N

HAL

open science

Labelling Operators

Serge Beucher

» To cite this version:

‘ Serge Beucher. Labelling Operators: (Programming tricks with Mamba). 2014. hal-01134346

HAL Id: hal-01134346
https://hal.science/hal-01134346

Preprint submitted on 23 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01134346
https://hal.archives-ouvertes.fr

Labelling Operators
(Programming trickswith MAMBA)

Serge BEUCHER
CMM/ARMINES/Mines ParisTech
June 2014

1. Introduction

The MAMBA image library is basically a mathematiaalorphology library which
contains a large number of efficient and fast molpgical operators. Some of them have
been implemented in C (the watershed transformgé#aglesic reconstruction, a very efficient
particle labelling operator and obviously all thastc neighboring operators used to build
more and more sophisticated ones). However, manah are implemented in Python.
Compared to C, Python brings more flexibility evea slight reduction of the performance
may be awaited. Nevertheless, very fast and effidimnsforms, as erosions and dilations or
filters with large structuring elements, can e#itly be designed in Python.

In some cases, however, specific operators areede&dplementing them in Python requires
then some hints to design sufficiently performimgpathms. Operators involving connected
components or region labelling are particularly aripnt to design filters based on criteria or
attributes or in the definition of residual transhs.

This note describes implementations in MAMBA of soparticle or region labellings. These

operators are used to quickly label each connexietbonent of an image with the result of a
measure applied on it. A typical example of thisdkof operator is the area opening where
each particle of a set is given the value of ieagrefer to the MAMBA examples on the Web

site) but the implementation is more general amdbsaused with other measures.

Other labelling techniques will also be describ&tdey are based on the use of distance
functions associated with reconstructions of theneated components of a binary image or
the cells of a partition image. Here again, an gamnof this kind of approach can be found
with the labelling of connected components withirtiieret diameter (also in the MAMBA
examples). These algorithms mainly use varioukgrio cope with the slowness of operators
performing individual analysis of particles. Thetension of these operators to grey tone
images (that is to the cells of a partition formmdan image) will also be described. To
achieve this, the operators defined on partitiortsdescribed in [1] are used.

Note that no really new morphological operatorngaduced in this paper. Its purpose is
simply to explain some programming tricks which éabeen used to design specific
operators which are not available in the MAMBA &by but nevertheless which can be
realized by means of a clever use of some fast MANIAnsformations.

We shall start our descriptions in the binary cd$en, in the second part, the algorithms will
be extended to partitions.

2. labelling binary sets

Two main labelling techniques will be addresseck fitst one consists in labelling each
connected component with the number of some spegdints which are included in the
connected component. This approach is used, incpknt, in the labelling of sets by their
stereological measures. The second technique ellmas the propagation of a specific pixel
value inside each connected component. This seepuioach obviously uses various
geodesic reconstructions.

2.1. Labelling with stereological measures

In this section, we describe how to label each eoted component of a set with a value
equal to one of its stereological (or Minkowski) asares. Although it is possible, as said
above, to achieve this labelling particle by p#etiche implementation described here is
much more efficient as 255 particles can be prackssparallel.

As explained in another document [2] describing hatereological measures are
implemented in MAMBA, a measure is always performedwo steps: a transformation
which detects some specific points in the set ¥odld by a simple counting of these points. In
2D, three measures are defined:
- The area where the transformation is the ideify simply count the number of pixels in
each connected component).
- The diameter (or diametral variation) in a givéinection where the operator used is a
Hit-or-Miss Transformation (HMT) by a doublet ofipts oriented in the selected direction.
Note that the perimeter of each particle can baiobt, up to a constant, by averaging the
diametral variations in all directions accordinghe Cauchy-Crofton formula [3].
- Obtaining the connectivity number is a little mbre complicated as it requires the use of
two or three HMT transforms. Remind that, in 20 ttonnectivity number is equal, for each
connected component, to one minus its number @shdlherefore, in order to avoid negative
or zero labels which are not very handy, anotheasuee will be used: 1 +snwhere i is the
number of holes. This measure is always positikeves can write:
yv=1-ny

wherev is the connectivity number.
Then:

1+np=2-v

These labellings are achieved by using the cldslsiballing operator of a set which assigns
to each connected component a single integer viallewed by the computation of grey tone
histograms and the use of look-up tables. The dpiato operator getHistogram in
MAMBA) computes, for each grey value, the numbepixkels which are assigned this grey
value in the image. The look-up operatmokup in MAMBA) allows to replace each grey

2

value of an image by another value stored in a -lgoktable. These operators are
implemented efficiently in MAMBA. They are fast tieey require a single scan of the image.

2.1.1. Arealabéelling

Let us describe this implementation in the casehef labelling of each connected
component by its area.
Let X be a binary set made of n connected compsnéniThe labelling operator assigns to
each Xa single value i thus producing a label function f
f(x) =i if xe X
f(x) =0ifx ¢ X (background point)

When computing the histogram of f, each entry thef histogram contains a value h(i) which
is equal to the area@f X; because this connected component is the only deeents pixels
are assigned the grey value i. Therefore, the dniato table can be used as a look-up table to
replace the previous grey value i inside each ociedecomponent Xof X by a new value
equal to its area.a

The practical implementation of the procedure isitanore complex for two reasons. The
first one comes from the fact that both histograsmputation and look-up procedure can
only be applied on greyscale images (8-bit, 25¢ ¢geels). As a set X may contain more
than 255 connected components (the backgroundavesyallabelled with 0), it is not possible
to process all of them at the same time. The seoeasbn is due to the value of the area of
the connected components which may be higher tB&nTherefore, it is not possible to use
directly this value in the look-up operator. In erdo cope with these two problems, firstly,
only 255 particles are processed at the same f{lines, the computing speed is reduced.
However, the process remains 255 times faster ¢hafassical implementation based on
individual analysis. Secondly, the area valuefaeach particle Xis decomposed into four
valuesa® a! a2 and?® according to the following foreaul
a; :éoa{.ZSG

Eacha{ being less than 256, it can be used in aupalable. So, four look-up tables |, I,
and } are defined, each one being applied to the cavrelipg byte plane of the final label
image f'. We have:

aj = h(i)
Then ais decomposed into four value® (al, a?, a3) accordinthe above formula. Each
a{ is loaded in the corresponding look-up table:

,G) = al
Finally, at each point x of the image, the valu¢hef new label image f is given by:

Fi(x) = éo' (f(x)).256

Once the first 255 particles have been procesbed255 following ones are extracted (by
subtracting 255 to the initial label image, thendxyracting the least significant byte plane
and by keeping the labels between 0 and 255) askpsed. The computation stops when all
the particles have been processed.

The MAMBA implementation of this algorithm, calledeal abelling, is given in annex.

As already mentioned above, this procedure has beed in a MAMBA example (see
exampleAl7.py) to perform an area opening of a set. Figure lwshthis area labelling
applied on a set of bubbles.

Figure 1: Labelling of bubbles with their area (note that the label values, in all the figures,
have been normalized in order to be contained in therange[0,255] for an easier display).

2.1.2. Stereological measure labelling

The same algorithm can be used to label particiés their stereological measures as
diametral variations, perimeters and connectivitgnbers.
Let us see how it works with the diameter in theizemtal direction. We know that this
measure is equal, for each connected componend, aigcalar factor (which will be dicarded
in the labelling) to the number of (01) configuosis (also called intercepts) in the component
[2]. Therefore, labelling each component with itandeter is straightforward and performed
in two steps:
- Detection of all the (01) configurations in thmage (with a HMT transform where the
origin of the structuring elements is put on thpixel in order to be sure that the detected
points fall inside X).
- Infimum of the previous set with the original &led image and application of the
previously described procedure to this new labeheage.
We see immediately that for each particle labelleth the value i, only intercept points
corresponding to this particle will receive the gsalabel in the new image. Therefore the
histogram calculation and the look-up tables wafplace this initial value i by the diameter
value.
To achieve this, a general transform caleehsur el abelling (see the annex) is designed. It
takes two input images, the image of the partitddse labelled and the image containing the
pixels to be counted to obtain the measure. Thaxequure is almost identical to the
areal abelling one. We just added a new input image containiegpilkels obtained by the
measure transformation and the infimum of this ienagd the initial label image.

The diameter Labelling procedure provides the general implementatiorhisf labelling by
diameters (Figure 2).

]‘|0") ®
10, ’i‘&'
80 G

AN o

Figure 2: Labelling particles with their horizontal diametral variations.

Labelling each connected component with its numifeholes n (or more precisely, as
explained above, withyn+ 1) is a little bit more complex. However, itlktiuses the
measur el abelling procedure. Let us explain this on the hexagondl §¥e know that the
connectivity number (Euler-Poincaré constant) @Deset is given by:

0 0 0
IR
that is the difference of the number of occurrentehese two triangular configurations.
These configurations can be extracted by meangmbariate HMT transforms.
The number of holes of each particlg & (Xi) is equal to:
NH(Xi) =1-v;
wherev; is the connectivity number of the particle X

Figure3: Labling pértl cles with their number of holes +1. The purple particleis labelled
with value 485. Its connectivity number is equal to -483. This connected component contains 484
holes.

We want to label this particle with the valie- ny(X;) =2-v; . do this, we can define

. . 0 , i
two label images;land }. I, contains as labels the numbe{o? 1] configuratians

each particle of the initial image andhe number OE 1 0 1 J configurations (once again,

take care of choosing the origin of the HMT struictg elements among the 1-pixels). Then,

the final label image | containing the value ny(X;) fack particle Xis given by:
[=2+12-14

This function is always strictly positive insideetparticles.

Figure 3 gives an example of the use of the prasedamedolesL abelling.

2.2. Labelling with other measures

It is possible to label connected components aftaswith other measures. This can be
done by using the geodesic reconstruction whichpayates in the entire connected
component a value which has been determined bgafspprocedure.

2.2.1. Labdling with the Feret diameter

A typical example of this kind of labelling is tljeorizontal or vertical) Feret diameter
labelling. This example is also given in the MAMB¥kamples (seexampleA20.py). Let us
explain how it is performed for the horizontal Redt@meter.

Consider an image with a width equal to w and aliteequal to h. The first step of the
procedure consists in generating a distance fumctiavhich will be equal, for each pixel of
coordinates (x, y) of the image, to d(x, y) = x #This distance function can be obtained
easily and rapidly by generating a binary setriiliall the image except a vertical line at the
left side (Figure 4a) and by computing the distarfomction of this set (with
computeDistance). Then, we add 1 to this image (Figure 4b).

() (b)
Figure 4. The distance function (b) of the binary image (a) is used as a template in the set
labelling with the Feret diameter.

The second step consists in performing the infinhetween this distance function and the
indicator function of the original image X (thisdieator function takes the maximum value
for each point belonging to X). We obtain then avrfanction where, in each connected
component, its maximal value is equal to 1 + thigdst x-coordinate of all the vertical lines
cutting this component. If we perform a geodestonstruction of the indicator function with

this distance function, each connected componéhtbwilabelled with a value equal to this
maximal x-coordinate + 1. Let us denot¢his label image. Conversely, if we perform a dual
geodesic reconstruction, we obtain another labelgean} containing for each connected
component the lowest x-coordinate of all the vaftimes cutting this component. We can
get the label image | corresponding to the horialoRéret diameter by:

[=11-12+1

A similar operator can be defined for the verti€atet diameter (Figure 5).
This operator nameiay etDiameter L abelling is described in the annex.

\\

Figure 5: Example of Feret horizontal and vertical diameters labellings.

2.2.2. Labdling with volumes

Another interesting procedure consists in labelloognected components of a set X
with the volume of the restriction of a functiomside each connected component of X.
Let X be a set and f a function with positive irdegalues. We have:
X=QK
each Xbeing a connected component of X.
We can measure the volumeo¥ the function f inside each connected compoignt
Vi =){ f(x)dx

The function f can be decomposed in the i‘ollowinag/w
-1
f(x) = 3, a(x)2"
with ax(x) € [0, 1] and n the number of bits in the decomposition
Then, we have:

-1 -1 -1
0k = | T ax)2%dx = X | ax)2%dx= X 2¢ | a(x)dx
X; X; k=0 k=0 X; k=0 X;

For a given value k);v ax(x)dx is equal to the area of thersection of Xwith the bit plane k

of f.
Once again, theneasurel abelling procedure can be used to achieve this volumeliiapel
The following algorithm can be designed If f isidefl with n bits, we have:

Initialize the final label image | with O.

For k =0 to (n-1), do:
Extract the k-th bit plane,Df f
Label X with the area of the intersectidpn X . Leté the label function
Let | =1+ 2l

.

() (d)
Figure 6: Thelower catchment basins of the initial image (a) are extracted (b), in red
(minimain yellow. Their volume (c) isused in their labelling (d).

This labelling can be used in various operatiordume-controlled watershed transform,
labelling of the contours of a segmentation by déverage value of the gradient on each
contour, for instance.

This procedure, callegblumel abelling, is defined in the annex.

Figure 6 illustrates the use of this operator for labelling of lower catchment basins with
their volume.

3. Labelling partitions

The same operators can be defined on partitiortheasare defined in [1] instead of
binary connected components provided that eachotdie partition is assigned a single and
unigue label value. In this case, labelling eadhvaéh the number of points which fall inside
it is made by means of the same algorithm as tlkeepoesented above: all the points falling in
one cell are given the label of the cell and theimber is obtained by the histogram. The new
labelling is performed by the look-up table defirmdthe histogram.

However, when a partition corresponds to the difiiérflat zones of a function according to
the general definition given in [1], this approatdes not work as different cells may have the
same label. Therefore, on this kind of partitiomeav labelling must be performed where
each cell is assigned a single and unique labelevainfortunately, this procedure does not
exist in the current MAMBA release (it will likelye added in a future one).

3.1. General partition labelling

It is, nevertheless, possible to design a procetiuréabelling general partitions. This
procedure uses a special image together with tbenstruction operators available in the
partition.py module [1]. The first step consists in generaangmage of size (w, h) where a
pixel with (x,y) coordinate is given the value xwy + 1.

Figure 7: Template image used for the partition labelling.
9

To do so, we start by computing a first distancecfion d of the set X obtained by an
horizontal size 1 linear erosion of the full binanage, as already explained in section 2.2.1.

Then, we compute a similar distance functigrfrdm the vertical linear erosion of the full
binary image:

We know that these two distance functions can Hairdd very quickly by means of the
computeDistance operator (with the options FILLED and SQUARE s@éf)en, the template
image is obtained by:

wd, +d; +1
Where w is the width of the image (Figure 7).

Figure 8: Initial partition image (upper image). A first partition labelling (the lower left
image corresponds to its low byte plane, the lower right image to the higher byte plane).
Unfortunately, a great number of label values are not used.

The second step simply uses ttelsBuild function introduced in [1]. This operator is
applied on the partition f with the previous tentplanage as marker. Each cell of the initial

10

partition is marked by a certain number of pixdishe template image. All the marker values
are different and the reconstruction replaces it value of each cell by the maximum
value taken by the template image in the correspgndell. The result provides a new
partition where each cell is given a unique vakigyre 8).

However, this labelling is not very interesting isis very hollow: it is not made of
consecutive values. Therefore, this labelling isswtable for extracting 255 cells in parallel
as it is required to accelerate the processingdsaeshown previously.

It is possible, however, to go further and to ab&better labelling where the label values are
consecutivg from 1 to the total number of cells in the paotit To achieve this, the first step
consists in extracting the points of the imagevitiich the previous label image is equal to
the template image. For each cell of the partitibare exists one and only one pixel fulfilling
this condition. Therefore, one could think thatdkilbg this set of points would assign to each
one a unique label value. Unfortunately, it is mio¢ case because points belonging to
different cells can nevertheless be connected backshe same label value. To cope with
this problem, a further step is needed. For tmstltger template image must be generated. It
is formed of a grid of points, each one been astce equal to 2 from its neighbors (Figure
9).

Figure 9: Grid of points used to separate adjacent points before labelling them. The right
image is a zoom of the left one.

This set can be obtained very rapidly by simplyraoting the lowest bit planes of the
previous intermediary;cand d distance images (remind that w and h are alwaga eaumber

in Mamba) and by intersecting them. By intersecthmginitial set of points with this grid and

with its three translations in the east, south aadth-east directions, we split this set of

Y In fact, the label operator in Mamba does not peeda labelling with consecutive values. Some of
them are not used. See the annex for further detall

11

points in four subsets of disconnected points wienh be labelled. The four label images can
then be combined to produce the final label imadere each point is assigned a unique
value. This combination is performed by addinghe turrent label image a constant value
equal to the number of points already processedgratiding this current label image to the
final one. This final label image is used throubk cellsBuild procedure to get the final
partion labelling. This procedure, callgzhrtitionLabel, is defined in the annex. This
procedure returns the number of labelled cells. @ioeedure generateT emplates, defining
the two template images can also be found in thexan

An example of such a dense labelling is shown gufg 10. Remind, however, that some
label values are not used (approximately 1 over.2N6te also that, contrary to thabel
procedure where missing values are multiple of 266, missing values are distributed at
irregular intervals.

Figure 10: Partition image (tools) labelling. The number of cellsis equal to 1511, but the

maximum label value is 65536, which means that many values have not been used.
3.2. Exampleof use

This patrtition labelling can be used to label panti cells with stereological measures.
The procedure described for labelling binary partg with measuresreasur el abelling)
can be used again. We just need to replace thelirdbel operator by this new
partitionLabel operator. ThepartitionM easurelL abelling operator which can be found in
the annex implements this procedure. Note that, tduthe specific characteristic of the
partition labelling (lack of some values), the paeder which controls the process is no
longer the number of particles, but the maximunelaalue instead.

This operator can be used to label each cell ddratipn with its area (Figure 11). We just

have to use a filled image as the measure imagkeeiroperator. Each cell will be labelled
with a value equal to the number of points it corga

12

Other measures (diameters, connectivity numbens)atso be used. Getting the measure
images can be performed by using the partitiondrti#iss transform, as it is defined in the
MAMBA partition module €ellISHMT).

Figure 11: Area labelling of the tools pa?titin image.
3.3. Other labellings

Labelling partitions with the Feret diameters o€leaell is even simpler. The maximal
coordinate labelling of each cell is produced bg ¢thllsBuild operator with the marker
image described in Figure 4. The minimal coordifabelling is obtained with the dual cell
reconstruction (I let the reader guess how to yefThe Feret diameter labelling of each cell
is equal to the difference between these two ingerate label images.

4. Conclusions

As mentioned in the introduction, this paper doatsdescribe any new concept. Its
purpose is only to introduce various techniqudalel sets or partitions.

Very often, measuring is the last step of an imagaysis process. However, many powerful
morphological operators, called adaptive transforane controlled by another image which
indicates, for each pixel, either the kind of tfansation to be applied locally or simply its
size. This controlling image can be obtained byoter means. It can be the result of another
transform (as a residual transform for instance)t@an be produced by a local measure
which is mapped on the image, hence the interesthid set labelling operators presented
here.

Beside the examples described here, the readefimdllother examples of this labelling in
the MAMBA examples (traffic lanes segmentationfficameasurement, vehicles detection
and counting, segmentation of a heap of rocks f@luating its size distribution). By
allowing to design local measure maps, these lalgetechniques change dramatically the

13

role of these measures in image analysis. Thegatenger the final step of a process but, on
the contrary, the starting point for a better colntf adaptive operators.

Extending these labelling techniques to partitimslso of primary importance as many
morphological operators can be applied on parttiomhich are considered as dual
representations of graphs. It is the case, forants#, of the watershed transform or the
hierarchical segmentations. Using partitions irgteflagraphs appears to be simpler because it
is not necessary to build the graph and to transfagain the result into an image at the end
of the operation. Moreover, when the number ofsasllimportant, using graphs becomes less
and less effective. But working with partitions u@gs , on the one hand, efficient operators
to deal with them and, in the other hand, flexilalleelling algorithms to build them. These
first operators are described in [1], whereas tluge is devoted to the description of these
labelling algorithms (which widely use partitioneyptors).

Some of these operators extensively use algorithiméks in order to enhance their
performance. Although this performance is suppdasetie lower than a C/C++ language
implementation would provide, we gain in flexibfiand versatility. So, we hope that this
document will provide some ideas for designing sgecific labellings.

5. References

[1] Serge BEUCHERBasic Morphological Operators Applied On PartisoiVeb publi-
cation, March 2013. Available at http://cmm.ensmipldeucher/publi/Partitions.pdf.

[2] Serge BEUCHER: Measures in Mamba. Web publicatiJanuary 2011. Available at
http://cmm.ensmp.fr/~beucher/publi/Measures in Mamf.

[3] Jean SERRAImage Analysis and Mathematical Morphology - AcadeRress, 1982

6. Annex

The MAMBA source code of the various operators dbsed in this document are given
here. They work only with the version 1.1.3 of libeary (released in June 2014).

Warning! Thelabel operator in MAMBA does not use label values midtipf 256 (see the
MAMBA user manual). This feature explains how sooperators have been programmed.
Note also that theartitionLabel operator does not use all the label values. Howyetie
missed values are not necessarily multiple of 256.

||||||

||||||

Importing mamba and mambaComposed.
from mamba import *
from mambaComposed import *

The area labelling procedure is defined.
14

def arealLabelling(imln, imOut):
Labelling of each particle of the binary image 'imIn* with the value of its
area. The result is put is the 32-bit image 'imOut'.

Working images.

imWrk1 = imageMb(imin, 32)
imWrk2 = imageMb(imin)
imWrk3 = imageMb(imin, 8)
imWrk4 = imageMb(imin, 8)
imWrk5 = imageMb(imin, 8)
imWrk6 = imageMb(imin, 32)

Output image is emptied.
imOut.reset()
Labelling the initial image and setting the number of particles.
nbParticles = label(imIn, imWrk1)
Defining 4 output LUTs embedded in a single list.
outLuts = [[O for i in range(256)] for i in range(4)]
Start of the loop.
while nbParticles > 0:
particles with labels between 1 and 255 are extracted.
Mask of the values between 0 and 255 converted into a
greyscale image.
threshold(imWrk1, imWrk2, 0, 255)
convert(imwWrk2, imwWrk3)
Extraction of the least significant byte plane of the label
image and selection of the labels between 0 ans 255.
copyBytePlane(imWrk1, 0, imWrk4)
logic(imWrk3, imWrk4, imWrk3, "inf")
The histogram is computed. This operation is not performed
on the image but simply on the histogram.
histo = getHistogram(imWrk3)
The same operation is performed for the 255 particles.
for iin range(1, 256):
The area of each patrticle is obtained from the histogram.
value = histo[i]
j=3
The area value is splitted in powers of 256 and stored in the four
output LUTs.
while j >= 0:
n=2x(8*j)
outLuts[j][i] = value / n
value = value % n
j-=1
each LUT is used to label each byte plane of a temporary image with the
corresponding value.
for iin range(4):
lookup(imWrk3, imWrk5, outLuts[i])
copyBytePlane(imWrk5, i, imWrk6)
The intermediary result is accumulated in the final image.
logic(imOut, imWrk6, imOut, "sup”)

15

256 is subtracted from the initial labelled image in order to process
the next 255 patrticles. substracting 256 (instead of 255) comes from the fact
that the label operator does not use label values which are multiple of

256.
floorSubConst(imWrk1, 256, imWrk1)
nbParticles -= 255

Note that the above area labelling can also be obtained by the following operation:

measureLabelling(imln, imin, imOut)
(See below).

The measure labelling procedure is defined.

def measureLabelling(imin, imMeasure, imOut):
Labelling each particle of the binary image 'imin* with the number of pixels
in image 'imMeasure' contained in each particle. The result is put is the 32-bit
image 'IimOut'.

Working images.

imWrk1 = imageMb(imin, 32)
imWrk2 = imageMb(imin)
imWrk3 = imageMb(imin, 8)
imWrk4 = imageMb(imin, 8)
imWrk5 = imageMb(imin, 8)
imWrk6 = imageMb(imin, 32)

Output image is emptied.
imOut.reset()
Labelling the initial image.
nbParticles = label(imIn, imWrk1)
Defining output LUTSs.
outLuts = [[O for i in range(256)] for i in range(4)]
Converting the imMeasure image to 8-bit.
convert(iimMeasure, imWrk4)
while nbParticles > 0:
particles with labels between 1 and 255 are extracted.
threshold(imWrk1, imWrk2, 0, 255)
convert(imwWrk2, imwWrk3)
copyBytePlane(imWrk1, 0, imWrk5)
logic(imWrk3, imWrk5, imWrk3, "inf")
The points contained in each particle are labelled.
logic(imWrk3, imWrk4, imWrk5, "inf")
The histogram is computed.
histo = getHistogram(imWrk5)
The same operation is performed for the 255 particles.
for iin range(1, 256):
The number of points in each particle is obtained from the histogram.
value = histo[i]
j=3
This value is splitted in powers of 256 and stored in the four
output LUTSs.
while j >= 0:

16

n=2x(8*j)
outLuts[j][i] = value / n
value = value % n
j=1
each LUT is used to label each byte plane of a temporary image with the
corresponding value.
for iin range(4):
lookup(imWrk3, imWrk5, outLuts[i])
copyBytePlane(imWrk5, i, imWrk6)
The intermediary result is accumulated in the final image.
logic(imOut, imWrk6, imOut, "sup”)
256 is subtracted from the initial labelled image in order to process
the next 255 patrticles (see above).
floorSubConst(imWrk1, 256, imWrk1)
nbParticles -= 255

The diameter labelling procedure is defined.
def diameterLabelling(imin, imOut, dir, grid=DEFAULT_GRID):
Labels each connected component of the binary image 'imIn* with its diameter in
direction 'dir'. The labelled image is stored in the 32-bit image 'imOut'.
This procedure works on hexagonal or square grid.
'dir' can be any strictly positive integer value.

dir = ((dir - 1)%(gridNeighbors(grid)/2)) +1

imWrk = imageMb(imin)

The intercept points in direction 'dir* are stored in imWrk.
copy(imin, imWrk)

diffNeighbor(imin, imWrk, dir, grid=grid)

They are used for the labelling.

measurelLabelling(imln, imWrk, imOut)

Labelling each particle with its number of holes (up to 1).

def holesLabelling(imin, imOut, grid=DEFAULT_GRID):
Labels each particle in 'imIn' with a value equal to its number of holes +1.
The result is put in 32-bit image 'imOut'.

Working images.
imWrk1 = imageMb(imin)
imWrk2 = imageMb(imin, 32)

Initializing the label image with 2.
convertByMask(imin, imOut, 0, 2)
The procedure on the hexagonal grid requires only two HMT operators.
if grid == HEXAGONAL.:
Determining the 2nd configurations in the connectivity number calculation.
and adding their number to the label image.
hitOrMiss(imin, imWrk1, 2, 5, grid=grid)
measurelLabelling(imin, imWrk1, imWrk2)
add(imOut, imWrk2, imOut)

17

Determining the 1st configurations and subtracting them to get the
number of holes + 1.
hitOrMiss(imlIn, imWrk1, 66, 1, grid=grid)
measurelLabelling(imin, imWrk1, imWrk2)
Whereas three MHT operators are required for the square grid.
else:
Second configuration points are extracted and used for the labelling.
hitOrMiss(imln, imWrk1, 16, 41, grid=grid)
measurelLabelling(imin, imWrk1, imWrk2)
add(imOut, imWrk2, imOut)
First configurations are extracted and used for the labelling.
hitOrMiss(imlIn, imWrk1, 56, 1, grid=grid)
measurelLabelling(imin, imWrk1, imWrk2)
sub(imOut, imWrk2, imOut)
Third configurations are processed.
hitOrMiss(imlIn, imWrk, 40, 17, grid=grid)
measurelLabelling(imin, imWrk1, imWrk2)
sub(imOut, imWrk2, imOut)

def feretDiameterLabelling(imin, imOut, direc):
The Feret diameter of each connected component of the binary image 'imin'
is computed and its value labels the corresponding component. The labelled
image is stored in the 32-bit image 'imOut'.
If 'direc’ is "vertical", the vertical Feret diameter is computed. If it is
set to "horizontal", the corresponding diameter is used.

imWrk1 = imageMb(imin, 1)

imWrk2 = imageMb(imin, 32)
imWrk3 = imageMb(imin, 32)
imWrk4 = imageMb(imin, 32)

imWrk2.fill(1)
if direc == "horizontal":
dir=7
elif direc == "vertical™
dir=1
else:
dir=-1
The above statement generates an error (‘direc’ is not horizontal or
vertical.
An horizontal or vertical distance function is generated.
linearErode(imwWrk1, imWrk1, dir, grid=SQUARE, edge=EMPTY)
computeDistance(imWrkl1, imOut, grid=SQUARE, edge=FILLED)
addConst(imOut, 1, imOut)
Each particle is valued with the distance.
convertByMask(imIn, imWrk2, 0, computeMaxRange(imWrk3)[1])
logic(imOut, imWrk2, imWrk3, "inf")
The valued image is preserved.
copy(imwrk3, imWrk4)
Each component is labelled by the maximal coordinate.
build(imWrk2, imWrk3)

18

Using the dual reconstruction, we label the particles with the
minimal ccordinate.

negate(imwWrk2, imwWrk2)

logic(imWrk2, imWrk4, imWrk4, "sup")

dualBuild(imWrk2, imWrk4)

We subtract 1 because the selected coordinate must be outside the particle.
subConst(imWrk4, 1, imWrk4)

negate(imwWrk2, imwWrk2)

logic(imWrk2, imWrk4, imWrk4, "inf")

Then, the subtraction gives the Feret diameter.
sub(imWrk3, imWrk4, imOut)

def volumeLabelling(iminl, imIn2, imOut):
Each connected component of the binary image 'iminl' is labelled with the volume
of the greyscale image 'imin2' inside the this component. The result is put in
the 32-bit image 'imOut'.

imWrkl1 = imageMb(iminl)
imWrk2 = imageMb(iminl, 32)
imWrk3 = imageMb(iminl, 8)

imOut.reset()
n = imin2.getDepth()
Case of a 8-bit image.
if n==28:
for iin range(8):
Each bit plane is extracted and used in the labelling.
copyBitPlane(imIn2, i, imWrk1)
measurelLabelling(iminl, imWrk1, imWrk2)
The resulting labels are combined to obtain the final one.
V=2 %
mulConst(imWrk2, v, imWrk2)
add(imOut, imWrk2, imOut)
else:
for jin range(4):
each byte plane is treated.
copyBytePlane(imin2, j, imWrk3)
for iin range(8):
copyBitPlane(imWrk3, i, imWrk1)
measureLabelling(iminl, imWrk1, imWrk2)
V=2*(8*]+1)
mulConst(imWrk2, v, imWrk2)
add(imOut, imWrk2, imOut)

def generateTemplates(imOutl, imOut2):
this procedure generates two template images. The first one, 'imOutl’, is
a 32-bit image where each pixel value is different. The second one, 'imOut2’,
is a binary image containing a grid of points at a distance 2 apart.

imWrk1 = imageMb(imOutl, 1)
imWrk2 = imageMb(imOutl, 1)

19

imWrk3 = imageMb(imOutl)
imWrk4 = imageMb(imOutl, 8)

imWrk2.fill(1)

Generation of the first distance function.

linearErode(imWrk1, imWrk2, 7, grid=SQUARE, edge=EMPTY)
computeDistance(imWrk2, imWrk3, grid=SQUARE, edge=FILLED)
addConst(imWrk3, 1, imWrk3)

Generation of the second distance function.
linearErode(imWrk1, imWrk2, 1, grid=SQUARE, edge=EMPTY)
computeDistance(imWrk2, imOutl, grid=SQUARE, edge=FILLED)
Generation of the grid.

copyBytePlane(imWrk3, 0, imWrk4)

copyBitPlane(imWrk4, 0, imWrk2)

copyBytePlane(imOutl, 0, imWrk4)

copyBitPlane(imWrk4, 0, imOut2)

diff(imWrk2, imOut2, imOut2)

Generation of the template image.

w = imOutl.getSize()[0]

mulConst(imOutl, w, imOutl)

add(imOutl, imWrk3, imOutl)

def partitionLabel(imln, imOut):
This procedure labels each cell of image 'imin' and puts the result in
imOut'. The number of cells is returned. 'imIn' can be a 8-bit or a
32-bit image. 'imOut’ is a 32-bit image.
Warning! The label values of adjacent cells are not necessarily
consecutive.

nnn

imWrk1 = imageMb(imin, 32)
imWrk2 = imageMb(imin, 1)
imWrk3 = imageMb(imin, 32)
imWrk4 = imageMb(imin, 32)
imWrk5 = imageMb(imin, 1)
imWrk6 = imageMb(imin, 1)
imWrk7 = imageMb(imin, 32)

generation of the two templates.
_generateTemplates(imWrk1, imWrk2)
copy(imwrk1, imWrk3)
copy(imwWrk2, imWrke6)
The output image is reset.
imOut.reset()
if imlIn is 8-bit, it is converted into a 32-bit image.
if imin.getDepth() == 8:
copyBytePlane(imin, 0, imWrk4)
else:
copy(imin, imWrk4)
The initial imge is copied for later use.
copy(imwWrk4, imWrk7)
First labelling (hollow one).

20

cellsBuild(imWrk4, imWrk3)
Extraction of a single point in each cell.
generateSupMask(imWrk1, imWrk3, imWrk5, False)

nb=0
v=0
dir=3

Separation of the adjacent points and construction of the final
label image.
for iin range(4):
logic(imWrk5, imWrk6, imWrke, "inf")
nbl = label(imWrk6, imWrk4)
Compute the maximal label value for the current points.
vl = computeRange(imWrk4)[1]
convertByMask(imWrk6, imWrk3, 0, v)
add(imwrk4, imWrk3, imWrk3)
logic(imOut, imWrk3, imOut, "sup”)
nb = nb + nbl
v=v+yvl
shift(imWrk2, imWrké, dir, 1, 0, grid=SQUARE)
dir+=1
cellsBuild(imWrk7, imOut)
return nb

def partitionMeasureLabelling(imin, imMeasure, imOut):
Labelling each cell of the greyscale or 32-bit image 'imiIn’ with the number of pixels
in image 'imMeasure' contained in each particle. The result is put is the 32-bit
image 'ImOut'.

Working images.

imWrk1 = imageMb(imin, 32)
imWrk2 = imageMb(imin, 1)
imWrk3 = imageMb(imin, 8)
imWrk4 = imageMb(imin, 8)
imWrk5 = imageMb(imin, 8)
imWrk6 = imageMb(imin, 32)

Output image is emptied.

imOut.reset()

Labelling the initial image.

nbParticles = partitionLabel(imIn, imWrk1)

maxlabel = computeRange(imWrk1)[1]
Defining output LUTSs.

outLuts = [[O for i in range(256)] for i in range(4)]

Converting the imMeasure image to 8-bit.

convert(iimMeasure, imWrk4)

while maxlabel > 0:
particles with labels between 1 and 255 are extracted.
threshold(imWrk1, imWrk2, 0, 255)
convert(imwWrk2, imwrk3)
copyBytePlane(imWrk1, O, imWrk5)
logic(imWrk3, imWrk5, imWrk3, "inf")

21

The points contained in each particle are labelled.
logic(imWrk3, imWrk4, imWrk5, "inf")
The histogram is computed.
histo = getHistogram(imWrk5)
The same operation is performed for the 255 particles.
for iin range(1, 256):
The number of points in each particle is obtained from the histogram.
value = histo[i]
j=3
This value is splitted in powers of 256 and stored in the four
output LUTSs.
while j >= 0:
n=2x(8*j)
outLuts[j][i] = value / n
value = value % n
j-=1
each LUT is used to label each byte plane of a temporary image with the
corresponding value.
for iin range(4):
lookup(imWrk3, imWrk5, outLuts[i])
copyBytePlane(imWrk5, i, imWrk6)
The intermediary result is accumulated in the final image.
logic(imOut, imWrk6, imOut, "sup”)
256 is subtracted from the initial labelled image in order to process
the next 255 patrticles (see above).
floorSubConst(imWrk1, 255, imWrk1)
maxlabel -= 255

22

