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We describe an Eikonal-based algorithm for computing dense oversegmentation of an image, often called superpixels. This oversegmentation respect local image boundaries while limiting undersegmentation. The proposed algorithm relies on a region growing scheme, where the potential map used is not xed and evolves during the diusion. Renement steps are also proposed to enhance at low cost the rst oversegmentation. Quantitative comparisons on the Berkeley dataset show good performance on traditional metrics over current state-of-the art superpixel methods.

Introduction

With the increasing amount of available data, and the need for fast and accurate processing, the simplication of data becomes a crucial point for many applications. A convenient way to address this task is to consider that datas can be modeled with a graph G = (V, E, w), where V is the set of vertices, E a set of edges, and w > 0 is the weight function that models the interaction between vertices. Exhibiting clusters of this graph leads to a simplication of the data and decreases the size of the problem.

Many techniques of graph clustering have been proposed such as cut-based, spectral or random walk methods (see [START_REF] Satu | Graph clustering[END_REF] for a comprehensive review of these techniques).

Recent works [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: Fast geometric diusion process for local and non-local image and data processing[END_REF] adapt the eikonal equation to graphs in order to perform over-clustering from an initial set of annotated vertices V 0 . Let f : V → R be a real-valued function that assigns a real value f (u) to each vertex u ∈ V .

The reformulation of the Eikonal equation in the graph domain leads to the equation :

   (∇ f w )(u) p = P (u) ∀u ∈ V f (u) = φ(u) ∀u ∈ V 0 (1) 
where (∇ - w f )(u) is the weighted morphological gradient at a vertex u (see [START_REF] Lézoray | Image Processing and Analysis with Graphs: Theory and Practice[END_REF] for details), P is a positive function, and φ is an initialization function.

In this paper, we focus on grid graphs for image processing with the aim of grouping perceptually and adjacent pixels into meaningful regions, the so-called superpixels. Superpixels have become an important step in many computer vision applications such as segmentation [START_REF] Gould | Multi-class segmentation with relative location prior[END_REF][START_REF] Yang | Layered object detection for multi-class segmentation[END_REF], object localization [START_REF] Fulkerson | Class segmentation and object localization with superpixel neighborhoods[END_REF], depth estimation [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF], and scene labeling [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF].

Some properties of an algorithm that generate superpixels are often desirable : (1) Superpixels should adhere well to object boundaries while limiting undersegmentation errors, [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] as superpixel methods are used as preprocessing, the algorithm should have a low complexity, (3) it has to be simple to use (i.e. few parameters). In addition, some other properties may be desired : the control of the amount of superpixels, or the compactness of them.

Several superpixel algorithms exist in the literature, they can be roughly divided into two approaches : The rst consists in gradually growing superpixels from an initial set of centers. This approach includes Watershed [START_REF] Vincent | Watersheds in digital spaces: an ecient algorithm based on immersion simulations[END_REF],

Turbopixels [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric ows[END_REF], SLIC [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], Consistent Segmentation [START_REF] Cw Zitnick | Consistent segmentation for optical ow estimation[END_REF] and Quick Shift [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF]. The second approach relies on a graph formulation of the problem and aims at nding an optimal cut according to an objective function that takes similarities of neighboring pixels into account. This approach includes Entropybased energy function method [START_REF] Liu | Entropy rate superpixel segmentation[END_REF], optimal cuts [START_REF] Moore | Superpixel lattices[END_REF][START_REF] Moore | lattice cut'-constructing superpixels using layer constraints[END_REF], graph-cut [START_REF] Veksler | Superpixels and supervoxels in an energy optimization framework[END_REF], and agglomerative clustering of the nodes of the graph [START_REF] Felzenszwalb | Ecient graph-based image segmentation[END_REF].

In this paper, we propose a new algorithm for superpixel generation :

Eikonal-based Region Growing Clustering 1 (ERGC) that starts from an initial set of seeds and dilates them, and then renes the result oversegmentation by adding/moving cuts. It formulates the superpixel segmentation task as a solution of an Eikonal equation. Equation 1 becomes :

   ∇U (x) = F (x) ∀x ∈ I U (x) = 0 ∀x ∈ Γ ( 2 
)
where I is the image domain, F a positive function, Γ the set of initial seeds, and U (x) the traveling time or geodesic distance of x from source Γ. Focusing on grid graphs, it can be solved eciently with the Fast-Marching method.

The major change proposed in this paper concerns the function F , which is not xed and evolves during the front evolution. It is detailed at Section 2.2.

1 Source code and executable of ERGC can be found at https://sites.google.com/site/pierrebuyssens/ergc ERGC is simple to use (by default, the only parameter is the desired number of superpixels), as fast as other superpixels methods, and outperforms them on two of the three traditional metrics.

The rest of the paper is organized as follows : Section 2 details the proposed potential function F , and the ERGC algorithm. Section 3 gives qualitative and quantitative comparisons of performances between ERGC and state-of-the-art methods. Some aspects and extensions of the proposed method are than discussed in Section 4, while Section 5 concludes the paper.

Superpixels method 2.1. Notations

In the following we adopt several notations to simplify the reading of the paper. A particular pixel of image I is noted p and consists of a coordinate couple (x p , y p ). A region R i consists of a seed pixel s i and a size N i in pixels.

The color of a pixel p is noted C p , and the mean color of a region R i is noted

C i .
Note that the color images are considered in the CIELAB colorspace, so the color vector of a pixel (or a region) C reduces to [l, a, b] T .

Proposed potential function

Since a superpixels method aims at grouping perceptually and adjacent pixels into meaningful regions, we propose a potential function F that conveys this desirable property. The right term of equation 2 is computed according to the mean color of the adjoining region :

F c (p, R i ) = C p -C i 2 2 (3) 
This potential function measures the perceptual color distance between the pixel p and the region R i . For color images in the CIELAB colorspace, F reduces to :

F c (p, R i ) = (l p -l i ) 2 + (a p -a i ) 2 + (b p -b i ) 2 (4) 
where [l i , a i , b i ] T is the mean color vector of region R i .

In comparison to traditional gradientbased approaches [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: Fast geometric diusion process for local and non-local image and data processing[END_REF] where F (p) = ∇I , the proposed formulation favors the grouping of similar pixels, even for pixels that are far from the initial seeds (Fig. 2).

As a numerical solver of the Eikonal equation 2, we adopt the Fast Marching method introduced by Sethian in [START_REF] Sethian | Level set methods and fast marching methods: evolving interfaces in computational geometry[END_REF]. It uses a priority queue to order the pixels as being the current estimate of the geodesic distance to the closest seed (see [START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF] for a detailed description of the fast marching algorithm).

Within the fast marching algorithm, each time a pixel p is inserted to a region R i , the attributes of this region are easily updated :

   C i ← C i ×N i +Cp N i +1 N i ← N i + 1 (5) 
This formulation clearly makes the potential of a pixel dependant on the features of an adjoining region, which is updated during the process. It promotes the diusion to pixels whose color is close to the color of the region, hence creating homogeneous superpixels. A region can also absorb smoothly localized noisy pixels since such a pixel contributes weakly to the mean color of the region. 

U (p) =    1 2 (U (q) + U (r) + √ ∆) if ∆ ≥ 0 min(U (q), U (r)) + F otherwise ( 6 
)
where F is computed with equation 3, q and r are the neighbors of p such that

U (q) = min(U (x -1, y), U (x + 1, y)), U (r) = min(U (x, y -1), U (x, y + 1)),
and ∆ corresponds to solving the equation (u

-U (r)) 2 + (u -U (q)) 2 = F 2
(see [START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF] for details). if p is a seed then 3:

Σ p ← ALIVE, U (p) = 0, add p to L 4: else 5: Σ p ← FAR AWAY, U (p) = ∞ 6:
end if 7: end for 8: while L = ∅ do 9:

p ← arg min q (U (q) | q ∈ L) 10:

Σ p ← COMPUTED 11:
Update adjoining superpixel R i (equation 5)

12:

for q ∈ N eigh(p) do 13:

compute F (q, R i ) (equation 3)

14:

compute local solution t(q) (equation 6)

15:

if Σ q = ALIVE and t(q) < U (q) then 16:

U (q) = t(q) 17: end if 18: if Σ q = FAR AWAY then 19:
Σ q ← ALIVE 20:

U (q) = t(q) 21: Add q to L 22: end if 23:
end for 24: end while decreases as the potential is high. Nevertheless, after a given time, the front ends up passing through the contour, and the potential becomes low again, so the front can evolve with a high speed. This behavior is not a surprise and can be seen on the red-blue image of Figure 2. The proposed potential function adds to the diusion a sort of memory of the initial color of the seeds.

When a front arrives on a region with a dierent color, the potential becomes very high. Even if the front passes through the interface separating the two regions, the potential remains very high, hence prohibiting the diusion too much. 

Algorithm initialization

The initialization consists of sampling K seed pixels on a regular grid with an interval S equal to S = N/K with N the number of pixels in the image (initialization similar to [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] and [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric ows[END_REF]).

The mean and variance color of the seed pixel and its 4-connexity neighboring pixels is then computed. The same computation is performed for pixels that lie in a 3 × 3 neighborhood, and the seed is moved to the pixel that lowers the variance color. Such a perturbation of the initial seeds avoids potential outlier pixels as seeds, favorably initializes the diusion, and gives a more robust initial mean color for each superpixel.

Complexity and segmentation speed

After the initialization, a front propagation is performed with an online update of the superpixels. Complexity of the diusion relies essentially on the complexity of the fast marching algorithm, which is roughly in O(n log(n))

with an appropriate heap for sorting the pixels according to their geodesic distance. Despite this theoretical complexity, the proposed algorithm is very fast in practice, and is nearly linear in time. Note that using dierent data structures (and additional storage), dierent O(n) implementations have been proposed in [START_REF] Yatziv | O(n) implementation of the fast marching algorithm[END_REF][START_REF] Kim | An O(n) level set method for eikonal equations[END_REF].

Renement by adding new superpixels

In this section, we propose a renement of the clustering that iteratively adds new seeds after a full pass of the algorithm. Since initial seeds are placed on a grid, some objects of the image may not contain an appropriate seed, and these objects may not be nally well segmented (Fig. 3(c)). In such a case the resulting geodesic distance map U exhibits high values in this area (Fig. 3(d)). The renement consists of adding a new seed to the location of the maximum geodesic distance, and to recompute the solution of equation 2. Since it is unnecessary to apply the algorithm to the whole image, only a small part of the image around the new seed is considered (Fig. 3(b)). The renement is summarized as follows :

1. Perform a full pass of ERGC with the seeds placed on a grid, 

Renement by moving superpixels

In this section, we propose a simple procedure to increase the quality of the oversegmentation without increasing the total number of superpixels. It consists in adding a new superpixel while removing a weak one, such that the global number of superpixels remains constant.

The selection of the superpixel to remove consists of 3 steps :

1. Given an oversegmentation of the image, compute the underlying Region Adjacency Graph (RAG), 2. For each vertex v of the graph, compute its normalized volume vol:

vol(v) = u∼v w(u, v) Card(N v ) (7) 
where u ∼ v denotes two adjacent vertices, w(u, v) the weight of the edge connecting u and v, and N v the set of neighbors of v.

3. Select the superpixel corresponding to the vertex with the minimal normalized volume as the superpixel to remove.

This procedure selects the superpixel that is the closest to its neighbors.

The weight function is the L 2 norm and reects the dierence between two adjacent superpixels.

The initial oversegmentation is then rened by adding a new superpixel with the procedure 2.5 detailed above, while the superpixel to remove is simply discarded.

The whole procedure is iterated until a criterion is reached. In the following, it is stopped when I U no longer decreases. We also add a limit of 10 iterations, which in practice, is rarely reached. (from green boxes), and added at other locations (black boxes).

Figure 4 shows a renement of an initial oversegmentation by moving 3 superpixels. Both oversegmentations contain 150 superpixels. The complexity of this renement is low since it is similar to the renement by adding new seeds.

Summary of the algorithm

Although a spatial constraint can easily be added to F (see gure 3), by default the only parameter of ERGC is the number of desired superpixels.

The whole algorithm consists of 3 steps :

1. Proceed to the initial diusion with 90% of the desired seeds placed on a grid, 2. Rene the oversegmentation by adding the remaining 10% of seeds (Section 2.5),

3. Iterate the moving seeds procedure (Section 2.6) until the stopping criterion is reached.

For example, the algorithm produces 200 superpixels by rst placing 180 seeds on the initial grid, then by adding 20 more seeds with the procedure described in Section 2.5.

These ratios ensure that the whole algorithm runs in a reasonable amount of time (about half a second on a Berkeley image).

Comparison with StateoftheArt

We compare ERGC to stateoftheart methods SLIC 2 [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], Entropy Rate Superpixels 3 [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] (ERS), SEEDS 4 [18], TurboPixels 5 [10] (TP), and Gradient based diusion [START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: Fast geometric diusion process for local and non-local image and data processing[END_REF] (GrB). Examples of superpixel segmentations produced by each method appear in Figure 7.

The popular SLIC method proposed in [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] adapts kmeans in the image plane to iteratively exhibit superpixels. The addition of a spatial constraint term produces regular regions that adhere quite well to image. The ERS algorithm proposed in [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] oversegments an image via an obective function 2).

The Berkeley dataset [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] is used as a benchmark. It consists of 500 images of size 481×321 (or 321×481) and several ground truth manual segmentations for each image.

Figure 6 shows quantitative results on standard metrics, including Boundary Recall, Undersegmentation Error and Achievable Segmentation Accuracy.

We also add a compactness metric that reects the compacity of the superpixels. As a baseline for Boundary Recall, Undersegmentation Error and Achievable Segmentation Accuracy metrics, we also show the performances of a grid of square superpixels (GRID).

All results are computed from scratch using these evaluation metrics and the same hardware. Default parameters are used for the stateoftheart methods.

Boundary recall

Boundary recall (BR) measures the fraction of ground truth edges that is also present in superpixel segmentation within a distance threshold t. In our experiments, t is xed to 2 as in [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Liu | Entropy rate superpixel segmentation[END_REF][START_REF] Van Den Bergh | Seeds: superpixels extracted via energy-driven sampling[END_REF]. Fig. 6(a) shows boundary recall measures for each method according to the number of superpixels. As the number of superpixels increases, the boundary recall is naturally higher.

SEEDS outperforms all other algorithms on this metric. Nevertheless, this result has to be appreciated in the light of the superpixels compactness. As shown at Fig. 6(d) (second and third rows), ERS and SEEDS superpixels have the lowests mean compactness values. For a xed number of superpixels, there are then much more ERS or SEEDS superpixels boundaries in the segmentation, which naturally increases the boundary recall value.

Undersegmentation error

Undersegmentation error (UE) is shown in Fig. 6(b). Given a ground truth and superpixel segmentation, this error measures the fraction of bleeding caused by superpixels that overlap a given ground truth segment. The standard formulation is

U E(s) = i k:s k ∩g i =∅ |s k -g i | i |g i | (8) 
where s k are the outputs of the superpixel algorithm, g i the ground truth segments, and |.| denotes the size of an element.

There are signicant changes in this evaluation according to the authors, because it is not clear how to treat pixels that lie on a boundary between two labels. In [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], the authors report a 5% tolerance margin, while authors in [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] remove the boundaries of s k for the undersegmentation computation.

In this paper, we use the corrected undersegmentation error (CUE) proposed by the authors of SEEDS 6 dened as :

CU E(s) = k |s k -g max (s k )| i |g i | (9) 
where g max (s k ) indicates the matching ground truth segment of s k with the largest overlap. This corrected undersegmentation error measure seems more accurate and does not relie on any ad-hoc solution.

Finally this fraction is simply averaged across all ground truth segments and all images. Fig. 6(b) shows that the undersegmentation error of ERGC is the lowest upon the considered stateoftheart methods.

Achievable Segmentation Accuracy

Achievable Segmentation Accuracy (ASA) is a performance upperbound measure. It gives the highest performance when taking superpixels as units for object segmentation. Each superpixel is labeled with the label of the ground truth segment with the largest overlap. The fraction of correctly labeled pixels is the achievable accuracy :

ASA(s) = k max i |s k ∩ g i | i g i (10) 
6 http://arxiv.org/pdf/1309.3848v1.pdf 

Compactness

We introduce this metric in addition to traditional ones to measure the compactness of the superpixels. Compactness represents the degree to which the superpixel shape is compact. It is dened as the ratio of the area of a region to the area of a circle with the same perimeter. It is calculated as follows:

COM P (s k ) = 4π|s k | p 2 k ( 11 
)
where p k is the perimeter of the superpixel s k . The compactness is equal to 1 for a disc, π/4 for a square. 3), but produces more compact superpixels. Moreover, these performances are still higher than the popular algorithm SLIC.

Extensions

In this section, we propose several extensions to our initial framework, that illustrates the exibility of the approach.

3D extension

ERGC has been introduced for 2D images. It naturally extends to 3D volumes to produce supervoxels with minor modications of the algorithm. 

Spatial constraint

For clarity of the display purposes, a spatial constraint has been added to F to generate images of Figure 3, 4 and 8. This constraint, similar to the one proposed in [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], penalizes pixels p that are far from an initial seed s i , and is of the form p-s i 2 2

S

× m where m is the constraint parameter. In this case, the potential function is of the form:

F = C p -C i 2 2 + p -s i 2 2 S × m (12) 
Adding such a spatial constraint increases the superpixels compactness and tends to produce square superpixels in at areas, see Figures 3,4. Nevertheless, as this is a constraint applied on the diusion, it decreases slightly BR, UE and ASA performances.

Combining ERGC with Edges

The proposed approach can easily be extended with additional terms to produce more powerful potential functions. We propose to combine the initial color-based potential function with edges maps. Based on structured forest, the approach proposed in [START_REF] Dollár | Structured forests for fast edge detection[END_REF] gives for each pixel p the probability E(p) that p belongs to an edge. Within the fast-marching algorithm, the potential of pixels belonging to region R i is computed as :

F = C p -C i 2 2 • + max γp i →s i E (13) 
where is a small constant to avoid F being zero, and max γp i →s i (E) is the maximum edge probability along the geodesic γ p i →s i (see Figure 9).

Adding such an edge information to the potential is useful in case of microtextures such grass for instance. Edges probability is such areas is close to zero, making the potential of the pixels low. The propagating front is then not slowed down by the locally varying colors of the texture. Figure 11 compares the performances of this variant of ERGC, together with the initial ERGC method (without edges) and the top performer among the state-ofthe-art methods for each metric. Note that compacity values are not plotted for this method since there is no signicant changes from the initial ERGC method (Figure 6).

Iterative ERGC

The method proposed in this paper (detailed in Section 2) computes the superpixels in only one iteration. In this section, we go beyond this limitation and propose an iterative version of ERGC. Iterating the process allows to rene the seeds of the superpixels such that the next iteration produces better regions.

Given an initial superpixel R i with its seed s i , the renement is performed as follows :

Figure 9: Computation of the edge value of p i as the maximum edge probability along the geodesic γ p i →si .

1. Select all the pixels p i ∈ R i such that their color is the closest from C i , 2. from this set of seed candidates, select only those that are spatially the closest from s i . This renement scheme is illustrated in Figure 10. It may produce several new seeds per superpixels. In a case, these seeds share the same label, and form, after the diusion, a sole superpixel. The spatial selection is performed to avoid the generation of too many new seeds that may produce a degenerate superpixel after several iterations.

In our experiments, the number of iteration is xed to 10 and the conguration of seeds that lowers I U is retained.

At the cost of multiple iterations, this iterative variant enhances the whole performances of the algorithm (Figure 11).

For completeness purposes, Figure 11 also shows the performances of the iterative variant of ERGC with the use of edges maps. Finally, a comparison of relative processing times among all the methods is provided in Table 1. The pixels whose color is the closest from the superpixel color C i form a candidate set (gray dots, middle gure). From this set, only the spatially closest pixels (s 1 i and s 2 i ) are retained (right). Both s 1 i and s 2 i take the label of s i . 

Conclusion

Superpixels have become an important preprocessing tool for many image based applications. In this paper, we proposed a method based on the eikonal equation that quickly creates accurate superpixels. Through the empirical experiments, we showed that ERGC outperforms existing superpixel methods in two of three metrics, while being outperformed by SEEDS and ERS on Boundary Recall. This last result has to be appreciated in the light of their superpixel compactness, the lowest within the state-of-the-art.

Proposed here for the generation of superpixels/supervoxels, we think that the diusion framework can oer an interesting choice in many other image processing tasks. ERGC can also be extended to arbitrary graphs to perform local or non-local image and data processing, and data clustering (supervertices).

Figure 1

 1 Figure 1 compares the geodesic distance map computed on a synthetic image (left) with the gradient-based potential function (middle) and the proposed one (right), with an initial seed depicted by the white dot. This example exhibits the main feature of the proposed potential function. With the gradient-based potential function (middle), the front propagates on the white square before having recovered all the black area. Some pixels belonging to the square then have a lower geodesic distance than pixels belonging to the black area. A good segmentation of the square based on these distances is then impossible. With the proposed potential function (right), the front propagates rst entirely on the black area before entering onto the white square. A good segmentation of the square can then easily be achieved.Such a result can be interpreted in the following way : For the gradientbased potential function, when a front arrives on a contour, its speed heavily

Figure 1 :

 1 Figure 1: Left : Initial image with the given seed depicted as the white dot. Middle : geodesic distance map U in false color obtained with the gradient-based potential function. Right : geodesic distance map obtained with the proposed potential function. A segmentation of the square based on the geodesic distances can not be obtained with the gradient-based potential function.

Figure 2

 2 Figure2compares the behavior of the proposed potential function and the gradientbased approach[START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: Fast geometric diusion process for local and non-local image and data processing[END_REF] on a color synthetic image with two seeds, and on a natural image with three seeds. In both cases, the proposed formulation gives a better segmentation.

Figure 2 :

 2 Figure 2: First row : initial image. The back and white circles depict the initial seeds. Second row : the result segmentation with the proposed F (left) and the gradientbased potential function (right). Third row : geodesic distances map U in fake color. Some isocontours are shown in white. Last row : segmentation of a natural scene. Seeds are depicted in black.

  2. add a new seed to the location of the maximum geodesic distance found at the previous step,[START_REF] Desquesnes | Eikonal equation adaptation on weighted graphs: Fast geometric diusion process for local and non-local image and data processing[END_REF]. let R i be the superpixel in which there is the new seed (red superpixel of Fig.3(b)), perform ERGC for pixels belonging to R i and its adjacent superpixels (blue superpixels of Fig.3(b). At this step, the seeds of the rened superpixels are left unchanged, 4. iterate steps 2 and 3 until the number of desired new seeds is reached.A resulting renement iteration, and the associated geodesic distance map are shown at Figures3(e) and 3(f ). The cost of a renement iteration depends on the number of pixels considered. Nevertheless, this renement is considerably less costly than a full ERGC pass, since it only deals with a small part of the image. Given superpixels of size S = N/K, and let be b the number of adjacent superpixels of R i , the complexity of one renement iteration is roughly O (bS log(bS)), which can be approximated with O N K log( N K ) . For information, one renement iteration costs approximatively 3 ms for 500 initial seeds, and 8 ms for 100 initial seeds on a Berkeley image. These time calculations have been obtained with a standard laptop equipped with an Intel mono core 1.30GHz processor and 4 GB RAM.

Figure 3 :

 3 Figure 3: (a) ERGC segmentation with 100 superpixels (approximatively). (b) Part of the image to be rened (red and blue superpixels). (c) Detail of the image (green box of (a)) and corresponding geodesic distance map (d). Adding a new seed to the location of the maximum distance results in a better segmentation (e). (f) New geodesic distance map corresonding to (e).

Figure 4 :

 4 Figure 4: Example of renement by moving superpixels. 3 superpixels have been removed

Figure 5 :

 5 Figure 5: Performances evolution with the renement steps : ERGC(a) stands for the initial pass of the algorithm, ERGC(b) after adding superpixels (Section 2.5), and ERGC(f) the nal results after adding and moving superpixels (Section 2.6). ERGC(m) shows performances of the algorithm with the spatial constraint m = 10 (equation 12).

Fig. 6 (

 6 Fig. 6(c) shows that ERGC gives the best Achievable Segmentation Accuracy compared to the other methods.

Fig. 6 (

 6 d) plots the mean compactness for each algorithm and for a dierent number of superpixels. Compactness for the grid of square superpixels (GRID) is the highest (around 0.85), and is not shown on Fig.6(d).

Figure 5

 5 Figure 5 plots the evaluation of the proposed algorithm and its evolution within the two proposed renement : the curves ERGC(a), ERGC(b)and ERGC(f ) stand for the algorithm performances without any renement, with only the adding superpixels renement, and with the two proposed renement respectively. One can particularly appreciate the improvements of the performances while rening iteratively the superpixels. Figure5also plots the performances of the proposed algorithm with a spatial constraint (m = 10 in equation 12) and SLIC (for comparison purposes). Adding a spatial constraint decreases slightly the BR, UE, and ASA performances of the algorithm in comparison to a potential based on color distances only (Equation3), but produces more compact superpixels. Moreover, these per-

Fig. 8

 8 Fig. 8 displays a supervoxels segmentation of a 3D volume from the MICCAI-2007 Grand Challenge dataset. For display purposes, only the interior part of the body is shown.

Figure 6 :

 6 Figure 6: Quantitative comparison of boundary recall (a), undersegmentation error (b), achievable segmentation accuracy (c), and compactness (d) with dierent numbers of superpixels.

Figure 7 :Figure 8 :

 78 Figure 7: Visual comparison of algorithms with 100 superpixels per image. First row: SLIC, second row: ERS, third row: SEEDS, fourth row: GrB, fth row: TurboPixels, sixth row: ERGC.

Figure 10 :

 10 Figure 10: Illustration of the iterative renement of the seed s i of a superpixel R i (left).

Figure 11 :

 11 Figure 11: Performances comparison between ERGC with the use of edges (ERGC(e)), iterative ERGC (ERGC(i)), iterative ERGC with edges (ERGC(ie)), ERGC, and the top performer among the state-of-the-art methods for each metric.

Table 1 :

 1 Relative processing times of several methods according to ERGC on a Berkeley dataset image, with 100 superpixels. These processing times may slightly vary with dierent numbers of superpixels. ERGC(e) and ERGC(ie) processing times include edge maps computation.

	Method	reference	Processing time factor
	SLIC	[1]	0.94
	ERS	[12]	5.2
	SEEDS	[18]	0.91
	GrB	[3]	0.95
	TP	[10]	20.2
	ERGC	This paper	1 (0.4s)
	ERGC(e) This paper	2.8
	ERGC(i) This paper	11
	ERGC(ie) This paper	13.8
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