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Effect of bubble’s arrangement on the viscous torque in bubbly Taylor-Couette flow 
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An experimental investigation of the interactions between bubbles, coherent motion and 

viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder 

radii ratio η is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the 

apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the 

gap width ranges from 0.05 to 0.125) for very small void fraction (α0.23%). Different flow 

regimes are studied corresponding to Reynolds number Re based on the gap width and 

velocity of the inner cylinder, ranging from 6.10
2
 to 2.10

4
. Regarding these Re values, Taylor 

vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of 

the vortices is performed for the single-phase flow. The experiment also develops bubbles 

tracking in a meridian plane and viscous torque of the inner cylinder measurements. The 

findings of this study show evidence of the link between bubbles localisation, Taylor vortices 

and viscous torque modifications. We also highlight two regimes of viscous torque 

modification and various types of bubbles arrangements, depending on their size and on the 

Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder 

and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. 

For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. 

When buoyancy induced bubbles motion is increased by comparison to the coherent motion of 

the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement 

is parameterized by the two dimensionless parameters C and H introduced by Climent et al. 

[E. Climent, M. Simonnet and J. Magnaudet, Phys. Fluids 19, 083301(2007)]. Phase diagrams 

summarizing the various types of bubbles arrangements, viscous torque modifications and 

axial wavelength evolution are built.  

Keywords: bubble dispersion, viscous torque, Taylor vortices 

 

I. INTRODUCTION 
 

In the context of naval hydrodynamics, bubble injection in the turbulent boundary layer of 

ship’s hull appears as a promising solution to reduce the hull viscous resistance. However, 

despite several attempts in this field, the physical mechanisms implied into the bubbly drag 

reduction are to the best of our knowledge, not completely understood
1
. Consequently, it is still 

non straightforward to extrapolate results obtained for small scale models to large scale ship’s 

hull model. Moreover, a bubble injection system that is appropriate for a typical ship’s hull and 

a specific velocity range can be no more fitted when it is carried out for a different ship hull 

and/or other velocity ranges
2
. Therefore, there is still a need to develop theoretical research and 

applied experiments oriented to a better understanding of bubbly drag reduction. 
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A Taylor-Couette flow can be considered as a valuable configuration to study bubble induced 

modifications of the viscous drag. It is a closed system and characterizing the viscous drag 

implies to measure the viscous torque applied on the inner cylinder. Moreover, for moderate to 

high Reynolds numbers, the Taylor-Couette flow has several similarities with the turbulent 

boundary layer flow that develops over a flat plate.  In particular, in the very near wall region 

of inner and outer cylinders, there is an inner layer of constant shear stress and negligible 

curvature effect characterized by a linear evolution of the azimuthal velocity with respect to the 

distance from the wall
3
. Farther from the wall, the azimuthal velocity follows a logarithmic law 

as observed in turbulent channel flows and for high Reynolds numbers (Re>10
6
), the slope 

asymptotically tends to the Von Karman constant
4
. Furthermore, in the transition regime, the 

occurrence of Taylor contra-rotating vortices (with associated inflow/outflow jets regions) is 

very similar to the energetic turbulent structures, taking place in the very near wall region over 

a flat plate
5
. 

In a Taylor-Couette flow, several contributions to the bubble dynamics can be observed such 

as the mean azimuthal flow, the large scale Taylor vortices, waviness and its modulation for 

low Reynolds numbers and small scale turbulent structures for moderate to high Reynolds 

numbers. Thus injecting bubbles in such a flow is a valid direction to explore, because bubbles 

can interact with these different kinds of structures and can lead, for very specific conditions, to 

viscous torque reduction. In the literature, the bubbly drag reduction in the Taylor-Couette flow 

was studied for the outer cylinder at rest.  

 

In the case of bubbles smaller than the Kolmogorov length scale, a torque reduction was 

observed for the modulated wavy vortex flow. For this particular regime, such reduction is 

rather linked to an inhomogeneity of the bubble distribution, following the waviness motion, 

this leading to a stabilization of the flow, as if the effective Reynolds number were decreased
6
. 

For bubbles larger than the Kolmogorov length scale, torque reduction is likely to be 

associated either with a de-structuration of the Taylor vortices by the bubble upward motion in 

the case of weak turbulent and turbulent Taylor vortex flow
7,8 

or associated with the 

deformation of the bubbles in the case of the high Reynolds numbers (Re>8 10
5
)
9-12

. According 

to Murai et al.
7
, there is a Reynolds number range, for which the relative contribution of the 

Taylor vortices to the global flow and the contribution of the bubble deformation are too small 

to bring about torque reduction, thus leading on the contrary to a torque increase. Nevertheless, 

a common point when viscous torque reduction was observed is the existence of a void fraction 

peak near the inner cylinder wall. It is then worth trying to characterize the bubble dispersion in 

this typical flow and trying to understand the link between the bubble dispersion and the 

viscous drag increase or decrease at the inner cylinder. 

 

Numerical analysis of the bubble dispersion for the first instabilities was firstly performed by 

DNS and one way coupling
13

.  In this framework, bubbles were considered as passive tracers. 

Preferential accumulation of the bubbles in the axial and radial directions was discussed as a 

function of dimensionless parameters which compare the respective contributions of buoyancy, 

Taylor vortex trapping and inner cylinder wall’s attraction induced by the mean azimuthal flow. 

Based on the same approach, Chouippe et al.
3
 conducted numerical study of bubble dispersion 

in turbulent Taylor-Couette flow. For very small bubbles, the size of which was of the order of 

the viscous length scale, it appears that the small scale turbulence can also play a role, by 

trapping bubbles inside the low shear stress streaks near the inner cylinder. But two-way 

coupling calculations performed by Sugiyama et al.
8
 highlighted that numerical results of the 

bubble dispersion near the wall are very sensitive to the modelling of the lift force coefficient.  

Overall, the numerical prediction of the bubble accumulation near the inner cylinder wall is 

over-evaluated, without taking into account bubble-bubble interactions
3
. This stresses the need 
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for the development of the appropriate experiments that will study the bubble distribution in 

Taylor-Couette flow.  

Dispersion of bubbles in a Taylor-Couette flow was studied experimentally for different 

geometries (different radii ratios) and different Reynolds number ranges. For the weak 

turbulent flow and turbulent Taylor vortex flow, it was highlighted that bubbles have 

preferential accumulation regions, depending on the bubble size to the gap width ratio (db/d) 

and the Reynolds number: either in the Taylor vortices or in the outflow region near the inner 

cylinder
7,14-16

. For the turbulent flow, there is a preferential accumulation near the inner 

cylinder with a homogeneous axial distribution
12

.  

 

In the case of experimental study of bubble dispersion inside Taylor-Couette flow, as the void 

fraction was characterized by intrusive method (optical probes), very few profiles of void 

fraction has been so far studied in the literature
12,15,17,18

. Optical probes can measure the radial 

distribution of the void fraction at a given axial position but they do not enable to characterize 

the axial distribution when it is subjected to the Taylor vortices. Therefore, performing fine 

measurements of the void fraction axial and radial distribution, when bubbles are injected 

inside a Taylor-Couette flow, according to the flow conditions (radii ratio, bubble size to gap 

ratio, Reynolds number) is of interest. This will favour a better understanding of the bubble-

induced modifications of the wall shear stress. 

The objective of this paper is to shed more light in the mechanisms of bubble interactions 

with the wall shear stress in a Taylor-Couette flow by focussing on the link between the bubble 

dispersion and the viscous torque. For this purpose, the viscous torque is measured at the inner 

cylinder and bubble tracking in the gap is achieved. The studies are carried out in an 

experimental setup of same geometry as in Mehel
17

 and Mehel et al.
15,19

, corresponding to a 

radius ratio of 0.91. The Reynolds number range [6.10
2
, 2.10

4
] investigated in this study is 

larger than in Mehel
15, 17, 19

. Two typical bubbles diameters db (db/d=0.125 and 0.05, d being the 

gap) are tested. In order to enable the characterization of the bubble dispersion by 

visualisations, the global void fraction was willingly limited to a small value (α<0.23%), 

smaller than in Mehel
15, 17, 19

. 
 

This paper is organized as follows. The next section is devoted to the description of the 

experimental facility. Characterization of the flow structure and viscous torque measurements 

in the single-phase flow are also shown and discussed in this section. The section ends with a 

description of a specific measurement technique for tracking of bubbles. Section 3 is devoted to 

the characterization of the two-phase flow: we present the void fraction distributions, the 

Eulerian velocity fields of the gas-phase measured in a meridian plane and the viscous torque 

measured in two-phase flow. Section 3 also develops a comparison of our results with related 

work, discussions about bubbles localization are made and the phase diagrams, which 

summarize the various types of bubbles arrangement, are built. Lastly section 4 concludes the 

paper and outlines further work. 

 

 

II. DESCRIPTION OF THE EXPERIMENTAL SETUP AND SINGLE-PHASE 

CHARACTERISTICS 

 

A. Experimental device 

 

Figure 1 shows a sketch of the experimental setup. The experiments were carried out in a 

vertical Circular Couette-Taylor device, composed of concentric inner and outer cylinders. The 

outer cylinder was at rest. The radius of the inner and outer cylinders are Ri=200 mm and 
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Ro=220 mm respectively, the height L of the inner cylinder is 886mm. The device’s geometry is 

characterized by a radius ratio η=
0

i

R

R
equal to 0.91 and a clearance ratio Γ=

d

L
of 44.3. The gap, 

the width of which being d=20mm, was filled with a mixture of water and glycerol, with a free 

surface 1cm above the inner cylinder.  The device is the same as the one used in Mehel
17

, set 

apart that the motor is displaced from the bottom to the top of the device, to ensure a better seal 

and make easier the installation of a torquemeter. The bubble generation system is also different 

(bubble injection instead of ventilation by the free surface or gaseous cavitation in Mehel
17

).  A 

further modification with respect to Mehel
17

 lies in the fact that the device can be enclosed into 

a Plexiglas box, filled with the same mixture as in the gap, in order to limit optical distortion 

effect. 

The Reynolds number of the flow Re is defined as: 

 

 1Re


dR ii  

 

The Taylor number is defined as follows. It enables a correction of the Reynolds number, 

taking into account the curvature effect:   

 

 2
1

Re 2








 





Ta  

 

The Reynolds number was varied by both changing the angular velocity of the rotating inner 

cylinder Ωi (radian/s) and the viscosity  of the mixture (mixture of 65% glycerol or 40% 

glycerol). For the geometry at stake, the critical values of Re and Ta, characteristic of the first 

instability, are Rec=137 and Tac =1875
17

, respectively. Attention was paid to reproduce the 

same start up procedure to achieve a given Reynolds number as in Mehel et al.
19

, leading to 

same state of the flow for the single-phase flow. 

Regarding the two-phase flow, air injection began before the start-up of the motor. A similar 

procedure of the acceleration of the inner cylinder has been applied in a two-phase flow as in a 

single-phase flow.  Individual bubbles were generated through a needle in a box filled with the 

mixture at rest localised at the bottom of the apparatus. This leads to a continuous air supply 

localized at a single point in the azimuthal direction below the annulus. The injection pressure 

was controlled by a manometer of accuracy ±0.01bar. Different needles diameters were used 

(ɸc=20µm and ɸc=180µm), leading to different mean bubble size (db between 1mm and 

2.5mm), depending on the water glycerol mixture used. The injection was characterized by 

video recording apart for different conditions. The results on injection pressure, bubble size, air 

injection flow rate are summarized in Table I.  

Vb is the bubble rising velocity, determined in infinite and still mixture, based on the bubble 

size, a viscosity of the mixture at 20°C and  a modelling of the drag force coefficient following 

the formulation of  Maxworthy et al.
20

.  Vi is the inner cylinder rotational velocity. For the 

smallest needle, the air flow rate Qg was determined by video recording of the bubble size and 

frequency at detachment. For the largest needle, Qg was measured with an airflow meter 

(Gilmont instrument, ref. GF-4001). As can be seen, the global air injection rate Qg was very 

small, in order to achieve individual bubbles tracking by visualisations inside the gap. <α> is 

deduced here from the air flow rate and the bubble rising velocity, it is representative of the 

global void fraction obtained in still mixture in the gap. 
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FIG. 1   Sketch of the experimental setup 

 

TABLE I  Characteristics of the bubble injection for the different air injection conditions 

Mix 

 

c  

(µm) 

P  

(bar) 

db 

 (µm) 

Qg x10
-8

  

(m
3
/s) 

Vb 

 

(m/s) 

<α>x10
-4

 (20°C) 

 

(m
2
/s) 

Re Vb/Vi 

65% 180 1.08 2500 66.7 0.092 2.89 18.17 632 0.077 

  ±0.01 ±90 ±1.6   X10-6
 to to 

 20 6.5 1000 4.3 0.022 0.77 18.17 3162 0.16 

  ±0.01 ±47 ±0.8   X10-6
   

40% 180 1.2 2500 66.7 0.21 1.28 5.14 1897 0.11 

  ±0.01 ±90 ±1.6   X10-6
 to to 

 20 6.5 1000 2.7 0.054 0.2 5.14 2x10
4
 0.43 

  ±0.01 ±47 ±0.6   X10-6
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B. Specific instrumentation dedicated to viscous torque measurements 

 

The torquemeter (KISTLER, reference 4503A) is composed of strain gauges. It was mounted 

on the shaft, which drives the rotation of the inner cylinder. The measurement range was chosen 

according to the Reynolds number value: it was set to [0-4Nm] for Re<10
4
, otherwise it was set 

to [0-20Nm].  The torquemeter ensures the measurement of the torque with a global accuracy 

of ±0.1% of the measurement range, taking into account linearity and hysteresis errors. The 

systematic error due to temperature drift in the range [15°C-25°C] is 0.015% of the 

measurement range per degree. It leads to a possible systematic error less than 0.5% of the 

measured value. Data are collected by a 24 bits acquisition board, the output voltage level 

being in the range 0-10V. 

For a measurement time of 60s, and a sampling frequency of 1 kHz, the statistical 

convergence of the time averaged torque was ensured with a maximum relative uncertainty of 

±0.17% (confidence level of 95%). 

The measured torque includes both the contribution of the mechanical torque due to 

connection between the shaft and the inner cylinder and the contribution of the viscous torque 

exerted by the flow on the inner cylinder. The mechanical torque was characterized as a 

function of the rotational velocity for the gap filled with air and subtracted to the global 

measured torque.   

 

C. Characterization of the viscous torque in single-phase flow  

 

The normalized viscous torque G (Eq. (3)) obtained in single-phase flow is plotted with 

respect to the Reynolds number in Appendix A for the different mixtures. Comparison is made 

with the correlation of Wendt
21

 applied for a value of η=0.91. The torque expands as a power 

scaling law of the Reynolds number. For Re<10
4
, the power scaling law is GRe

1.53
 for the 

mixtures of 40% and 65% plotted together. Compared to  Wendt
21

,  the power is slightly higher 

(2%). Beyond Re = 10
4
, Wendt

21
 proposes a power scaling law GRe

1.7 
which is confirmed by 

our experiments. 

 

 3
2 L

T
G


  

            

The studies of Eckhardt et al.
22,23

 and van Gils et al.
24

 drawn the analogy between turbulence 

in Taylor-Couette flow and Rayleigh-Bernard convection. In this framework, it is possible to 

introduce a Nusselt number Nu, associated to the viscous torque and representative of the 

transverse current of the azimuthal motion. The Nusselt number is expected to be less sensitive 

to the geometry than the normalized torque G.  Nu is defined as: 

 

 4
lamG

G
Nu   

 

 

Glam being the normalized torque of the analytical Couette solution:  

 

 

 
 5

1

2
2

2








 ii

lam

R
G  
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For high Reynolds number, the Nusselt number is expected to scale with the Reynolds 

number as: Nu~Re
0.78 

independently of the radius ratio, which corresponds to the so called 

ultimate regime
11

. For lower Reynolds numbers, numerical investigation of Ostilla et al.
25

 

proposed a local power scaling as: Nu~Re
0.66

, with a change in the local scaling above 

Ta>3. 10
6
 for η=0.909.  For Reynolds number in the same range as in our study, testing 

different radius ratio, Chouippe et al.
3
 obtained numerically a scaling law following 

Nu=0.04Re
0.617

, in agreement with the results of Merbold et al.
26

 showing a power scaling as: 

Nuw~Res
0.62 

 for 3.10
3
Re8.10

4
. 

Figure 2 displays the Nusselt number with respect to the Reynolds number measured for our 

geometry in single-phase flow. It highlights two local power scaling laws, the exponent being 

different according to the Reynolds range: exponent is close to 0.53 for 200Re1000 and 0.62 

for 1800Re2.10
4
, in agreement with the results of Merbold et al.

26
 and Chouippe et al.

3
. 

 
 

 
FIG. 2  Dependency of the Nusselt number on the Reynolds number, plotted in log-log coordinates. For the mixture  

         of 65%, Re number ranges from 632 to 3162. For the mixture of 40%, Re number ranges from 1897 to 2.104 
 

 

D. Characterization of the single-phase flow structure  

 

As an indication of the flow structure for Re=2214/Ta=49 10
4
, figure 3 displays  the maps of 

the axial and radial components of the mean velocity obtained in single-phase flow, by particle 

image velocimetry (PIV) in a meridian plane. The PIV system from Dantec Dynamics, 

composed of two-cavities pulsed laser new wave Gemini Solo 2 associated with a High sense 

PIV/LIF camera and a lens Sigma 105mm was used. The field of view is 1.1d x 4.5d leading to 

a scale’s factor of 73µm/pixel. The mixture was seeded with 1-50µm fluorescent particles. PIV 

processing was applied for a 32pixels x 32pixels window (ie: 0.11d x 0.11d) with an overlap of 

50%. PIV images were finally processed to correct optical distortion (same optical correction 

applied as for bubble tracking, the procedure is described in appendix D). 
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Figure 3 shows a visualization of the contra-rotating Taylor vortices and the inflow and 

outflow jets, relatively to the inner cylinder. The maps show an axial periodicity of the flow, 

which is characterized by the axial wavelength of 3.25d for this Reynolds number and this 

geometry. 

For the single phase-flow, the axial component of the velocity induced by the Taylor vortices 

W, as well as the associated axial wavelength λ were characterized by PIV. Evolutions of 

normalized λ with respect to the Reynolds number are shown in Fig. 21 of Appendix B.  

 
 

 

 
FIG. 3 Maps of the average velocity in single-phase flow obtained by PIV in a meridian plane (radial-vertical plane). 

Mixture 65%, Re=2214/Ta=49 104, this structure of the flow corresponds to weak turbulence. (a): axial velocity, (b radial 

velocity, (c): velocity field. On these maps, the radial and axial positions are normalized by d and the velocity components are 

normalized by /d. The dimensionless radial position X is defined as X=r-(Ro+Ri)/2d, the zero position being the middle of the 

gap and X=-0.5 being the position of the inner cylinder. 

 

 

E. Specific measurement technique dedicated to bubble tracking and gas-phase Eulerian 

characterization in a meridian plane 

 

A dichroic lamp ABI 4J446 GU5,3EXN/C, providing a continuous ombroscopic lighting of 

50W, associated with a photron Fastcam SA3 camera (8 bits, 1024 x 1024 pix
2
) and a Sigma 

105 mm macro lens (f2.8) were used to visualize the bubbles in a meridian plane aligned with a 

radius (plane (r-z)). The focusing meridian plane was localized at the opposite side from the 

bubble injection point. The shutter speed was adjusted to 1/6000 s. The sampling frequency fe 

was adjusted between 250Hz and 500Hz, following a linear evolution with respect to the inner 

cylinder’s rotational velocity. With these values of the sampling frequency, the bubble 

displacement in the meridian plane is larger than one pixel and smaller than a bubble diameter. 

It enables to follow bubbles along their trajectories during at least 20 time steps, before they 

X
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leave the depth of field imposed in this study.  A sketch of the setup is shown in Fig. 4.  

For this configuration, the device was enclosed into an optical correction box, filled with the 

same mixture as in the gap. The size of the viewing window was reduced to 512 x 1024 pix
2
 

(ie: 1.88d x 3.77d in the radial and axial direction, respectively), the size of the pixel being 72-

75 µm, according to the glycerol mixture used. As the axial length of the field of view can be 

less than the axial wavelength, the camera can be displaced axially and the images can be 

recomposed. 

The spatial resolution was quantified based on the line spread function, defined as the 

derivative of the intensity in the direction normal to a sharp edge. For this purpose, a reference 

pattern made of alternative black and white lines (25 lines per inch, see Appendix E) was used. 

The effective spatial resolution was deduced from the width at half the maximum value of the 

line spread function, ie: 294 µm, making possible to detect with a good contrast bubbles larger 

than 588 µm. 

 
 

 

 
FIG. 4 Top view of the setup for bubbles tracking. V is the azimuthal velocity of each bubble in laminar flow, r is the real 

radial position,  is the angular position of the bubble in the azimuthal direction, XA is the radial position in the camera’s 

frame and e represents the depth of field on either side of the meridian plane (the overall depth of field being 2e) 

 

For the Taylor-Couette configuration, it was necessary to reduce the contribution of the 

azimuthal velocity of the bubbles to the radial velocity measured in the camera’s frame. Thus, 

we developed an original procedure, which enabled to reduce the depth of field to 2e = 2.8 cm, 

instead of 12 cm. For this depth of field, the contribution of the azimuthal velocity to the 

determination of measured radial velocity was reduced to 7% and the relative error of radial 

positioning was less than 0.3%. This procedure was based on the application of specific 

threshold laws on the grey levels evolution of each bubble along its trajectory. The thresholds 

were calibrated based on bubble trajectories in the laminar flow. The processing associated to 

bubble detection, bubble trajectories building, depth of field discrimination, and laminar 

calibration is discussed  in details in Appendix C. Validation of the Lagrangian bubble 

characteristics (size and velocities components is also addressed in this Appendix). 
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The Eulerian properties of the gas, such as the void fraction distribution as well as the mean 

Eulerian velocity field in the meridian plane were deduced from the bubble Lagrangian 

tracking.  For this purpose, the field of view was regularly meshed. The procedure is deeply 

described in Appendix D. 

The  mesh size was quite adjusted to the bubble size, leading to spatial resolutions of 0.05d 

and 0.11d, for the needles diameter of ɸc=20µm and ɸc=180µm, respectively. For this spatial 

resolution and for a measurement time larger than 6s (ie: several thousands of images according 

to the sampling frequency), statistical convergence of the mean values was ensured. The 

uncertainties due to statistical convergence as well as the deviation errors expected for the 

Eulerian variables are summarized in Table IV and Table V of Appendix D. Validation of the 

void fraction measurement is also addressed in the same Appendix. 

In order to correct optical distortion, a correction was applied on void fraction and Eulerian 

velocity maps. The procedure which is described in Appendix E, leads to a global uncertainty 

on the radial positioning less than 424 µm (0.02d). 
 

III. CHARACTERIZATION OF THE TWO-PHASE FLOW 

 

This section starts with a discussion on the dimensionless parameters characterizing the 

localisation of the bubbles in the gap. Next, the overall arrangement of the bubbles is presented. 

We also discuss the Eulerian structure of the gas-phase based on the void fraction maps and 

velocity fields, time-averaged in the meridian plane. The local arrangement of the bubbles in 

the gap is discussed based on the analysis of the Eulerian maps. For the two-phase flow, 

modifications of the axial wavelength, upward gas velocity and modifications of the viscous 

torque applied on the inner cylinder are also quantified. The end of the section is devoted to the 

phase diagram of the bubble arrangement as a function of dimensionless parameters. Based on 

this phase diagram, the link between the bubble arrangements, and the observed trends for the 

bubble induced axial wavelength and torque modification is discussed.  

 

A.  Two phase-flow parameters characterizing the local arrangement of the bubbles in 

the gap 

 

Based on the control parameters of the two-phase flow, dimensionless parameters such as Re,          

Fr=

i

i

Rg

V
,η and 

d

db  are commonly considered as the influent parameters characterizing  the 

two-phase flow. Fr is representative of the ratio between two forces applied on the bubbles in 

different directions (radial added mass force driven by the rotation of the inner cylinder and 

axial buoyancy force) and thus is not suited for describing bubble equilibrium positions in the 

flow. A similar   conclusion can be drawn for the Reynolds number, which doesn’t compare 

inertia and viscous force applied on a bubble but rather on a volume of fluid. Thus, even if 

these parameters are directly obtained from the operating conditions, they do not have physical 

meaning, in terms of bubble localisation in the gap.  
 

 Considering the main forces applied on the bubbles, in the radial and axial directions, 

Climent et al.
13

 introduced dimensionless parameters to numerically characterize the bubble 

accumulation into a Taylor-Couette flow for the first instabilities. This approach was extended 

for the turbulent Taylor vortex flow by Chouippe et al.
3
. The comparison between the 

centripetal force induced by the Taylor vortices and the centripetal force due to the inner 

cylinder rotational velocity, defined as parameter H, makes possible to characterize the radial 

accumulation of the bubbles. It appears that an important value of parameter H (Eq. (6)) leads 
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to a bubble trapping inside the Taylor vortices, whereas a small value is in agreement with 

accumulation of the bubbles near the inner cylinder. H depends on the Reynolds number and 

the geometry of the Taylor-Couette device η. For the geometry of this study, the evolution of H 

with regard to the Reynolds number in single phase-flow is shown in Fig. 22 of Appendix B. A 

large gap leads to a smaller value of H, as shown by numerical simulations of Chouippe et al.
3
, 

performed in single-phase flow. 
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The ratio between the axial velocity of the Taylor vortices and the bubble rising velocity, 

defined as parameter C (Eq. (7)) is expected to characterize the axial localisation of the 

bubbles. Indeed, a small value of C is representative of important buoyancy effects. If C is very 

small by comparison to 1, it can lead to bubbles rising regardless of the coherent motion, if C is 

in the order of 1, it can bring about a bubble accumulation either in the Taylor vortices or in the 

outflow region near the inner cylinder, according to the value of H.  With an important value of 

C, one can expect an axially uniform accumulation of the bubbles near the inner cylinder.  
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 Assuming that bubbles are being captured when the axial pitch of their helical trajectory 

adjusts the value of the axial wavelength, bubbles may be trapped when parameter H satisfies 

the following condition: 
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Here β denotes the ratio between the azimuthal velocity of the bubbles and the azimuthal 

velocity of the inner cylinder. β depends on the localisation of the bubbles in the gap, when 

being trapped and on the drift velocity of the bubbles. For bubbles trapped in the core of the 

vortices, the azimuthal drift velocity is expected to be negligible 
14,17

, leading to a coefficient β 

of the order of 0.5, regardless of the geometry, the Reynolds number and the bubble size. A new 

parameter Hnew, is obtained by normalizing the parameter H as follows: 
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The parameter Hnew takes into account the influence of the geometry on the bubble capture by 

the vortices, through the variation of the axial wavelength. The axial wavelength is overall the 

more sensitive to the Reynolds number, when the gap is smaller.    

 

The parameters C and H (or Hnew) only characterize the interactions between the bubbles and 

the large scales of the flow. In the case of turbulent flow, another parameter db+ (Eq. (10), 

which compares the size of the bubbles to the size of the small scale turbulent structures must 
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be introduced. As a first approximation, db+ can be based on the viscous length scale, deduced 

from the friction velocity (Eq. (11).  A small value of db+ will entail a bubble capture by the 

small scale turbulent structures, rather in the streaks of minimum wall shear stress, near the 

inner cylinder, as observed by the numerical calculations of Chouippe et al.
3,27

.  For the 

turbulent Taylor vortex flow, the streaks of minimum wall shear stress are rather localised in the 

outflow region, with a periodical axial arrangement of 100 viscous length
28

. 
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With u*, the friction velocity taking into account curvature effects. u* is defined as: 
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i is the wall shear stress at the inner cylinder, deduced from the dimensionless torque G: 
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B.  Overall arrangement of the bubbles in the gap 

 

1.  Effect of the Reynolds number 

 

Figure 5 depicts instantaneous pictures of the bubble global arrangement in the setup for 

different Reynolds number, in the mixture of 40% glycerol, the size of bubbles being 1 mm. 

The visualization system was localized at the opposite side from the bubble injection system. It 

enables to visualize the entire height of the annulus, with a large view angle. The white traces 

are the bubbles scattering the light. The inner cylinder which, was painted in black to improve 

the contrast appears as a dark background. The following remarks can be made through these 

visualizations: 
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FIG. 5 Visualizations of the two-phase arrangement as a function of Re number. Traces of bubbles are visible for several 

wavelengths over the height of the device by integrating an exposure time of 20ms. Mixture 40%, db=100047µm 

Vb=0.054m/s (a) : Re=3162/Ta=106, (b) : Re=5060/Ta=2.56 106, (c) : Re=7906/Ta=6.25 106, (d) : Re=11068/Ta=1.23 107, (e) : 

Re=17393/Ta=2.03 107, (f) : Re=20000/Ta=4 107 

 

Without any flow, the bubbles have a purely upward trajectory. The rotation of the inner 

cylinder will cause the inclination of their path, which implies a helical movement (Fig. 5(a)). 

For low rotational speed of the inner wall, bubble rising velocity is higher than the inner 

cylinder velocity so, despite the presence of the Taylor vortices, bubbles do not organize into 

any clear structure (Fig. 5(b)). When the rotational velocity of the inner cylinder is increased, a 

clear organized structure of the bubbles distribution occurs. Bubbles distribute periodically in 

the axial direction as a horizontal string (Fig. 5(c)). The string spacing could be identified as the 

(a) (b) (c) 

(d) (e) (f) 
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(a) (b) (c) 

overall axial wavelength, assuming that the flow is not axially stratified. Comparison of Fig. 

5(d), Fig. 5(e) and Fig. 5(f), shows that an increase of the Reynolds number leads to both a 

thickening of the bubble strings and an increase of the bubble accumulation into the strings. 

For high Re number, we have evidenced the occurrence of a transient phenomenon 

characterized by a spiral accumulation pattern of the bubbles. This phenomenon is due to a 

collective effect of the bubbles. It can lead to coalescence of a vortices pair, as observed by 

Yoshida et al.
16

.  This transient phenomenon, which is very localized in time, has not been 

analyzed in this work. For this purpose, in case of high Reynolds numbers for which the 

phenomenon was expected, all the measurements (torque measurements and bubbles tracking) 

were performed during the time sequence while bubbles were organised as horizontal strings.  
 

2.  Effect of the rising velocity of the bubbles 

 

Figure 6 illustrates the effect of the rising velocity of the bubbles on their dispersion in the 

gap. It can be observed that, the higher the rising velocity of the bubbles is, the less they 

accumulate into horizontal strings. Comparison between Fig.5(a) and Fig.6(b), as well as 

comparison between Fig.6(a) and Fig.6(c) shows evidence that bubble trapping by the flow 

structure occurs for a larger Reynolds number when increasing the bubble rising velocity.  

 

The study of overall arrangement of the bubbles shows that, while the overall visualization of 

the bubbles can highlight the string structure, it does not allow to locate precisely the bubbles in 

the gap. It is therefore necessary to make an individual tracking of the bubbles, which is the 

purpose of next sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 6 Visualizations of the two-phase arrangement for different rising velocity of the bubbles at Re=3162/Ta=106.  (a): 

Mixture 65%, db=250090µm, Vb=0.092m/s, (b): Mixture 65%, db=100047µm, Vb=0.022m/s (c): Mixture 40%, 

db=250090µm, Vb=0.21m/s 
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C.  Structure of the Eulerian distribution of the gas in a meridian plane  

 

1.  General features  

 

Figure 7 shows an example of void fraction and velocity components distributions, obtained 

when bubbles are trapped by the Taylor vortices. This allows us to highlight some general 

features of the gas-phase mean Eulerian flow. 

Alternation of the sign of the axial velocity evidences the entrapment of the bubbles inside the 

contra-rotative Taylor vortices. It can be also observed an asymmetry between positive and 

negative axial velocities of the gas-phase, the positive velocity being greater, due to a buoyancy 

effect. Alternation of the sign of the radial velocity outlines the inflow and outflow jets relative 

to the inner cylinder.  

 

Comparison with Fig. 3, highlights that the gas-phase averaged flow has a drift velocity by 

comparison to the single-phase liquid flow. 

 

 

 
FIG. 7   Eulerian maps of the gas-phase, Mixture 65%, db=100047µm , Re=2214/Ta=4.9 105.  (a): void fraction, (b): axial 

velocity, (c): radial velocity.  (Integration area is shown on the viewing window) 

 

Based on the local phase averaged axial velocity of gas, a criterion for bubble capture by the 

vortices can be defined. Bubbles were considered to be trapped into strings when the axial gas-

phase velocity exhibits negative values. This criterion has been applied to discriminate bubble 

capture from no bubble capture. The critical Reynolds number leading to bubble capture is 

given in Table II for the different configurations of the experiments (different bubble sizes and 

different mixtures). Similar critical values for bubble capture were obtained based on the views 

of the bubble global arrangement. 
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TABLE II Values of the dimensionless parameters leading to bubble capture, for the different configurations of the 

experiments 

Mixture ɸc(µm) db/d Recap Tacap H     Hnew         C 

65% 20 0.05 1265 1.6 10
5
 0.68     0.68         3.7 

   38 4.8 10
3
 0.05     0.09         1 

65% 180 0.125 1581 2.5 10
5
 0.65     0.67       1.51 

   47 7.4 10
3
 0.05     0.09      0.4 

40% 20 0.05 5060 2.56 10
6
 0.52     0.71      1.18 

   152 7.6 10
4
 0.05     0.1      0.3 

40% 180 0.125 9487 9 10
6
 0.46    0.43      0.45 

   285 2.7 10
5
 0.04    0.1     0.1 

 
 

 

There is no unique value of parameter C at the capture. For H>0.25, the capture can occur for 

a value of C<2 at the contrary of Climent et al.
13

 observation. 

 

 

2.  Different kinds of local arrangement of the bubbles  

 

The objective of this part is to study the effect of buoyancy (through varying the viscosity of 

the mixture and the bubble size), as well as the effect of the Reynolds number on the bubble 

arrangement in the gap. Unfortunately, it is not possible to test experimentally the influence of 

these variables separately. Indeed, for a given bubble size, C increases as H decreases with the 

increasing of the Reynolds number. Table III reports the two-phase flow configurations, for 

which the Eulerian cartographies of the gas-phase are displayed. These flow conditions were 

selected, because the gas Eulerian cartographies of each of them illustrated the various types of 

bubble arrangement observed in the framework of the present study. Cases 1 to 3 exhibit 

different arrangements for same bubble size and same viscosity, when increasing the Reynolds 

number. Case 4 corresponds to same bubble size as the previous cases but with an increase of 

the Reynolds number and an increase of the rising velocity by changing the viscosity. Case 5 

illustrates the influence of the bubble size for same Reynolds number and same viscosity.  Case 

6 corresponds to a condition of high Reynolds number and large bubbles, thus leading to large 

void fraction.  
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TABLE III   Dimensionless parameters characterizing the two-phase flow for different operating conditions for which mean 

Eulerian cartography of the gas-phase volume fraction and velocity components are displayed (<α>r,z denotes the measured 

gas-phase volume fraction integrated radially and axially, upon the axial wavelength; it has been determined only in case of 

bubble capture by the vortices, for which it is also representative of what happens in the azimuthal direction) 

Mix 

 

db 

(µm) 

Re 

 

Ta 

 

Wd/ 

 

C H Hnew   db+ <α>r,z 

(%) 

Arran- 

gement 

Case 

65% 1000 949 9  113 1.52 0.72  1.07   3.77 - Wavering 1 

 ±47  x10
4
         

65% 1000 2214 4.9  268 3.53 0.61   0.63 7.12 0.14 Up-Down 2 

 ±47  x10
5
         

65% 1000 2846 8.1  341 4.39 0.58   0.60 8.59    0.16 Up-Down 3 

 ±47  x10
5
       -Outflow  

40% 1000 5060 2.56  577 1.13 0.52   0.71 4.63 0.06 Up 4 

 ±47  x10
6
         

40% 2500 5060 2.56  577 0.29 0.52   0.71 11.12 - Upward- 5 

 ±90  x10
6
         Sliding  

40% 2500 9487 9  1027 0.46 0.46   0.51 17.84 0.23 Up- 6 

 ±90  x10
6
       Outflow  

 

 

Figures 8 and 9 show the void fraction distribution and the velocity field for the cases 1, 2 and 

3 referenced in Table III. 

 

For case 1, bubbles accumulate along the inner cylinder. This could be explained by the 

centripetal force acting on the bubbles due to rotation of the inner cylinder. Taylor vortices 

which are already present in the liquid influence the trajectory of the bubbles. The bubbles are 

then pushed alternately toward the two cylinder walls, as it is shown through the velocity field; 

this movement could be associated to a wave. Despite the presence of the vortices, bubbles are 

not getting trapped. This configuration corresponds to what we have called wavering motion. 

 

When the Reynolds number increases, (case 2), the void fraction distribution exhibits 

accumulation inside the two vortices located above and below the outflow area. Although an 

axial stratification is pointed out, axial periodicity of the arrangement is evidenced.  The 

configuration is called capture up-down. Examination of the void fraction distribution and the 

gas-phase velocity field evidences preferential location of the bubbles close to the inner 

cylinder (for the bubbles captured by the vortex up) and close to the outer one (for those 

captured by the vortex down) in the region of downward velocity. Bubbles are statistically 

preferentially trapped by the anti-clockwise vortex above the outflow. Interesting enough is the 

bubble induced asymmetry of the vortices size: the size of the clockwise vortex being reduced, 

as well as the axial wavelength by comparison to the single-phase flow. 
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On both sides of the outflow/inflow region, bubbles are arranged with alternatively distances 

d1=0.46λ and d2=0.54λ, with λ the axial wavelength as represented in Fig. 10.  This 

arrangement is consistent with the position of stable equilibrium of the bubbles, obtained by 

writing the force balance applied on each bubble in a case of passive bubbles dispersion
14

. 

 
With a further increase of the Reynolds number (case 3), three preferential locations of the 

bubbles in the gap were clearly observed. Bubbles are trapped in the two vortices on both sides 

of the outflow region and also in the outflow region near the inner cylinder. By comparison to 

case 2, the velocity field exhibits an enlargement of the outflow area, accompanied by an 

increase in the size of the clockwise vortex below the outflow. The configuration is called 

capture up-down-outflow. 

 

Overall, the void fraction obviously increases with the augmentation of Re number, leading to 

more and more bubbles trapped. 

 

 

 

 
FIG. 8   Void fraction distribution measured in the meridian plane by bubbles tracking for the different cases referenced in 

Table III, mixture of 65%, db=100047µm, illustration of the Reynolds number effect. (a): case 1, (b): case 2, (c): case 3 
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FIG. 9   Velocity field measured in the meridian  plane by bubbles tracking for the different cases referenced in Table III, 

mixture of 65%, db=100047µm. (a): case 1, (b): case 2, (c): case 3 

 

 
FIG. 10   Stable equilibrium positions of bubbles for a bubble capture up-down (case 2) 

 

By varying the bubble rising velocity, either by changing the viscosity of the mixture or by 

changing the bubble size, it was possible to highlight other kinds of bubble arrangements in the 

gap. Figures 11 and 12 display the void fraction distribution and the gas-phase velocity field, 

measured for the cases 4, 5 and 6. 
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FIG. 11   Void fraction distribution measured in the meridian plane by bubbles tracking for the different cases referenced in 

Table III, mixture of 40%, illustration of the bubble rising velocity influence. (a): case 4, (b): case 5, (c): case 6 

 

 
FIG. 12   Velocity field measured in the meridian  plane by bubbles tracking for the different cases referenced in Table III, 

mixture of 40%, illustration of the bubble rising velocity influence. (a): case 4, (b): case 5, (c): case 6 

X

Z
/d

 

 

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5



0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

X

Z
/d

 

 

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5



0

0.002

0.004

0.006

0.008

0.01

X

Z
/d

 

 

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5



0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a) (b) (c) 

-0.4-0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Z
/d

400 

(a) 

-0.4-0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Z
/d

400 

(b) 

-0.4-0.2 0 0.2 0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Z
/d

500 

(c) 



21 
  

 For a larger bubble rising velocity (case 4), bubble capture in one vortex on two was observed 

rather than a capture up-down-outflow. For this configuration, bubbles were trapped (in the 

anti-clockwise vortex above the outflow at a radial position very close to the inner cylinder. 

This arrangement is referred as capture up. 

For a same Reynolds number as case 4, but for a larger bubble size, axial trapping of the 

bubbles either by the inflow/outflow jets or by the vortices was no more evidenced, thus 

leading to bubbles preferentially sliding axially along the inner cylinder wall (case 5). This 

arrangement is called sliding motion.  

In the case of important bubble rising velocity (large bubbles and small viscosity, case 6)), the 

void fraction distribution puts into light both an accumulation into a vortex and the jet outward 

the inner cylinder. For these conditions of the flow, the arrangement was characterized by 

bubble capture both in the anti-clockwise vortex and in the outflow region near the inner 

cylinder. This arrangement is called up-outflow. 

Figure 13 summarizes the different types of bubble arrangements observed by time average in 

the meridian plane from cases 1 to 6.  As the possible contribution of the azimuthal wave to 

bubble trapping is integrated in time, same kinds of arrangement are expected to be found 

whatever the azimuthal position. 

 

 

FIG. 13   Schematic representation of the different bubble arrangements observed for time averaging in the meridian plane 

from case 1 to case 6, interpretation based on velocity field and void fraction maps 

 

For all the measurement tests, we never observed the capture of bubbles inside the vortex 

down without a capture within the vortex up. Indeed, the centripetal force due to the rotation of 

the inner cylinder makes easier the preferential location of the bubbles close to the inner 

cylinder, in the downward flow inside the vortex up. 

 

3.  Axial wavelength of the gas-phase 

 

Figure 14 exhibits the evolution of the local axial wavelength as a function of the Re number 

measured in single and two-phase flows, for different bubble sizes and mixtures. For the two-

phase flow, the axial wavelength was determined using both cartographies of the void fraction 

and cartographies of the gas-phase velocity components. It was only determined for the 

configurations where bubbles are organised as horizontal periodic bubble rings due to bubble 
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capture.  
 

 

 
FIG. 14   Evolution of the local axial wavelength with Re number for different bubble sizes and liquid mixtures. Local axial 

wavelength was measured as presented in Fig. 7 and estimated with an accuracy of 7%. 

 

For small bubbles in the mixture of 65% glycerol, a small decrease in the axial wavelength 

was measured for Re< 2500, followed by a small increase for larger Reynolds. Same but more 

pronounced trends were observed for small bubbles in the mixture of 40%, the transition being 

detected at Re=9400. For large bubbles and both mixtures, the axial wavelength was always 

decreased. 

 

4.  Upward averaged axial velocity of the gas-phase  

 

Figure 15 shows the evolution of the averaged axial velocity of the gas-phase (<WG>rz) with 

respect to the Reynolds number. For this purpose, the local axial component of the velocity was 

integrated axially on an axial wavelength and radially. In order to compare different bubble 

sizes and different mixtures, it was normalized by the terminal rising velocity of the bubbles. 

The bubble capture induces an averaged upward velocity of the gas-phase, which decreases 

with the increase of Re and the increase of the bubble size. Generally speaking, it is smaller 

than 40% of the bubble rising velocity and smaller than 25% of the axial velocity of the Taylor 

vortices measured in the single-phase flow.  For high Reynolds numbers, well beyond the 

occurrence of bubble capture, the normalized axial velocity reaches a constant value which 

depends only on the bubble size, regardless of the viscosity and the Reynolds number. (<WG>rz 

reaches 0.07Vb for db0.125d and 0.14Vb for db=0.05d). 
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FIG. 15   Evolution of the axial component of the upward gas-phase velocity, with Re number for different bubble sizes and 

liquid mixtures. Averaged axial velocity is determined by spatial integration as shown in Fig. 7. 

 

 

D.  Evolution of the viscous torque in two phase-flow 

 

We defined the dimensionless torque in two-phase flow, considering that the viscosity and 

density of the mixture are unchanged by comparison to the single-phase flow, for a given 

temperature (Eq. (13)). This assumption is supported by the fact that the global void fraction in 

the gap is very small. Based on the dimensionless torque, the torque relative difference (TRD) 

was determined to make the comparison between viscous torque measured in single-phase flow 

and the one measured in two-phase flow (Eq. (14)).   
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We display in Fig. 16 the TRD, with respect to the Reynolds number for the four 

experimental conditions studied (mixture 65% and 40%, db=100047µm and 250090µm). The 

errors bars include the hysteresis, linearity drift error due to temperature drift relative to 20°C 

and statistical convergence errors. Several tests were performed at several days, to check the 

reproducibility of the experiments. The evolution of TRD according to Reynolds number shows 

that, depending on the inner cylinder velocity and the bubble rising velocity, an increase or a 
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decrease in the viscous torque could be observed. Some values of the TRD are as great as the 

error bars, but different tests demonstrate the reproducibility of the observed trends (increase or 

decrease by comparison to single phase-flow). It appears that for low values of the Reynolds 

number, a reduction of the viscous torque was observed which turned into a growth of the 

viscous torque, when increasing the Reynolds number. 

 

For the mixture of 65% in the case of large bubbles, there was a small reduction of the viscous 

torque (about -5%) for the Reynolds number under 1500 (Re <1500) and an augmentation of 

the viscous torque (about +7%) above 1500. 

For same mixture but small bubbles, the relative modifications of the torque are less 

important, the TRD values are in the range of the errors and do not allow to conclude on the 

modification of the viscous torque for Re<1500. Above this value of the Reynolds number, 

there was a slight increase of the viscous torque (less than 5%). 

In the case of the 40% mixture, the viscous torque reduction at low values of Reynolds 

number is greater (-15% for the large bubbles and -30% for the small bubbles). For this 

mixture, the value of the transitional Reynolds number, leading to a null torque reduction or a 

torque augmentation, is around Re=12000 (ie: Ta=1.44 10
7
), according to the bubble size.  

Note that for a bubble size to gap width ratio db/d0.05, Murai et al.
7
 also highlighted a 

transition from a decrease to an increase of the viscous torque when increasing the Reynolds 

number. For a mixture characterized by an intermediate value of the viscosity (50) by 

comparison to our study, they pointed out an intermediate value of the Reynolds number 

characterizing the transition:  Re=4000 (i.e.: Ta=3.28 10
6
).  

 

 

 
 
FIG. 16   Evolution of the TRD  measured as a function of Re number for different bubble sizes and liquid mixtures 
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E.  Phase diagrams  

 

1.  Phase diagram of the bubble arrangement 

 

The type of arrangement in the gap can be very different, depending on the rotational velocity 

of the inner cylinder and the bubble rising velocity. It appears that bubbles tend to accumulate 

along the inner cylinder wall, within the core of the Taylor vortices and/or in the outflow area 

near the inner cylinder. Therefore, the type of bubble arrangement could be parameterized by 

the dimensionless parameters, introduced in part A.  

Fig. 17 presents a phase diagram which summarizes the various types of bubbles 

arrangements as a function of parameters C and Hnew. C and Hnew were derived from the values 

of the vortex induced axial velocity W measured in single phase flow. For the geometry of the 

study and for the operating conditions at stake (different bubble sizes and different mixtures), 

the evolutions of Hnew and C, with regard to the Reynolds number are displayed in Fig. 29 of 

Appendix F.  

  
 

 
FIG. 17 Phase diagram of the bubble arrangements in the gap as a function of parameters C and Hnew. As defined previously, 

big symbols refer to large bubbles (0.12<db/d<0.18) and small symbols refer to small bubbles (db/d=0.05). Full disks refer to 

our study, triangles refer to Mehel17, blue empty square (C=0.45, Hnew=0.29) refers to Murai et al.7 and brown full square 

(C=3.87, Hnew=0.35)  refers to Yoshida et al.16 (for geometry of 7,16, W and λ were estimated from reference14). 

 

 

This phase diagram defines several areas that correspond to different types of bubble 

arrangements. Solid lines materialize the transition between the different arrangements and 
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dotted lines are imaginary transition lines plotted when data are missing to have well defined 

areas (a colour code outlines different configurations of bubble arrangements in agreement with 

the schematic representation of Fig. 13). This diagram also shows some experimental points 

from Refs. 7, 17 and 18. For these references, only measurement points for which the bubble 

arrangement was clear and for which the dimensionless parameters could be evaluated were 

taken into account. 
 

A same phase diagram of the bubble arrangements, plotted as a function of parameters C and 

H, is shown in Fig. 30 of Appendix G. But it seems that the parameter Hnew leads to a better 

universality of the bubble arrangements with regard to different flow geometries (i.e.: the 

results of bubble arrangements fit better with those of the literature, when considering Hnew 

instead of H). At the transition from no capture to bubble capture, as expected from Eq. (8), 

Hnew rather expands as C
2
. 

 

When considering the scenarii of bubble arrangements as function of H or as a function of 

Hnew, similar conclusions can be drawn.  

For a very small value of the parameter C (C<0.5), no capture was observed. The contribution 

of the gravity effect is important so that the rising velocity of the bubbles is larger than the axial 

velocity induced by the Taylor vortices.  

 

One can visualize that when bubbles are captured by the vortices (either for a configuration up 

or up-down), an increase of C (or a decrease of the bubble size) promotes bubble capture in the 

outflow. This is consistent with Mehel et al.
19

 who stated that large bubbles (db/d=0.16, 

Re=2460, Hnew=0.62, C=1.59) were rather trapped in the vortex up whereas, small bubbles 

(db/d=0.04, Hnew=0.62, C=31, not plotted in the diagram) were trapped in the outflow.  

Therefore, for the values of Hnew and for larger values of C, one expect a bubble trapping in the 

outflow, without capture in the vortices, as numerically observed by Chouippe et al.
3,27

. 

From the diagram, it clearly appears that a decrease of Hnew (i.e.: an increase in the Reynolds 

number) doesn’t favour the bubble trapping by the vortices. On the contrary, when Hnew is 

reduced, an arrangement up-down shifts to an arrangement up, and then to an arrangement up-

outflow.  Therefore, for lower values of Hnew, one expect a localization of the bubbles only in 

the outflow region near the inner cylinder, this configuration will be called outflow 

arrangement. 

The configuration of outflow arrangement was not highlighted in our study. One can note that 

this was not observed by the numerical simulations of Climent et al.
13

 which were not related to 

the small scales of the turbulence. However, it was evidenced by the numerical simulations of 

Chouippe et al.
3,27

 which demonstrated that the small scales of the turbulence could help 

bubbles to be attracted and captured near the wall by the streaks of the maximum azimuthal 

velocity (minimum viscous friction). This preferential localization needs bubbles to be 

sufficiently small (bubble size in the magnitude of the viscous length scale) and parameter H 

(or Hnew) low enough to promote the development of the streaks.  

 

2.  Influence of the bubble arrangement on the axial wavelength 
 

In order to correlate the axial wavelength modification and the bubble arrangement type, the 

trends observed for the axial wavelength have been superimposed on the diagram of the bubble 

arrangements in Fig. 18. 
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FIG. 18   Superimposition of the phase diagram of the bubble arrangements in the gap and the trends of the evolution of  the 

axial wavelength for our study. Sign + refers to the increase of the axial wavelength in two-phase flow and sign – refers to the 

reduction in two-phase flow compared to single-phase flow. These symbols are used for a relative change in the axial 

wavelength larger than 7%. 

The arrangement capture up is associated to a decrease in the axial wavelength. Same is 

encountered for the capture up-down, this is in agreement with a reduction of the size of the 

clockwise vortex, as pointed out by Fig. 9(b). On the contrary, the capture up-down-outflow or 

up-outflow is likely to be associated to an increase in the axial wavelength. 

This conclusion is consistent with the observation of Yoshida et al.
16

.  Indeed, for the bubble 

sizes of 0.05 of the gap width, these authors observe an increase of the axial wavelength for a 

configuration capture up-down-outflow but, they related the augmentation of the axial 

wavelength to the capture of the bubbles inside the vortex down. Our results show that the 

increase in the axial wavelength is rather linked to the bubble entrapment by the outflow, in 

agreement with an enlargement of the outflow as observed when bubbles migrate into the 

outflow region (see Figs. 9(c)). 

 

Our results confirm the observations made by Mehel et al.
15

. For an up-ouflow configuration, 

they noted an increase in the axial wavelength when the void fraction measured near the inner 

cylinder in the outflow region was larger than the void fraction measured in the core of the 

vortex up. The opposite trend was observed when the void fraction was promoted in the vortex 

core. As shown in Figs. 11(c), the results obtained in a case of capture up-outflow confirm that 

a void fraction inside the vortex up larger than the void fraction in the outflow, leads to a global 

decrease in the axial wavelength. 
 

 



28 
  

3.  Influence of the bubble arrangement on the viscous torque 

 

Murai et al.
7
 suggested that the transition from torque reduction to torque augmentation 

should be associated to an expansion of the bubble cloud in the radial and axial direction when 

bubbles are trapped by the vortices cores. To give credit to this assumption, it is worth 

analysing the trend (increase or decrease of the viscous torque) by superimposing the trend on 

the diagram of bubbles arrangement, which is the objective of this part. We have plotted 

together on the phase diagram of the bubble arrangements (Fig. 19) the different trends 

observed for the TRD sign. 

Through this diagram, it clearly appears that without any capture, when bubbles slide near the 

inner cylinder wall or when they have a wavering movement because of the jets 

(inflow/outflow), the configuration is in favour of the reduction of the viscous torque. On the 

contrary, when bubbles are trapped by the Taylor vortices, this configuration tends to reduce 

the torque reduction, worse this can bring about a torque increase, as shown by the diagram. 

 

                     

 
FIG. 19   Superimposition of the phase diagram of the bubble arrangements in the gap and the trends of the evolution of the 

Torque Relative Difference (TRD) measured in our study. Sign + refers to an increase of viscous torque in two phase flow and  

sign – refers to the reduction. Symbols (+ or -) does not necessary have the same scale, large symbols (ie: large + or -) denote 

the values of TRD above the accuracy of the measurement and small symbols (small + or -), the values of TRD below this 

accuracy.  

 

This diagram outlines that it is not axial bubble trapping by the flow which seems to be 

responsible for the torque increase, but rather the capture at several preferential axial 

localizations (up-down, up-outflow, up-down-outflow). This stresses the link between the 

expansion of the bubble cloud and the increase in the viscous torque, through an increase in the 

turbulent dispersion.  
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Another parameter of influence is the axial wavelength. Indeed, for a single-phase flow, 

Brauckmann and Eckhardt
29

 have put in evidence by DNS simulations that an increase of the 

axial wavelength can induce a significant reduction of the viscous torque. One can expect the 

contrary for a reduction of the axial wavelength.  

 
 

IV. CONCLUSIONS 

 

The research developed in this paper explores and studies the interactions between the 

dispersion of the bubbles, coherent motion and viscous torque in a Taylor-Couette flow. 

Bubbles of diameter 0.05d to 0.125d (d being the gap width) were injected, for very small void 

fraction (α0.23%). Two mixtures of water-glycerol were used, covering the ranges of Re 

numbers up to turbulent flow with persistence of the Taylor vortices. Several experimental 

techniques have been developed, a torquemeter was used to measure the global torque applied 

to the inner cylinder, while a video recording of bubble trajectories was used to determine the 

Eulerian distribution of the gas-phase in a meridian plane (void fraction distribution and gas-

phase averaged axial and radial velocity distributions). In order to take into account the 

specificity of the Taylor-Couette configuration, a specific image processing procedure has been 

applied on bubble trajectories, to limit the depth of field and the contribution of azimuthal 

motion of the bubbles to the determination of apparent radial position and radial velocity 

component. Our study maps for the first time, the void fraction and the gas-phase averaged 

velocity in a bubbly Taylor-Couette flow. 

 

The first part consisted in the characterization of the single-phase flow. Obviously, there is a 

lack in viscous torque data for small gaps and Reynolds numbers range of the transitional 

regimes. This study brings complementary data. It provided power scaling laws of the Nusselt 

number, as a function of the Reynolds number, that were compared with related work, obtained 

for different geometries. The coherent structures were also characterized in a single-phase flow. 

The axial velocity component of the Taylor vortices was plotted as a function of the Reynolds 

number, as well as the axial wavelength, representative of the vortices size.  

 

In the second part, based on void fraction and on Eulerian velocity maps of the gas-phase, 

different types of bubble arrangement averaged in time were put into light. The generated maps 

put into evidence a large amount of bubble arrangement types: bubbles can be trapped by the 

vortices or by one vortex on two or by the outflow and combinations of these arrangements are 

also possible, according to the flow conditions. Based on the characteristics of the Taylor 

vortices measured in single-phase flow, the dimensionless parameters C and H, defined by 

Climent et al.
13

 characterizing bubble trapping by the coherent motion, have been evaluated. A 

diagram summarizing the different types of bubbles arrangements was built, with regards to 

these parameters. Compared to other geometries, a better scaling of the bubbles arrangements 

was found taking into account the influence of the geometry on the bubble capture in a new 

definition of H (i.e.: Hnew).  

 

For the bubbly Taylor-Couette flow, the viscous torque was compared to the one obtained in a 

single-phase flow. For the transitional regimes, it evidences two trends: a decrease in the 

viscous torque for small Reynolds number and an increase for large Reynolds numbers, the 

transition depending on the bubble size.  

Superimposition of the viscous torque’s trend and the bubbles arrangements diagram allowed 

to link the observed trends of the viscous torque to the bubbles arrangement types and the 

evolution of the axial wavelength. 
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When bubbles are not captured by the vortices, this leads to an important viscous torque 

reduction, up to 30% (10%). A similar effect is encountered with an axial flux, this can be 

linked to a bubble induced buoyancy effect. 

When bubbles are trapped by the Taylor vortices, (i.e.: inside the clockwise vortex or inside 

both contra-rotative vortices), these configurations favor an increase of the viscous torque 

through a reduction of the axial wavelength. 

Regarding the parameters of our study, we did not observe a single capture by the outflow, but 

we observed that when bubbles preferentially migrate in the outflow region near the inner 

cylinder, leading to a capture both in the vortices and in the outflow, the outflow area is 

enlarged and the axial wavelength is increased. Therefore, a capture of the bubbles in the 

outflow is expected to reduce the viscous torque, through an increase of the axial wavelength. 

 

Our study shows that the two dimensionless parameters C and H (or Hnew) could not be 

considered as the only parameters to characterize bubbles arrangements and viscous torque 

reduction or increase. Indeed, these parameters do not take into account the contribution of the 

small turbulent structures which could deeply influence the bubble arrangement near the inner 

cylinder, particularly for small bubbles. Moreover, the local dynamics of the flow may be 

modified by the two-way coupling effects, and direct interactions between the bubble clouds 

may lead to very complex phenomena which may clearly modify the flow structure. This also 

shows that a larger dimensional analysis should be conducted, taking into account bubble-liquid 

interactions and bubble-bubble interactions in order to study and explain the modifications of 

the viscous torque induced by bubbles.  

 

Our future works will be also oriented to a local measurement of the wall-shear stress and 

realization at the same axial location, of the tracking of the bubbles. This will favor a better 

understanding of the direct correlation between the viscous torque’s modification, bubble 

arrangement, bubble dynamics and void fraction. 
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APPENDIXES 

 

 

Appendix A. Torque measurement in single-phase flow as a function of Reynolds 

number for different mixtures  

 

The normalized viscous torque G (Eq. (3)) obtained in single-phase flow is plotted with 

respect to the Reynolds number in Fig. 20 for the mixtures containing 65% and 40% of 

glycerol. Error bars take into account hysteresis error, linearity error, drift error due to 

temperature drift relative to 20°C and statistical convergence uncertainty. Several sets of data 

made at several days interval allowed to quantify the reproducibility. The relative errors due to 
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reproducibility is less than 2% for the mixture of 65%, except for the extreme value of the 

Reynolds number (Re=630) where relative error is 8%. For the mixture of 40%, the maximum 

error of reproducibility is 10% of the measured value at Re=1000, it decreases with Reynolds 

number. The relative reproducibility error is less than 4% beyond Re = 8000. Good agreement 

is found with the power scaling laws of Wendt
21

 (Eq. A1 and Eq. A2), applied for a geometry of 

η=0.91. The relative difference is less than 5% for 3500<Re<12000. 
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FIG. 20  Viscous torque of the inner cylinder in single-phase flow measured as a function of the Reynolds number for the 

mixtures of 40% and 65% of glycerol. Comparison with Wendt’s correlation21. (Mixture of 40%: Dataset1: =3.190, 

Dataset2: =2.840, Dataset3: =2.760. Mixture of 65%: Dataset1: =15.10, Dataset2: =16.150, Dataset3: =16.030. 0 

being the kinematic viscosity of water). 

 

Appendix B. Evolution of Taylor vortex characteristics in single-phase flow with respect 

to the Reynolds number  

 

We plot in Figs. 21 and 22 respectively, the normalized axial wavelength and the parameters 

H and Hnew, measured in single-phase flow, as a function of the Reynolds number. Good 

agreement is found between PIV measurements of the present study and Mehel’s 

measurements
17

, performed by laser Doppler velocimetry (LDV).  
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FIG. 21  Evolution of  λ normalized by the gap width d, as a function of the Reynolds number in single-phase flow  for the 

geometry (η=0.91). Measurements are performed by PIV and compared to LDV measurements of Mehel17 

 

 

               

 
FIG. 22  Evolution of parameters H and Hnew, as a function of the Reynolds number in single-phase flow for the  geometry 

(η=0.91).. H is representative of the normalized axial velocity of the Taylor vortices, definitions of H and Hnew are given in Eq. 

6 and Eq. 9. Measurements are performed by PIV and compared to H values obtained from LDV measurements of Mehel17 

 



33 
  

Appendix C. Processing for bubble’s Lagrangian tracking  

 

a)  Image processing 

 

When subtracting the image obtained without bubbles, bubbles are viewed as grey thick 

contours superimposed on black background. Figure 23 displays a typical grey levels image. 

The inner cylinder is on the left side, whereas the outer cylinder is on the right.  The specificity 

of the Taylor-Couette configuration for ombroscopic lighting is that the bubble’s contrast is not 

homogeneous, neither in the radial direction, due to optical distortion, nor in the depth of field, 

due to the azimuthal motion of the bubbles.   

Nevertheless, external contours of the bubbles were easily detected by an edge detection 

procedure applied on the binarized image using a single threshold of the grey levels values. The 

area, the equivalent diameter deq and the coordinates of the gravity centre of each individual 

bubble were determined in the camera’s frame (XAb, Zb).  XAb is the apparent radial position of 

the bubble, Zb is its axial position. 

By applying a criterion of similarity in shape, it was possible to reject non-spherical bubbles. 

For the flow conditions, bubbles are rather spherical, this method was used to reject bubbles in 

the depth of field that may be superimposed on the image. This procedure enables to get rid of 

statistical contribution of biased bubbles’ velocity to the mean Eulerian velocity, particularly in 

bubbles accumulation regions of the flow. Note that this criterion was not activated for 

determination of the void fraction, only for the determination of the velocity. 

Two bubbles at consecutive time steps were assumed to be the same, if the displacement of 

the gravity centre was less than the equivalent radius measured at the previous time, thus 

making possible to determine the instantaneous velocity of the bubble and its trajectory.  
 

 

 
FIG. 23  Snapshots for mixture 65%, Re=1581/Ta=2.5 105, ɸc=20µm. Different steps of image processing, (a): raw image, 

(b): binarized image, c: bubble edge detection, d: bubble detection after limiting the depth of field (2e=2.8cm) by rejecting 

part of bubbles trajectories 

 

b)  Discrimination of bubble trajectories in a reduced depth of field 

 

It was necessary to reduce the contribution of the azimuthal velocity of the bubbles to the 

radial velocity measured in the camera’s frame. This was obtained by limiting the contribution 

of bubble trajectories out of a reduced depth of field, on either side of the meridian plane. For 
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this purpose, threshold laws were applied on the grey levels evolution of each bubble along its 

trajectory. 

The threshold laws were calibrated from bubble trajectories in the case of laminar flow. 

Indeed, the advantage of the laminar flow is that the trajectories of the bubbles are predictable. 

By assuming that the bubble motion has reached its steady state, and that the liquid flow is only 

composed of an azimuthal velocity component depending on the radial position, the 

equilibrium of the forces applied on the bubbles (added mass, Tchen, drag, lift and buoyancy 

forces) leads to a zero drift velocity of the bubbles in the radial and azimuthal directions and a 

drift velocity in the axial direction equal to the bubble rising velocity in a still liquid.  Thus, in 

the laminar flow, the bubbles trajectories result from the superimposition of the contribution of 

the purely azimuthal flow (Couette flow) and the contribution of the upward motion due to 

buoyancy effect. 

 

Normally, in a purely azimuthal flow, there is no velocity component in the radial direction. 

So, because of the contribution of the depth of field in the laminar flow, the azimuthal position 

of the bubble leads to the determination of a measured radial velocity as it is shown in Eq. (C1). 

This will also contribute to shift the apparent position of the bubble (XAb) in the camera’s frame 

according to Eq. (C2).  
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v being the azimuthal velocity of the flow (Couette flow) and rb, the real radial position of 

each bubble in the gap. 

 

The axial and azimuthal positions of the bubble are given by the Eqs. (C3) et (C4): 

 

 

 3
0

CZtVZ bbb   

 

 

 4)( 0 Ct
r

v
t

b

    

 

 



35 
  

 
FIG. 24  View of bubble trajectories obtained in the focussing plane for the laminar flow without limiting the depth of field. 

Mixture 65%, Re=79/Ta=625, db=100047µm, entire depth of field 2e=12cm 

 

Figure 24 shows bubble trajectories in the laminar flow, built for 2500 images in the focussing 

plane. Note that, in this figure each colour represents the trajectory of a single bubble. The 

trajectories which are both incoming and outgoing evidence an extremum point (dXAb/dZAb=0), 

which is representative of the apparent radial position of the bubble (rb=XAb).  Based on these 

trajectories, the depth of field on both sides of the meridian plane was deduced from the 

extreme apparent position as: 
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The depth of field was e = 6 cm on each side of the meridian plane and this corresponds to the 

whole width of the visible gap. This depth of field had to be reduced otherwise a possible 

contribution of 30% of the azimuthal velocity to the measured radial velocity of the bubbles 

can be reached. 
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FIG. 25  Evolution of the grey levels averaged upon the bubble’s area as a function of the apparent radial position of the 

bubble in laminar flow.  Mixture 65%, Re=79/Ta=625, db=100047µm, entire depth of field 2e=12cm 

 

In Fig. 25, for each bubble in the laminar flow, we focus on the evolution of the grey level, 

with respect to the apparent radial position along its trajectory I(XA(t)). At each time step, the 

grey level is averaged on the area of each bubble. It can be seen that, the grey level increases 

along the incoming trajectory and along the outgoing trajectory. But for very outgoing bubbles, 

that are unfocused, it strongly decreases. From this figure, it can be seen that, due to optical 

distortion near the outer cylinder, there is a decrease of the grey levels with the distance from 

the inner cylinder, which is similar to a linear decrease. Thus, instead of imposing a unique 

threshold on the grey levels to discriminate bubbles localized in the imposed depth of field to 

those out of the imposed depth of field, we rather searched for threshold laws, to be applied on 

incoming and outcoming trajectories, taking into account the value of the apparent radial 

position. 

 

To achieve this, from all the trajectories obtained in the laminar flow which evidence an 

extremum point, we extracted the values of the averaged grey level at three azimuthal 

positions: at the real radial position (=0), along the incoming trajectory at an imposed value of 

azimuthal angle -max and along the outgoing trajectory, trajectory at an imposed value of 

azimuthal angle +max. max was adjusted in order to limit the depth of field to e = 1.4 cm on 

each side of the meridian plane. Three linear fits were then applied according to the apparent 

radial position to extract linear threshold laws of the averaged grey levels for bubbles incoming 

the imposed depth of field Intensity (XA, YA= +e), for bubbles outcoming the imposed depth of 

field Intensity (XA, YA= -e) and for bubbles localized at the real radial position in the meridian 

plane Intensity (XA, YA=0).  During a time window [t1, t2], trajectories of the bubbles were 

tested, in order to keep parts of trajectories for which the intensity remains in the range:  
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When considering Fig. 25, it is clear that for bubbles for which only outcoming trajectories 

out of the depth of field are viewed by the camera, the intensity can satisfy this previous 

condition. Nevertheless, they are rejected if the intensity at the initial time step checks one of 

the following conditions: 
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FIG. 26  View of the Bubble trajectories obtained in the focussing plane for the laminar flow when applying  radial laws of  

the grey levels threshold for incoming and outcoming trajectories, thus leading to limit the depth of field by rejecting part of 

bubble trajectories. Mixture 65%, Re=79/Ta=625, db=100047µm, imposed reduced depth of field 2e=2.8cm 

 

Figure 26 shows the parts of trajectories, kept by applying the threshold laws, for the same 

trajectories samples as shown in Fig. 24. For this flow condition, and for this reduced depth of 

field, only 14% of the trajectories were being kept.  

As the bubble’s contrast on the image is sensitive to the bubble’s size and the mixture, 

different threshold laws were determined according to the mixture and the size of bubbles. For 

each case, the depth of field was reduced to 2e = 2.8, leading to an uncertainty of 7% and 0.3% 

for the determination of the bubble radial velocity and radial position respectively. The 

apparent radial position XAb and the real radial position rb were thus considered as being the 

same.  

Bubble diameters, axial and radial bubble positions, as well as axial and radial components of 

the Lagrangian bubble velocity, were thus determined. 
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c)  Validation of bubble’s Lagrangian tracking 

 

For the determination of the averaged equivalent diameters, the relative discrepancy was 

estimated to be less than 4% by comparison to the expected mean diameter (Table I). 

The measured Lagrangian axial velocity was validated in the laminar flow by comparison to 

the bubble rising velocity Vb, expected in still mixture (values given in Table I). For the 

different bubble sizes and mixtures, the relative error in the measured axial velocity was less 

than 6%. 

For the radial apparent velocity determined in the laminar flow, the discrepancy between the 

measured value and the theoretical value at a given radial position was less than 4mm/s (5% of 

the theoretical value). This discrepancy corresponds to the contribution of noise when 

positioning the gravity center at two following time steps. For our smallest rotational velocity, 

above the critical Reynolds number, the noise induced a maximum relative uncertainty of 20% 

of the radial velocity expected in the inflow/outflow regions. 

 

Appendix D.  Gas-phase Eulerian processing 

 

The Eulerian properties of the gas were deduced from the bubble Lagrangian tracking, by a 

volumetric averaging procedure applied on an Eulerian grid. For this purpose, the image 

observed in the camera’s frame was meshed. In this section, we describe the procedure, 

quantify uncertainties and discuss the validation of the data. 

 

Each bubble along its trajectory was referenced by a number k, ntraj was the number of 

bubbles trajectories. With n, the number of the time steps; Sb(k,n), Db(k,n), ub(k,n) and wb(k,n) 

are the area, the equivalent diameter, the radial and axial Lagrangian velocity, respectively, 

determined along parts of bubbles trajectory in the reduced depth of field. They were 

determined for a time step n between t1fe and t2fe  (t=t2-t1 is the residence time of each bubble 

in the field of view,  according to the depth of field e=1.4cm).  

Let nx, nz be the size of the mesh (ie : number of pixels in the radial and axial directions 

respectively). Each mesh has a number: nm. Sb,nm(k,n) denotes the area of bubble k included 

into the mesh nm at time step n. At each time step a bubble’s gravity center was localized into 

the mesh nm, it contributed to the Eulerian mean velocity’s determination of the gas phase in the 

mesh nm by applying ub,nm(k,n)= ub,(k,n). 

 

The sum of the surface fraction occupied by the bubbles in the mesh at time step n, weighted 

by the ratio between the respective volumes of a sphere of diameter Db and a cylinder of same 

diameter can be calculated, the depth being equal to the depth of field. By assuming that the 

bubbles are spherical, this sum is representative of the instantaneous gas phase volume fraction, 

averaged upon the volume of the mesh <g>x,z. It yields: 
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The local void fraction α was deduced from an average upon time of the instantaneous gas 

phase volume fraction. It is a mean void fraction, spatially integrated in the mesh. With nt 

representative of the number of time steps, it is given by: 
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The mean Eulerian velocity components of the gas phase (Ug, Wg) were obtained from 

weighting the Lagrangian velocity components of the bubbles by the instantaneous volume 

fraction of each bubble. It was time averaged and integrated in the mesh volume, as indicated 

by:  
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On the one hand, to visualize possible bubble trapping by outflow/inflow regions and by 

Taylor vortices, the Eulerian mesh needs to be refined. But on the other hand, a refined mesh 

requires a large amount of images to achieve time convergence of the void fraction and the 

mean Eulerian velocity.  A compromise was found for a mesh size adjusted to the bubble size 

and a measurement time of 6s. The statistical convergence is estimated for a confidence level of 

95% in Table IV. 

 
 

TABLE IV  Summary of the deviation errors due to the Eulerian average determination (values of the statistical convergence 

are given in the regions where the void fraction is larger than 0.4% and estimated from the rms values for a confidence level 

of 95%) 

Error due to the Eulerian average determination 

-Spatial resolution of the Eulerian grid (90%db): <0,05d (ɸc=20µm) and <0,11d (ɸc=180µm) 

 

-Relative error of the statistical convergence for the void fraction: 5% 

 

- Relative error of the statistical convergence for the axial velocity: 2% 

 

- Relative error of the statistical convergence for the radial velocity  5% 

 

 

When taking into account possible deviation errors of the Lagrangian determination of bubble 

size, axial and radial velocity, it leads to possible deviation errors of the Eulerian determination 

of the void fraction and mean gas phase velocity components that are summarized in Table V.   
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TABLE V  Summary of the deviation errors expected for the Eulerian variables 

Deviation errors expected for the Eulerian variables 

-Error on the void fraction due to the deviation error on the diameter : (<α>/<α>)db12% 

 

-Error on the Eulerian axial velocity of the gas phase :  wb/wb(%)18% 

 

- Error on the Eulerian radial velocity of the gas phase :( ub/ub)Outflow/Inflow32% 

 

 

 

 

 

 
FIG. 27  Validation of void fraction distribution.  (a) Void fraction distribution measured in a meridian plane by bubble 

tracking for Re2214/Ta4.9 105, mixture 65 %, ɸc=180 µm (db/d=0.125). (b) Comparison of the radial profiles of void fraction 

extracted from figure 10a) at  z/d=3 (black straight line) with the profile of Mehel17 obtained by optical  probes in the vortex 

core (db/d=0.16). To complete the comparison, another profile was added based on the void fraction distribution measured in 

our study by bubble tracking at Re2529/Ta6.4 105 for the same bubble size. 

 

An example of void fraction distribution obtained in the meridian plane, after applying optical 

correction, is plotted in Fig. 27. For the flow condition of the example (db=2500µm, Re=2214, 

65% glycerol), bubbles are trapped inside the anti-clockwise Taylor vortex, above the outflow 

region. From the void fraction map, we can extract the radial profile of void fraction at a fixed 

axial position. We plotted in Fig. 27(b) the radial profiles of void fraction extracted at z/d=3 

from Fig. 27(a). This axial position corresponds to an axial bubble trapping in the vortex. In 

order to validate our results, comparison was made with the void fraction profile obtained by 

optical probes measurement in the study of Mehel
18

 for the quite same Reynolds number, but 

for bubbles slightly larger (db/d=0.16) than in our study. Each void fraction value was 

normalized by the maximum value of the void fraction profile to make the comparisons easier. 

Our results fit very well with those of Mehel
17

, putting into evidence a radial preferential 
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localization of the bubbles in the vortex at X=-0.22 (0.05) for this value of the Reynolds 

number and bubble sizes between 0.12d and 0.15d. 

At this point, it is worth noting that no gas-phase averaged Eulerian distribution is provided in 

the literature survey to make it possible to validate our distribution of the gas velocity 

components in the Taylor-Couette flow. 

 

Appendix E. Correction of optical distortion 

 

Due to optical distortion, there was a shadow region near the inner cylinder, the size of which 

was 148 µm (0.007d) and 255 µm (0.013d) for the mixtures of 65% and 40 % of glycerol, 

respectively. A six degrees polynomial function was used to correct both the radial position and 

the radial velocity measured in the camera’s referenced frame as a function of  XA (correction 

factor being 1.1 and 1.7 near the inner and outer cylinders respectively). The correction laws 

were validated on the pattern made of 25 pairs of lines per inch. The fit introduces an 

inaccuracy in the radial position, that is maximum near the outer cylinder, approximately 

0.13mm (0.006d). Thus, taking into account the uncertainty in the shadow’s edge 

positioning, the global uncertainty on the radial positioning, is expected to be 424 µm 

(0.02d). 

Figure 28 shows an example of images of the pattern immersed into the gap filled with the 

mixture of 40% glycerol. The image on the left corresponds to the pattern without optical 

correction and the image on the right corresponds to the pattern with the optical correction. As 

we can see, the optical correction consists on expanding the image in the radial direction, the 

expansion being greater near the outer cylinder. The comparison of the wavenumber spectra 

obtained without and with optical correction confirms that after the optical correction, we 

recover the real image of the pattern, characterized by a single spatial narrowed band. 

 

 

 
FIG. 28  Validation of the optical correction law by comparison of the patterns and spectrum obtained before (a) and after  

(b)  the optical correction. Real pattern: 25 line pairs per inch, Mixture 40% 
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Appendix F. Two-phase flow dimensionless parameters C and Hnew as a function of the 

Reynolds number for the different operating conditions.   

 

 Fig. 29 shows the correspondence between the values of C and Hnew of the different operating 

points with the mother conditions (Reynolds, bubble sizes and mixtures). C and Hnew were 

deduced from the axial wavelength and axial velocity of the Taylor vortices measured in 

single-phase flow. 

 

 

 

 
FIG. 29  Evolution of dimensionless parameters  Hnew, and C as a function of the Reynolds number for the  geometry 

(η=0.91), different bubble sizes and mixtures tested in this study. The definition of Hnew and C  are given in Eq. 9 and Eq. 7, 

respectively. 
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Appendix G. C-H phase diagram 
 

 

 
FIG. 30 Phase diagram of the bubble arrangements in the gap as a function of parameters C and H. Big symbols refer to large 

bubbles (0.12<db/d<0.18) and small symbols refer to small bubbles (db/d=0.05). Full disks refer to our study, triangles refer to 

Mehel17, blue empty square (C=0.47, H=0.24) refers to Murai et al.7 and brown full square (C=3.87, H=0.40) refers to Yoshida 

et al.16 (for geometry of 7,16, W was estimated from reference 14). 

 

 

Figure 30 shows the phase diagram which summarizes the various types of bubbles 

arrangements as a function of parameters C and H. H is deduced from Fig. 22. 
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