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Abstract

We describe an Eikonal-based algorithm for computing dense oversegmen-

tation of an image, often called superpixels. This oversegmentation respect

local image boundaries while limiting undersegmentation. The proposed al-

gorithm relies on a region growing scheme, where the potential map used is

not �xed and evolves during the di�usion. Re�nement steps are also proposed

to enhance at low cost the �rst oversegmentation. Quantitative comparisons

on the Berkeley dataset show good performance on traditional metrics over

current state-of-the art superpixel methods.

Keywords: Superpixels, segmentation, clustering, Eikonal equation

1. Introduction

With the increasing amount of available data, and the need for fast and

accurate processing, the simpli�cation of data becomes a crucial point for

many applications. A convenient way to address this task is to consider

that datas can be modeled with a graph G = (V,E,w), where V is the

set of vertices, E a set of edges, and w > 0 is the weight function that
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models the interaction between vertices. Exhibiting clusters of this graph

leads to a simpli�cation of the data and decreases the size of the problem.

Many techniques of graph clustering have been proposed such as cut-based,

spectral or random walk methods (see [16] for a comprehensive review of

these techniques).

Recent works [3] adapt the eikonal equation to graphs in order to perform

over-clustering from an initial set of annotated vertices V0. Let f : V → R

be a real-valued function that assigns a real value f(u) to each vertex u ∈ V .

The reformulation of the Eikonal equation in the graph domain leads to the

equation :

 ‖(∇f
w)(u)‖p = P (u) ∀u ∈ V

f(u) = φ(u) ∀u ∈ V0
(1)

where (∇−wf)(u) is the weighted morphological gradient at a vertex u (see

[11] for details), P is a positive function, and φ is an initialization function.

In this paper, we focus on grid graphs for image processing with the aim

of grouping perceptually and adjacent pixels into meaningful regions, the

so-called superpixels. Superpixels have become an important step in many

computer vision applications such as segmentation [8, 22], object localization

[7], depth estimation [24], and scene labeling [5].

Some properties of an algorithm that generate superpixels are often desir-

able : (1) Superpixels should adhere well to object boundaries while limiting

undersegmentation errors, (2) as superpixel methods are used as preprocess-

ing, the algorithm should have a low complexity, (3) it has to be simple to

use (i.e. few parameters). In addition, some other properties may be desired
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: the control of the amount of superpixels, or the compactness of them.

Several superpixel algorithms exist in the literature, they can be roughly

divided into two approaches : The �rst consists in gradually growing super-

pixels from an initial set of centers. This approach includes Watershed [21],

Turbopixels [10], SLIC [1], Consistent Segmentation [25] and Quick Shift

[19]. The second approach relies on a graph formulation of the problem

and aims at �nding an optimal cut according to an objective function that

takes similarities of neighboring pixels into account. This approach includes

Entropy�based energy function method [12], optimal cuts [14, 13], graph-cut

[20], and agglomerative clustering of the nodes of the graph [6].

In this paper, we propose a new algorithm for superpixel generation :

Eikonal-based Region Growing Clustering1 (ERGC) that starts from an initial

set of seeds and dilates them, and then re�nes the result oversegmentation

by adding/moving cuts. It formulates the superpixel segmentation task as a

solution of an Eikonal equation. Equation 1 becomes : ‖∇U(x)‖ = F (x) ∀x ∈ I

U(x) = 0 ∀x ∈ Γ
(2)

where I is the image domain, F a positive function, Γ the set of initial seeds,

and U(x) the traveling time or geodesic distance of x from source Γ. Focusing

on grid graphs, it can be solved e�ciently with the Fast-Marching method.

The major change proposed in this paper concerns the function F , which is

not �xed and evolves during the front evolution. It is detailed at Section 2.2.

1Source code and executable of ERGC can be found at

https://sites.google.com/site/pierrebuyssens/ergc

3

https://sites.google.com/site/pierrebuyssens/ergc


ERGC is simple to use (by default, the only parameter is the desired num-

ber of superpixels), as fast as other superpixels methods, and outperforms

them on two of the three traditional metrics.

The rest of the paper is organized as follows : Section 2 details the

proposed potential function F , and the ERGC algorithm. Section 3 gives

qualitative and quantitative comparisons of performances between ERGC

and state-of-the-art methods. Some aspects and extensions of the proposed

method are than discussed in Section 4, while Section 5 concludes the paper.

2. Superpixels method

2.1. Notations

In the following we adopt several notations to simplify the reading of the

paper. A particular pixel of image I is noted p and consists of a coordinate

couple (xp, yp). A region Ri consists of a seed pixel si and a size Ni in pixels.

The color of a pixel p is noted Cp, and the mean color of a region Ri is noted

Ci.

Note that the color images are considered in the CIELAB colorspace, so

the color vector of a pixel (or a region) C reduces to [l, a, b]T .

2.2. Proposed potential function

Since a superpixels method aims at grouping perceptually and adjacent

pixels into meaningful regions, we propose a potential function F that con-

veys this desirable property. The right term of equation 2 is computed ac-

cording to the mean color of the adjoining region :

Fc(p, Ri) = ‖Cp −Ci‖22 (3)
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This potential function measures the perceptual color distance between the

pixel p and the region Ri. For color images in the CIELAB colorspace, F

reduces to :

Fc(p, Ri) = (lp − li)2 + (ap − ai)2 + (bp − bi)2 (4)

where [li, ai, bi]
T is the mean color vector of region Ri.

In comparison to traditional gradient�based approaches [3] where F (p) =

‖∇I‖, the proposed formulation favors the grouping of similar pixels, even

for pixels that are far from the initial seeds (Fig. 2).

As a numerical solver of the Eikonal equation 2, we adopt the Fast March-

ing method introduced by Sethian in [17]. It uses a priority queue to order

the pixels as being the current estimate of the geodesic distance to the closest

seed (see [15] for a detailed description of the fast marching algorithm).

Within the fast marching algorithm, each time a pixel p is inserted to a

region Ri, the attributes of this region are easily updated : Ci ← Ci×Ni+Cp

Ni+1

Ni ← Ni + 1
(5)

This formulation clearly makes the potential of a pixel dependant on

the features of an adjoining region, which is updated during the process. It

promotes the di�usion to pixels whose color is close to the color of the region,

hence creating homogeneous superpixels. A region can also absorb smoothly

localized noisy pixels since such a pixel contributes weakly to the mean color

of the region.

Algorithm 1 summarized the Fast-Marching algorithm with our proposed

potential function. Within the algorithm, a state Σ is given to each pixel and
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changes during the processing : COMPUTED states that the solution for a

pixel has been computed (i.e. its solution will not change anymore), ALIVE

states that the solution of a pixel is being computed, and FAR AWAY states

that a pixel has not yet been visited. The algorithm involves a heap structure

of ALIVE points, noted L, and each time a pixel p with coordinates (x, y) is

visited, its local solution is computed w.r.t. its neighbors Neigh(p) :

U(p) =

 1
2
(U(q) + U(r) +

√
∆) if ∆ ≥ 0

min(U(q), U(r)) + F otherwise
(6)

where F is computed with equation 3, q and r are the neighbors of p such that

U(q) = min(U(x−1, y), U(x+1, y)), U(r) = min(U(x, y−1), U(x, y+1)),

and ∆ corresponds to solving the equation (u − U(r))2 + (u − U(q))2 = F 2

(see [15] for details).

Figure 1 compares the geodesic distance map computed on a synthetic

image (left) with the gradient-based potential function (middle) and the pro-

posed one (right), with an initial seed depicted by the white dot. This ex-

ample exhibits the main feature of the proposed potential function. With

the gradient-based potential function (middle), the front propagates on the

white square before having recovered all the black area. Some pixels belong-

ing to the square then have a lower geodesic distance than pixels belonging to

the black area. A good segmentation of the square based on these distances

is then impossible. With the proposed potential function (right), the front

propagates �rst entirely on the black area before entering onto the white

square. A good segmentation of the square can then easily be achieved.

Such a result can be interpreted in the following way : For the gradient-

based potential function, when a front arrives on a contour, its speed heavily
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Algorithm 1 Fast-Marching algorithm with the proposed potential function
1: for all p ∈ I do

2: if p is a seed then

3: Σp ← ALIVE, U(p) = 0, add p to L

4: else

5: Σp ← FAR AWAY, U(p) =∞

6: end if

7: end for

8: while L 6= ∅ do

9: p← arg minq(U(q) | q ∈ L)

10: Σp ← COMPUTED

11: Update adjoining superpixel Ri (equation 5)

12: for q ∈ Neigh(p) do

13: compute F (q, Ri) (equation 3)

14: compute local solution t(q) (equation 6)

15: if Σq = ALIVE and t(q) < U(q) then

16: U(q) = t(q)

17: end if

18: if Σq = FAR AWAY then

19: Σq ← ALIVE

20: U(q) = t(q)

21: Add q to L

22: end if

23: end for

24: end while
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Figure 1: Left : Initial image with the given seed depicted as the white dot. Middle :

geodesic distance map U in false color obtained with the gradient-based potential func-

tion. Right : geodesic distance map obtained with the proposed potential function. A

segmentation of the square based on the geodesic distances can not be obtained with the

gradient-based potential function.

decreases as the potential is high. Nevertheless, after a given time, the front

ends up passing through the contour, and the potential becomes low again,

so the front can evolve with a high speed. This behavior is not a surprise

and can be seen on the red-blue image of Figure 2. The proposed potential

function adds to the di�usion a sort of memory of the initial color of the seeds.

When a front arrives on a region with a di�erent color, the potential becomes

very high. Even if the front passes through the interface separating the two

regions, the potential remains very high, hence prohibiting the di�usion too

much.

Figure 2 compares the behavior of the proposed potential function and the

gradient�based approach [3] on a color synthetic image with two seeds, and

on a natural image with three seeds. In both cases, the proposed formulation

gives a better segmentation.
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Figure 2: First row : initial image. The back and white circles depict the initial seeds.

Second row : the result segmentation with the proposed F (left) and the gradient�based

potential function (right). Third row : geodesic distances map U in fake color. Some

isocontours are shown in white. Last row : segmentation of a natural scene. Seeds are

depicted in black.
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2.3. Algorithm initialization

The initialization consists of sampling K seed pixels on a regular grid

with an interval S equal to S =
√
N/K with N the number of pixels in the

image (initialization similar to [1] and [10]).

The mean and variance color of the seed pixel and its 4-connexity neigh-

boring pixels is then computed. The same computation is performed for

pixels that lie in a 3 × 3 neighborhood, and the seed is moved to the pixel

that lowers the variance color. Such a perturbation of the initial seeds avoids

potential outlier pixels as seeds, favorably initializes the di�usion, and gives

a more robust initial mean color for each superpixel.

2.4. Complexity and segmentation speed

After the initialization, a front propagation is performed with an online

update of the superpixels. Complexity of the di�usion relies essentially on the

complexity of the fast marching algorithm, which is roughly in O(n log(n))

with an appropriate heap for sorting the pixels according to their geodesic dis-

tance. Despite this theoretical complexity, the proposed algorithm is very fast

in practice, and is nearly linear in time. Note that using di�erent data struc-

tures (and additional storage), di�erent O(n) implementations have been

proposed in [23, 9].

2.5. Re�nement by adding new superpixels

In this section, we propose a re�nement of the clustering that iteratively

adds new seeds after a full pass of the algorithm. Since initial seeds are placed

on a grid, some objects of the image may not contain an appropriate seed,

and these objects may not be �nally well segmented (Fig. 3(c)). In such a
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case the resulting geodesic distance map U exhibits high values in this area

(Fig. 3(d)). The re�nement consists of adding a new seed to the location of

the maximum geodesic distance, and to recompute the solution of equation

2. Since it is unnecessary to apply the algorithm to the whole image, only a

small part of the image around the new seed is considered (Fig. 3(b)). The

re�nement is summarized as follows :

1. Perform a full pass of ERGC with the seeds placed on a grid,

2. add a new seed to the location of the maximum geodesic distance found

at the previous step,

3. let Ri be the superpixel in which there is the new seed (red superpixel

of Fig. 3(b)), perform ERGC for pixels belonging to Ri and its adjacent

superpixels (blue superpixels of Fig. 3(b). At this step, the seeds of

the re�ned superpixels are left unchanged,

4. iterate steps 2 and 3 until the number of desired new seeds is reached.

A resulting re�nement iteration, and the associated geodesic distance map are

shown at Figures 3(e) and 3(f). The cost of a re�nement iteration depends on

the number of pixels considered. Nevertheless, this re�nement is considerably

less costly than a full ERGC pass, since it only deals with a small part of

the image. Given superpixels of size S =
√
N/K, and let be b the number

of adjacent superpixels of Ri, the complexity of one re�nement iteration is

roughly O (bS log(bS)), which can be approximated with O
(√

N
K

log(N
K

)
)
.

For information, one re�nement iteration costs approximatively 3 ms for 500

initial seeds, and 8 ms for 100 initial seeds on a Berkeley image. These time

calculations have been obtained with a standard laptop equipped with an

Intel mono core 1.30GHz processor and 4 GB RAM.
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(a)

(b)

(c) (d)

(e) (f)

Figure 3: (a) ERGC segmentation with 100 superpixels (approximatively). (b) Part of the

image to be re�ned (red and blue superpixels). (c) Detail of the image (green box of (a))

and corresponding geodesic distance map (d). Adding a new seed to the location of the

maximum distance results in a better segmentation (e). (f) New geodesic distance map

corresonding to (e).
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2.6. Re�nement by moving superpixels

In this section, we propose a simple procedure to increase the quality of

the oversegmentation without increasing the total number of superpixels. It

consists in adding a new superpixel while removing a �weak� one, such that

the global number of superpixels remains constant.

The selection of the superpixel to remove consists of 3 steps :

1. Given an oversegmentation of the image, compute the underlying Re-

gion Adjacency Graph (RAG),

2. For each vertex v of the graph, compute its normalized volume vol:

vol(v) =

∑
u∼v w(u, v)

Card(Nv)
(7)

where u ∼ v denotes two adjacent vertices, w(u, v) the weight of the

edge connecting u and v, and Nv the set of neighbors of v.

3. Select the superpixel corresponding to the vertex with the minimal

normalized volume as the superpixel to remove.

This procedure selects the superpixel that is the closest to its neighbors.

The weight function is the L2 norm and re�ects the di�erence between two

adjacent superpixels.

The initial oversegmentation is then re�ned by adding a new superpixel

with the procedure 2.5 detailed above, while the superpixel to remove is

simply discarded.

The whole procedure is iterated until a criterion is reached. In the fol-

lowing, it is stopped when
∫
I
U no longer decreases. We also add a limit of

10 iterations, which in practice, is rarely reached.

13



(a)

(b)

Figure 4: Example of re�nement by moving superpixels. 3 superpixels have been removed

(from green boxes), and added at other locations (black boxes).

Figure 4 shows a re�nement of an initial oversegmentation by moving 3

superpixels. Both oversegmentations contain 150 superpixels. The complex-

ity of this re�nement is low since it is similar to the re�nement by adding

new seeds.

2.7. Summary of the algorithm

Although a spatial constraint can easily be added to F (see �gure 3), by

default the only parameter of ERGC is the number of desired superpixels.

The whole algorithm consists of 3 steps :
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1. Proceed to the initial di�usion with 90% of the desired seeds placed on

a grid,

2. Re�ne the oversegmentation by adding the remaining 10% of seeds

(Section 2.5),

3. Iterate the moving seeds procedure (Section 2.6) until the stopping

criterion is reached.

For example, the algorithm produces 200 superpixels by �rst placing 180

seeds on the initial grid, then by adding 20 more seeds with the procedure

described in Section 2.5.

These ratios ensure that the whole algorithm runs in a reasonable amount

of time (about half a second on a Berkeley image).

3. Comparison with State�of�the�Art

We compare ERGC to state�of�the�art methods SLIC2 [1], Entropy Rate

Superpixels3 [12] (ERS), SEEDS4 [18], TurboPixels5 [10] (TP), and Gradient�

based di�usion [3] (GrB). Examples of superpixel segmentations produced by

each method appear in Figure 7.

The popular SLIC method proposed in [1] adapts k�means in the image

plane to iteratively exhibit superpixels. The addition of a spatial constraint

term produces regular regions that adhere quite well to image. The ERS

algorithm proposed in [12] oversegments an image via an obective function

2http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels
3http://www.umiacs.umd.edu/~mingyliu/research
4http://www.vision.ee.ethz.ch/software
5http://www.cs.toronto.edu/~babalex/research.html
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composed of two terms : entropy rate of a random walk on a graph and a bal-

ancing term. By default, it produces irregular superpixels that adapt to local

image structure, but is quite slow in practice. Starting from an initial super-

pixel partitioning (a grid), SEEDS [18] continuously re�nes the superpixels

by modifying the boundaries. Based on a simple hill-climbing optimization, it

minimizes an energy function based on enforcing color similarity between the

boundaries and the superpixel color histogram. This fast algorithm produces

the most irregular superpixels of the literature. The TurboPixels algorithm

[10] consists in iterating three steps : (1) evolve the boundaries of the super-

pixels for a given number of time steps, (2) compute the squeletton of these

boundaries, and (3) update velocities of the boundaries. TP produces reg-

ular superpixels that often fail to adapt to local image structure, especially

when the desired number of superpixels is low. Moreover, it is the slowest

algorithm among the top performers. Finally, the gradient-based di�usion

method GrB proposed in [3] essentially solves the Eikonal equation with a

gradient-based potential function. It su�ers from leaks inherent of this po-

tential function as outlined in Section 2.2 (examples shown in Figures 1 and

2).

The Berkeley dataset [2] is used as a benchmark. It consists of 500 images

of size 481×321 (or 321×481) and several ground truth manual segmentations

for each image.

Figure 6 shows quantitative results on standard metrics, including Bound-

ary Recall, Undersegmentation Error and Achievable Segmentation Accuracy.

We also add a compactness metric that re�ects the compacity of the super-

pixels. As a baseline for Boundary Recall, Undersegmentation Error and
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Achievable Segmentation Accuracy metrics, we also show the performances

of a grid of square superpixels (GRID).

All results are computed from scratch using these evaluation metrics and

the same hardware. Default parameters are used for the state�of�the�art

methods.

3.1. Boundary recall

Boundary recall (BR) measures the fraction of ground truth edges that

is also present in superpixel segmentation within a distance threshold t. In

our experiments, t is �xed to 2 as in [1, 12, 18]. Fig. 6(a) shows boundary

recall measures for each method according to the number of superpixels. As

the number of superpixels increases, the boundary recall is naturally higher.

SEEDS outperforms all other algorithms on this metric. Nevertheless, this

result has to be appreciated in the light of the superpixels compactness. As

shown at Fig. 6(d) (second and third rows), ERS and SEEDS superpixels

have the lowests mean compactness values. For a �xed number of superpixels,

there are then much more ERS or SEEDS superpixels boundaries in the

segmentation, which naturally increases the boundary recall value.

3.2. Undersegmentation error

Undersegmentation error (UE) is shown in Fig. 6(b). Given a ground

truth and superpixel segmentation, this error measures the fraction of �bleed-

ing� caused by superpixels that overlap a given ground truth segment. The

standard formulation is

UE(s) =

∑
i

∑
k:sk∩gi 6=∅ |sk − gi|∑

i |gi|
(8)
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where sk are the outputs of the superpixel algorithm, gi the ground truth

segments, and |.| denotes the size of an element.

There are signi�cant changes in this evaluation according to the authors,

because it is not clear how to treat pixels that lie on a boundary between

two labels. In [1], the authors report a 5% tolerance margin, while authors

in [12] remove the boundaries of sk for the undersegmentation computation.

In this paper, we use the corrected undersegmentation error (CUE) pro-

posed by the authors of SEEDS6 de�ned as :

CUE(s) =

∑
k |sk − gmax(sk)|∑

i |gi|
(9)

where gmax(sk) indicates the matching ground truth segment of sk with the

largest overlap. This corrected undersegmentation error measure seems more

accurate and does not relie on any ad-hoc solution.

Finally this fraction is simply averaged across all ground truth segments

and all images. Fig. 6(b) shows that the undersegmentation error of ERGC

is the lowest upon the considered state�of�the�art methods.

3.3. Achievable Segmentation Accuracy

Achievable Segmentation Accuracy (ASA) is a performance upperbound

measure. It gives the highest performance when taking superpixels as units

for object segmentation. Each superpixel is labeled with the label of the

ground truth segment with the largest overlap. The fraction of correctly

labeled pixels is the achievable accuracy :

ASA(s) =

∑
k maxi |sk ∩ gi|∑

i gi
(10)

6http://arxiv.org/pdf/1309.3848v1.pdf
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Figure 5: Performances evolution with the re�nement steps : ERGC(a) stands for the ini-

tial pass of the algorithm, ERGC(b) after adding superpixels (Section 2.5), and ERGC(f)

the �nal results after adding and moving superpixels (Section 2.6). ERGC(m) shows

performances of the algorithm with the spatial constraint m = 10 (equation 12).

Fig. 6(c) shows that ERGC gives the best Achievable Segmentation Accuracy

compared to the other methods.

3.4. Compactness

We introduce this metric in addition to traditional ones to measure the

compactness of the superpixels. Compactness represents the degree to which

the superpixel shape is compact. It is de�ned as the ratio of the area of a

region to the area of a circle with the same perimeter. It is calculated as

follows:

COMP (sk) =
4π|sk|
p2k

(11)

where pk is the perimeter of the superpixel sk. The compactness is equal to

1 for a disc, π/4 for a square. Fig. 6(d) plots the mean compactness for each

algorithm and for a di�erent number of superpixels. Compactness for the

grid of square superpixels (GRID) is the highest (around 0.85), and is not

shown on Fig. 6(d).
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Figure 5 plots the evaluation of the proposed algorithm and its evolu-

tion within the two proposed re�nement : the curves ERGC(a), ERGC(b)

and ERGC(f) stand for the algorithm performances without any re�nement,

with only the adding superpixels re�nement, and with the two proposed re-

�nement respectively. One can particularly appreciate the improvements of

the performances while re�ning iteratively the superpixels. Figure 5 also

plots the performances of the proposed algorithm with a spatial constraint

(m = 10 in equation 12) and SLIC (for comparison purposes). Adding a

spatial constraint decreases slightly the BR, UE, and ASA performances of

the algorithm in comparison to a potential based on color distances only

(Equation 3), but produces more compact superpixels. Moreover, these per-

formances are still higher than the popular algorithm SLIC.

4. Extensions

In this section, we propose several extensions to our initial framework,

that illustrates the �exibility of the approach.

4.1. 3D extension

ERGC has been introduced for 2D images. It naturally extends to 3D

volumes to produce supervoxels with minor modi�cations of the algorithm.

Fig. 8 displays a supervoxels segmentation of a 3D volume from the MICCAI-

2007 Grand Challenge dataset. For display purposes, only the interior part

of the body is shown.
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Figure 6: Quantitative comparison of boundary recall (a), under�segmentation error (b),

achievable segmentation accuracy (c), and compactness (d) with di�erent numbers of

superpixels.
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Figure 7: Visual comparison of algorithms with 100 superpixels per image. First row:

SLIC, second row: ERS, third row: SEEDS, fourth row: GrB, �fth row: TurboPixels,

sixth row: ERGC.
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(a) (b)

Figure 8: ERGC supervoxels for a Computed Tomography volume of a human body. Only

the interior part of the body has been considered for visualization purposes.

4.2. Spatial constraint

For clarity of the display purposes, a spatial constraint has been added

to F to generate images of Figure 3, 4 and 8. This constraint, similar to the

one proposed in [1], penalizes pixels p that are far from an initial seed si,

and is of the form
‖p−si‖22

S
×m where m is the constraint parameter. In this

case, the potential function is of the form:

F = ‖Cp −Ci‖22 +
‖p− si‖22

S
×m (12)

Adding such a spatial constraint increases the superpixels compactness and

tends to produce square superpixels in �at areas, see Figures 3, 4. Neverthe-

less, as this is a constraint applied on the di�usion, it decreases slightly BR,

UE and ASA performances.

4.3. Combining ERGC with Edges

The proposed approach can easily be extended with additional terms to

produce more powerful potential functions. We propose to combine the initial
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color-based potential function with edges maps. Based on structured forest,

the approach proposed in [4] gives for each pixel p the probability E(p) that

p belongs to an edge. Within the fast-marching algorithm, the potential of

pixels belonging to region Ri is computed as :

F = ‖Cp −Ci‖22 ·
(
ε+ max

γpi→si

E

)
(13)

where ε is a small constant to avoid F being zero, and max
γpi→si

(E) is the max-

imum edge probability along the geodesic γpi→si (see Figure 9).

Adding such an edge information to the potential is useful in case of

microtextures such grass for instance. Edges probability is such areas is

close to zero, making the potential of the pixels low. The propagating front

is then not slowed down by the locally varying colors of the texture. Figure 11

compares the performances of this variant of ERGC, together with the initial

ERGC method (without edges) and the top performer among the state-of-

the-art methods for each metric. Note that compacity values are not plotted

for this method since there is no signi�cant changes from the initial ERGC

method (Figure 6).

4.4. Iterative ERGC

The method proposed in this paper (detailed in Section 2) computes

the superpixels in only one iteration. In this section, we go beyond this

limitation and propose an iterative version of ERGC. Iterating the process

allows to re�ne the seeds of the superpixels such that the next iteration

produces better regions.

Given an initial superpixel Ri with its seed si, the re�nement is performed

as follows :

24



Figure 9: Computation of the edge value of pi as the maximum edge probability along the

geodesic γpi→si
.

1. Select all the pixels pi ∈ Ri such that their color is the closest from Ci,

2. from this set of seed candidates, select only those that are spatially the

closest from si.

This re�nement scheme is illustrated in Figure 10. It may produce several

new seeds per superpixels. In such a case, these seeds share the same label,

and form, after the di�usion, a sole superpixel. The spatial selection is

performed to avoid the generation of too many new seeds that may produce

a degenerate superpixel after several iterations.

In our experiments, the number of iteration is �xed to 10 and the con�g-

uration of seeds that lowers
∫
I
U is retained.

At the cost of multiple iterations, this iterative variant enhances the whole

performances of the algorithm (Figure 11).

For completeness purposes, Figure 11 also shows the performances of the

iterative variant of ERGC with the use of edges maps. Finally, a comparison

of relative processing times among all the methods is provided in Table 1.
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Figure 10: Illustration of the iterative re�nement of the seed si of a superpixel Ri (left).

The pixels whose color is the closest from the superpixel color Ci form a candidate set

(gray dots, middle �gure). From this set, only the spatially closest pixels (s1i and s2i ) are

retained (right). Both s1i and s2i take the label of si.
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Figure 11: Performances comparison between ERGC with the use of edges (ERGC(e)),

iterative ERGC (ERGC(i)), iterative ERGC with edges (ERGC(ie)), ERGC, and the top

performer among the state-of-the-art methods for each metric.
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Method reference Processing time factor

SLIC [1] 0.94

ERS [12] 5.2

SEEDS [18] 0.91

GrB [3] 0.95

TP [10] 20.2

ERGC This paper 1 (0.4s)

ERGC(e) This paper 2.8

ERGC(i) This paper 11

ERGC(ie) This paper 13.8

Table 1: Relative processing times of several methods according to ERGC on a Berkeley

dataset image, with 100 superpixels. These processing times may slightly vary with di�er-

ent numbers of superpixels. ERGC(e) and ERGC(ie) processing times include edge maps

computation.

5. Conclusion

Superpixels have become an important preprocessing tool for many image

based applications. In this paper, we proposed a method based on the eikonal

equation that quickly creates accurate superpixels. Through the empirical

experiments, we showed that ERGC outperforms existing superpixel methods

in two of three metrics, while being outperformed by SEEDS and ERS on

Boundary Recall. This last result has to be appreciated in the light of their

superpixel compactness, the lowest within the state-of-the-art.

Proposed here for the generation of superpixels/supervoxels, we think

that the di�usion framework can o�er an interesting choice in many other

image processing tasks. ERGC can also be extended to arbitrary graphs to

perform local or non-local image and data processing, and data clustering
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(supervertices).
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