectral data

Both approaches presented above may decrease substantially the complexity required for the unconstrained CP

decomposition, thus solving the big data issue, which is fundamental to the extension of the linear mixing model

to a multilinear one. Still an important issue persists, how to deal with nonnegativity constraints? The approaches

presented above cannot directly handle nonnegative constraints, since nonnegativity cannot be imposed directly

in the compressed space. Therefore, specialized algorithms are needed to deal with nonnegativity in these two

approaches.

In the HOSVD approach, we need to solve (7) under the following constraints

UAc � 0, V Bc � 0, WCc � 0. (12)

To solve this problem, adapted instances of the two main classes of algorithms for nonnegative CP decomposition are

proposed in [16]. In the all-at-once gradient descent setting, the Compressed Conjugate Gradient (CCG) algorithm

is proposed, while a modification of ANLS, Projected and Compressed ALS (ProCo ALS), is presented in the

alternating setting. A solution similar to ProCo ALS is also proposed in [27].

In the PARACOMP approach, an ADMM projection algorithm is proposed to add nonnegativity constraints [28].

But it has been noted in [27] that this approach is very sensitive to noise, which is a huge drawback for hyperspectral
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Fig. 1. False color images of the 44 time acquisitions (cloud pixels are depicted in black).

applications. Therefore, in what follows we will briefly explain and apply only the HOSVD based algorithms: CCG

and ProCo ALS.

1) CCG: to include the nonnegative constraints in the minimization of Υ (Ac,Bc,Cc) soft penalization terms

f
(

[UAc]ij

)
are added in order to increase the objective function whenever [UAc]ij are negative. Stacking all

elements of the factor matrices in a single vector θ = vec
(
A>c ,B

>
c ,C

>
c

)
, the modified objective function becomes

Υp = Υ (θ) +
1

R (N +D + T )

N,R∑
i,j

f
(

[UAc]ij

)
+ · · ·

 ,
where f is a sigmoidal function, for example an hyperbolic tangent function. Then, applying the conjugate gradient

method [29, p. 101] to this function gives the CCG method. At iterate k + 1, the CCG update θ̂
k+1

is given by

θ̂
k+1

= θ̂
k

+ µks
k, (13)

where µk is the step size given by backtracking line search [29, p. 37] and sk is the conjugate gradient direction,

for example using the Polak-Ribière method [29, p. 122], this direction is given by

sk+1 = pk+1 +

(
pk+1

)> (
pk+1 − pk

)
‖pk‖2

sk, (14)

where pk denotes the negative gradient of Υp at the point θ̂
k
.
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2) ALS: in the alternating setting, to update each factor we need to solve a least squares problem with linear

inequality constraints. The idea of ProCo ALS is to carry out an approximate projection of the unconstrained least

squares (LS) solution on the set of feasible solutions. This approximate projection is given in three steps: first the

factor is decompressed (D), then the decompressed factor is projected onto the nonnegative orthant (P), and, finally,

the result of the projection is recompressed (R). The four steps of each ProCo ALS iteration to update the factor

Ac, denoted here Âk+1
pc , are detailed below:

LS: Âk+1
c = X(1)

c

(
Ĉk

pc � B̂k
pc

)†

Approx. proj.


D: Âk+1 = UÂk+1

c

P:
[
Âk+1

]
+

:= max
(
0, Âk+1

)
R: Âk+1

pc = U>
[
Âk+1

]
+

(15)

where � denotes the Khatri-Rao product, † indicates the pseudoinverse, X(1)
c is the unfolding in the first way of

X c and max (·, ·) denotes the element wise maximum. To obtain the updates B̂k+1
pc and Ĉk+1

pc , the same procedure

is applied with the appropriate unfolding of X c and decompression operators.

IV. STUDY CASE: HYPERSPECTRAL TIME SERIES

A. Dataset

The dataset is a subset of a longitudinal daily acquisition of MODIS hyperspectral sensor for the same scene in

the Alps (France) during the 2012 snow season. The data has been pre-processed to improve the spatial resolution

to 250m. From the original dataset we have selected 44 acquisitions with a cloud presence lower than 30%. Each

image is of 80× 60 pixels size with seven spectral bands measuring the radiance at the sensor.

Fig. III-C shows a false color image of the 44 acquisitions. It can be appreciated that some permanent snow/ice

lies on the top of the mountain chain, and how the snow covers the vegetation in the middle of the season to finally

melt and disappear by the end of the season. Fig. 2 depicts the cloud ratio for each of the 44 images. Most of the

images are partially cloudy, and the pixels covered by clouds are considered as missing data. Since it is unlikely

that the missing data are located in the same pixel location on consecutive acquisitions, we have interpolated the

missing values using the pixel values of time adjacent images.

B. Experimental methodology

On one hand, we compared the application of both compression-based CP decomposition algorithms, CCG and

ProCo ALS, to the state-of-the-art ANLS CP decomposition algorithm and to the conventional full constrained

least-squares unmixing (FCLSU) independently applied on each time acquisition. In order to do that, we arranged

the dataset in a tensor of 4800×7×44 dimensions, corresponding to the spatial, spectral and time ways, respectively.

The tensor size is convenient since it reflects the usual unbalance on the tensor dimensions, where spatial dimension

is much larger than the dimensionality of the other tensor ways, while still allowing the computation of the ANLS

algorithm for sake of comparison.

March 23, 2015 DRAFT



10

1 6 7 9 11 13 14 16 20 23 25 27 32 33 46 59 63 68 76 78 83 84 86 89 93 95 96 97 98101103105113116120160171178180184185188189191
0

0.05

0.1

0.15

0.2

0.25

0.3

Time frames (day)

C
l
o
u
d
s
 
c
o
v
e
r
a
g
e

Fig. 2. Cloud coverage of the 44 time acquisitions indicated by the ratio of cloud pixels to the total number of pixels (0.00 indicates no clouds,

1.00 indicates fully covered by clouds).

We run 50 Monte Carlo runs for each of the algorithms for a set of different rank values in the range R ∈ [5, 15].

For the compression-based CP algorithms, the compressed tensor, X c, has dimensions 175×7×25. The comparison

was done in terms of average normalized root mean squared error ( ̂nRMSE), between the original tensor, X , and

the tensor reconstructed from the CP factors, X̂

̂nRMSE
(
X , X̂

)
=

√√√√ 1

NDT

N∑
i=1

D∑
j=1

T∑
k=1

(
Xijk − X̂ijk

‖X‖F

)2

.

On the other hand, we assessed the physical interpretability of the estimated CP factors. We compared the

estimated spectral factors, B̂, to the on-field spectral measurements of eight materials (see Fig. 3), here on termed

as endmembers according to the unmixing literature: medium snow, glacier snow, old coarse, ice, debris, rocks, rain

forest and pasture. We made use of the spectral angular distance, dSAD, to compare the pair-wise angular distances

between the spectral factors and the endmembers:

dSAD

(
b̂, e
)

= arccos

(
b̂
T

e
‖b̂‖‖e‖

)
, (16)

where b̂ ∈ RD denotes a spectral CP factor and e ∈ RD denotes an endmember. In order to assess the interpretability

of the spatial factors, we calculated the linear Pearson correlation of the estimated spatial factors, Â, to the

abundances estimated by a conventional FCLSU, individually applied to each of the time images, using the previously

mentioned eight endmembers. Finally, we give some interpretation of the time factors, C, in terms of the snow
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Fig. 3. On-field spectral measurements (endmembers).

season evolution.

C. Results

First, we give some overall results taking into account the performance of the competing nonnegative CP

algorithms for all the evaluated rank values. The obtained results suggest that R = 8 is an appropriate value

for this data tensor rank. Thus, we continue showing some detailed results for the best runs among the experiments

with rank R = 8, that is the runs with minimum average normalized RMSE for each CP decomposition algorithm.

1) Overall results: Fig. 4 shows a boxplot of the average normalized RMSE of the 50 Monte Carlo runs for

the different CP decomposition algorithms and rank values. The flat black line depicts the average normalized

RMSE obtained by the conventional FCLSU spectral unmixing using the eight library endmembers. Overall, the

compression-based algorithms achieve a performance similar to the state-of-the-art ANLS. This supports the use of

the CCG and ProCoALS algorithms to perform a CP decomposition of big hyperspectral data since the computational

time employed by these two algorithms is several orders of magnitude smaller than the ANLS. The ProCoALS

algorithm shows less variability in the reconstruction error than CCG for small rank values. Results obtained for

the rank value R = 8 suggests that this is a proper rank value for the CP decomposition. The CCG and ProCoALS

present small error variability for rank values R ≥ 8 compared to the ANLS algorithm, which seems to be more
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Fig. 4. Average Normalized RMSE obtained by the three competing CP decomposition algorithms: (a) ANLS, (b) CCG and (c) ProcoALS.

The black line depicts the error obtained by the conventional FCLSU.
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Fig. 5. Average angular distance between the eight library endmembers and the spectral factors obtained by the three competing CP decomposition

algorithms: (a) ANLS, (b) CCG and (c) ProcoALS.
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Fig. 6. Average Maximum Pearson correlation between the abundances estimated by FCLSU corresponding to the eight actual endmembers

and the spatial factors obtained by the three competing CP decomposition algorithms: (a) ANLS, (b) CCG and (c) ProcoALS.
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Fig. 7. Spectral factors obtained by the three competing CP decomposition algorithms: (a) ANLS, (b) CCG and (c) ProcoALS. The colours of

the spectral factors correspond to their matching library endmembers.
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Fig. 8. Spectral angular distances between the library endmembers and the spectral factors obtained by the three competing CP decomposition

algorithms: (a) ANLS, (b) CCG and (c) ProcoALS.
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sensitive to an over-estimation of the tensor rank. Compared to the error obtained by the FCLSU approach, the

compressed CP decomposition algorithms achieve similar or slightly better results, whilst the decomposition is

more compact, i.e. the FCLSU returns 44 abundance maps for each endmember while the CP decomposition

outputs R < 8 ∗ 44 abundance maps and time factors.

Fig. 5 shows the average angular distance between the eight library endmembers and the spectral factors obtained

by the 50 Monte Carlo runs of each of the CP decomposition algorithms. Since we want to know if the spectral

factors resemble any of the library endmembers, for each run, we select the minimum angular distance from any

of the estimated spectral factors to each of the eight library endmembers, and then we compute the mean among

the 50 runs. All the three algorithms present the same trends. The four endmembers related to snow/ice (medium

snow, glacier snow, old coarse, ice) have very small average angular distances for all rank values, meaning that

these materials have been detected by the CP decomposition. The rocks and debris endmembers have high angular

values meaning that the CP decompositions do not estimate any spectral factor that resembles these two materials.

The vegetation and pasture are specially present for rank values close to R = 8, which is an additional evidence

that this is a proper rank value for the data tensor. These results can be explained by the high presence of snow

and ice throughout all the time series, while it is difficult to visually assess the presence of rocks and debris. Also,

the almost flat spectra of these two materials could make it hard for the CP decomposition to select one of them as

a spectral factor, since this information could be incorporated to the multilinear decomposition as scaling factors.

In Fig. 6 we show the average maximum Pearson correlation between the spatial factors estimated by the three

CP decomposition algorithms and the spatial abundances obtained by the conventional FCLSU approach. Using the

FCLSU, we obtained a set of 8 abundance maps for each of the 44 time acquisitions. We computed the Pearson

correlation between the abundance maps and all the spatial factors, and for each run and library endmember, we

selected the maximum Pearson correlation value. Then, we computed the mean among the 50 runs for each algorithm

and rank value. Again, we obtained high correlation values for the four snow/ice materials, middle correlation values

for the pasture/rain forest, and small correlations for the debris/rocks. Despite the fact that some of the materials

were not detected by the CP decomposition, the presence of high correlated spatial factors indicates that they are

physically meaningful and that the spatial factors could be interpretable in terms of abundances.

2) Results for R = 8: next, we give details about the CP factors obtained for the best run of each algorithm,

in terms of average normalized RMSE, with R = 8. Fig. 7 shows the spectral factors obtained by the three CP

algorithms. The colors indicate the library endmembers that are the most similar in angular distance to each of the

spectral factors. Fig. 8 shows the spectral angular distances between the spectral factors and the library endmembers.

It is interesting to mention that in all three algorithms, the spectral factors are very similar. The different matchings

to the library endmembers are due to slight differences in angular distances, i.e. the differences among the four

snow/ice spectra are very small. In the three algorithms there are two factors with high minimum spectral angle

distances, factors 1 and 3 for the ANLS, factors 4 and 7 for the CCG, and factors 1 and 7 for the ProcoALS. These

factors are being associated with pasture and ice, and from the shape of the factors (peaks in bands 3 and 6) it can

be guessed that they correspond to a mixture of both materials.
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Fig. 9. (a) Spatial abundances obtained by the FCLSU averaged over the 44 time frames, (b-d) Spatial factors obtained by the three competing

CP decomposition algorithms: (b) ANLS, (c) CCG and (d) ProcoALS. Each abundance map is associated to one library endmember and, for

each method, scaled by the maximum value of the eight abundance maps.

Fig. 9 depicts the spatial factors as abundance maps and compare them to the average of the 44 abundance maps

obtained by the conventional FCLSU approach. The spatial factors obtained by the three CP algorithms are very

similar, what evidences that all three algorithms converge to the approximately same local minima given a proper

tensor rank. It could be appreciated that two of the factors are related to the permanent snow/ice on the top of the

mountain (factors 2 and 5 for ANLS, 6 and 8 for CCG, and 3 and 6 for ProcoALS). Also, the rain forest and pasture

areas correspond to the low sides of the mountains and surrounding areas. Comparing them to those obtained by the

FCLSU, it could be noted that the debris FCLSU abundance map has very high values compared to the remaining

FCLSU abundance maps. This suggests again that its flat spectra works like a scaling factor, probably modeling

spectral variability, which is a well known issue in spectral unmixing [30]. Overall, the estimated spatial factors

are meaningful and the qualitative visual assessment encourages us to further investigate the use of the nonnegative

CP decomposition as a multilinear “blind” spectral unmixing technique.

Finally, we provide in Fig. 10 the estimated time factors. Same as before, the colors indicate the assignment of

the factors to the most similar endmembers. It is difficult to give an interpretation of the factors, but it is possible

to show that they are related to the three phases of the snow season: pre-season, snow and post-season. In the pre-

season and post-season the rain forest/pasture factors have a higher importance and although the ice/snow factors

are present over all the season due to the permanent ice/snow areas on the top of the mountains, they have higher

values during the snow and post-season phases.

V. CONCLUSION

Big data hyperspectral time series or multiangular acquisitions can be represented as tensors. In this paper, we

have proposed the use of compression-based nonnegative CP decomposition algorithms to analyze hyperspectral
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big data. We showed that the CP decomposition of hyperspectral tensors could be understood as an extension of

the linear mixing model to higher-orders, that is a multidimensional blind spectral unmixing technique. We gave

experimental evidence that supports the validity of the proposed approach and the physical interpretability of the

tensor factors in terms of spectral signatures, fractional spatial abundances and time/angle variations. Further work

will focus in the study of the proposed approach as a multilinear spectral unmixing, taking into account sparsity,

spatial smoothness and other constraints usually employed in conventional spectral unmixing.
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Fig. 10. Time factors obtained by the three competing CP decomposition algorithms: (a) ANLS, (b) CCG and (c) ProcoALS. The colours of

the time factors correspond to their matching library endmembers.
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