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Abstract

The problem of the junction between a cylinder and a truncated
cone at frequencies below the first cutoff of the cylinder is investigated,
in particular for the case of acute angles. An analytical model of the
matching of a cylinder and a truncated cone is derived for the general
case of a cone of finite length having a known terminal impedance.
When the cone is infinite and the angle is right, the problem is sim-
ilar to the classical problem of a tube radiating in an infinite baffle.
The model is based on a general formulation of the junction of several
waveguides at low frequencies (when only the fundamental mode prop-
agates in each guide), and on the assumption that at high frequencies,
the radiation impedance of the cylinder is equal to its characteristic
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impedance. The model has the form of an equivalent circuit, and in-
volves several parameters related to the geometry (the areas of the
surfaces defining the matching cavity and the volume of this cavity).
In addition, the model requires one supplementary parameter only,
i.e., the zero frequency value of the added mass (or length correction),
which has to be determined numerically (the Finite Element Method
is used). Analytical and numerical results agree very well at low and
moderate frequencies, up to the cutoff of the first higher-order mode.
For the radiation into an infinite flange, the results improve upon those
in a recent publication that were obtained by optimization. The case
of obtuse angles is more complicated and is briefly discussed. Finally
for the case of infinite cones, the reflection coefficient is compared to
that obtained in previous studies.

keywords: conical tubes, acoustic radiation impedance, cylinder-cone,
wind instruments

1 Introduction

The calculation of the radiation of tubes into infinite space, when only the
fundamental, planar mode propagates, is a classical issue: the definitive pa-
pers are by Levine and Schwinger [1] for a tube without flange and Norris
and Sheng [2] for a tube in an infinite flange. Conversely the more general
problem of the radiation of a cylindrical tube into a conical tube has been
rarely treated using analytical methods, but Chester [3] and Martin [4] gave
interesting formulas for the case of small angles. The present paper inves-
tigates this problem, but generalizes it by considering the possibility of a
finite length for the truncated cone. In other words, the matching of pla-
nar waves in a cylinder and spherical waves in a truncated cone is studied.
Radiation will be a particular case when the cone is infinite. The basis of
the study is a general formulation for the junction of several waveguides at
low frequencies [5], i.e., when only the fundamental mode propagates in each
guide.

Figure 1 shows the geometry of the problem. Both tubes are without
mean flow and with perfectly rigid walls: thus the fundamental modes are
uniform modes in both tubes, i.e. their amplitude is constant in the trans-
verse dimensions of the guides (on a plane for the cylindrical tube; on a
spherical cap for the conical one). The subscript 0 refers to the output of the
cylinder, while the subscripts 1 and 2 correspond to the input and output of
the truncated cone. ϑ is the half-angle at the cone apex.
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Figure 1: Geometry of the problem. The total length of the cone is x2 =
`+x1, the half-angle at the apex is ϑ. The plane surface, S0 = π2r0 (dashed-
dotted line) and the spherical cap S1 = 2πx21(1− cosϑ) (dashed line) define
the junction of the two waveguides.

Section 2 describes the transfer matrix for the fundamental mode of spher-
ical waves in a truncated cone. Section 3 presents the problem as a junction
of two waveguides and the formulation as an equivalent electric circuit. Sec-
tion 4 shows that this formulation, together with an assumption concerning
the high frequency behavior, leads to a general approximate formula for the
output impedance of the cylinder. With the knowledge of the geometry and
only one supplementary parameter, which is the added mass at zero fre-
quency, it is possible to deduce a complete impedance curve at frequencies
lying below the cutoff of the first-order higher mode in the cylinder. This is
the main result of the present paper. For the particular case of an infinite
cone and an angle ϑ = π/2, this formula is compared with the exact result
given by Norris and Sheng [2].

For other values of ϑ, no exact result is available. The Finite Element
Method (FEM) is used for the case of cones of finite length, and this allows
the added mass to be determined and then the comparison of the analytical
formula with the numerical result. Section 6 presents the problem of obtuse
angles. Finally, Section 7 presents the results of Chester [3] and Martin [4]
in comparison with those given by the present method, for the case of an
infinite cone.
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2 Input admittance of a conical tube

Using a change in variables, the propagation of the fundamental mode of
spherical waves can be classically described by a transfer matrix identical to
that of planar waves (see e.g. [6]), as follows:(

P1

Ṽ1

)
=

x2
x1

(
cos k` jρc sin k`

j(ρc)−1 sin k` cos k`

)(
P2

Ṽ2

)
(1)

with Ṽi = Vi −
Pi

jkρcxi
i = 1, 2

The equation is written in the frequency domain. Pi and Vi are the acous-
tic pressure and velocity at the distance xi from the apex, j2 = −1 (the
assumed time dependence is exp(jωt)), c the speed of sound, ρ the gas den-

sity k = ω/c, ω the angular frequency, ` = x2 − x1. The quantity Ṽi can
be called the symmetric velocity, because the asymmetric transmission line
corresponding to spherical waves becomes symmetrical with this appropriate
choice of variables. This allows a symmetric acoustic admittance, Ỹi to be
defined as:

Ỹi =
SiṼi
Pi

= Yi −
Si

jωρxi
(2)

where Si is the area of a spherical cap at distance xi from the apex, which is
equal to Si = 2πx2i (1− cosϑ), with sinϑ = r0/x1.

The fundamental mode is the only propagating mode up to the cutoff
frequency of the first higher-order mode. In Ref. [7], an approximate formula
is given for this frequency, which depends on the abscissa in the cone (thus
on the radius r at this abscissa). We write it in the following form:

kr =
√
µ(µ+ 1) sinϑ with µ =

3.832

ϑ(1 + 0.14ϑ)
. (3)

When ϑ tends to 0 (case of a cylinder), kr tends to the well known value of
3.832 for a cylindrical tube. For ϑ increasing toward π/2, the value of kr
decreases monotonically to

√
6 = 2.45 (µ = 2).

3 Matching of a cylinder and a truncated cone

In Ref. [5], a general formulation for the junction of several cylindrical guides
was proposed. The formulation takes into account the existence of evanescent
modes in the different guides and allows matching the propagating modes.
For the junction of two guides (with indices 0 and 1), either cylindrical or
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conical, with only one mode propagating in each, the matching of the prop-
agating modes in the two guides reduces to (see Appendix A for the deriva-
tion):(

P0

P1

)
=

[
ρc2

jωV

(
1 1
1 1

)
+ jω

(
M00 M01

M10 M11

)
+O(ω3)

](
U0

−U1

)
(4)

P0,1 and U0,1 are the acoustic pressure and flow rate of the fundamental mode,
respectively. The subscripts 0 and 1 are related to the surfaces defining the
junction cavity: these surfaces can be chosen arbitrarily, but it is convenient
to use a cavity as small as possible. The shape of the first matrix is due
to the mass conservation (V is the volume of the junction). The minus
sign before U1 is used for convenience for ensuring the symmetry of the
input and output, thus for exhibiting the symmetry of the matrix M (which
is due to reciprocity). In this paper, bold characters are used for vectors
and matrices. M is proportional to the density ρ. The elements Mij, which
represent the effect of evanescent modes on both sides of the junction, can be
calculated by solving the Laplace equation (for an incompressible fluid). The
terms of higher order in frequency (ω3) are matrices depending on both the
compressibility and the density. Equivalently, they could be replaced by a
variation of the elements of the matrix M with frequency, writing a quantity
like M + ω2M ′ as M(ω). However the present paper is limited to the first
order.

Equation (4) is assumed to be valid below the cutoff frequencies of the
first higher order mode in each guide. The equivalent electrical circuit is
shown in Fig. 2. The result is formal, because the method is in general not
an effective computation method of the elements of the matrices.

The matching volume between the output of the cylinder and the input
of the truncated cone (see Fig. 1) has the following expression:

V = πr30
sinϑ [2 + cosϑ)]

3 [1 + cosϑ]2
. (5)

It is convenient to reduce the problem by using dimensionless variables: the
impedances are reduced by the characteristic impedance of the cylindrical
tube, Zc0 = ρc/(πr20). Lowercase characters are used for the dimensionless
variables (e.g. y1 is the dimensionless version of Y1 in Eq. (2)). kr0 is the
reduced frequency, and the Laplace variable is noted s = jkr0. The following
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Figure 2: Equivalent electrical circuit of the junction between the two guides.
The subscripts 0 and 1 correspond to the cylindrical and conical guides,
respectively. C01 = V/ρc2, where V is the volume of the junction.

expressions are found:

y1 = ỹ1 +
1

sm1

, with m1 =
ζ

sinϑ
; ζ =

1 + cosϑ

2
; (6)

jω
V

ρc2
ρc

πr21
= sc01 with c01 =

V

πr30
; (7)

jωMij
πr21
ρc

= smij, where mij = Mij
πr0
ρ

(8)

ζ is the ratio of plane to spherical surfaces. The output impedance z0 =
P0/U0 of the cylindrical tube is given by Eq. (4), or by the equivalent circuit
of Fig. 2. After some algebra, it is found to be:

z0 =

[
1
y1

+ sm11 − sm10

] [
1

sc01
+ sm10

]
[

1
sc01

+ 1
y1

+ sm11

] + s(m00 −m10). (9)

4 General formulas for the output impedance

of the cylinder

The above formula is valid whatever the output admittance of the cone at
the surface S2. However some knowledge concerning the particular case of
infinite cones will be useful for determining the masses mij.
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4.1 Conditions for the case of an infinite conical tube

Consider an infinite conical tube. It is assumed that for any value of ϑ, the
high-frequency asymptotic value of a radiation impedance z0 is the character-
istic impedance Zc0 of the fundamental mode in the cylinder. Relationships
between the masses mij are sought by using this assumption. At the input

of the truncated cone, the symmetric admittance is Ỹ1 = S1/ρc, thus:

y1 =
1

ζ
+

1

sm1

=
1

ζ

[
1 +

sinϑ

s

]
. (10)

At higher frequencies, the compliance term 1/(sc01) is of order s−1, and can
be neglected in Eq. (9). Similarly 1/y1 ' ζ. Thus at higher frequencies:

z0 '
−s2m2

10

ζ + sm11

+ sm00 = 1. (11)

The identification of the two highest order terms leads to:

m2
10 = m11m00 (12)

m11 = ζm00. (13)

Eq. (12) gives two solutions for m10. The positive value leads to a resonant
curve for the output impedance, while the negative value gives a very good
approximation formula, as shown hereafter.

When the frequency tends to 0, the series expansion of Eq. (9) with Eq.
(10) is done at the first order of s. z0 reduces to the impedance of a mass,
and is denoted sm:

z0 = sm = s(m1 +m11 − 2m10 +m00). (14)

m needs to be computed by numerical methods (which is done in Section
5). It is the coefficient of the so-called zero frequency “length correction” at
the end of the cylindrical tube, or more accurately, the zero frequency added
mass. For the limit case ϑ = π/2 (tube in an infinite baffle), it is known to
be m = 0.82159 (see [2, 8]). With the knowledge of this quantity, the model
is complete. The three masses mij are given by:

m00 = (m−m1)/(1 +
√
ζ)2; (15)

m11 = ζm00 ; m10 = −
√
ζm00. (16)
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4.2 General and simplified formulas

With the expressions (15) and (16), the general formula is obtained from Eq.
(9), as follows:

z0 =
1 + y1s(m−m1) + s2c01m00

sc01 + y1(1 + s2c01m11)
. (17)

For the case of an infinite cone, this formula becomes:

z0 =
sm+ s2(m−m1)m1/ζ + s3m1c01m00

1 + sm1/ζ + s2c01(m11 +m1) + s3m1c01m00

. (18)

When the frequency tends to 0, it can be checked that:

Re(z0) = −s2m2
1/ζ = Re(1/y1). (19)

This is due to the conservation of both the acoustic power and the flow rate
between the two surfaces S0 and S1.

In Section 5 it will be shown that m − m1 ≈ ζc01. Thus a simplified
expression can be found for Eq. (17), in particular for smaller angles and
lower frequencies:

z0 =
1 + y1sc01ζ

sc01 + y1
. (20)

4.3 Radiation into an infinite flange

For the case ϑ = π/2, Eq. (18) becomes:

z0 =
0.82159s+ 0.3216s2 + 0.0368s3

1 + s+ 0.3701s2 + 0.0368s3
, (21)

For this case, looking at the poles of the denominator, it can be checked that
two roots are complex conjugate and one is real, all real parts being negative.
Thus the inverse Fourier Transform is causal. Figure 3 shows the comparison
of the exact result (Ref. [2]) with the approximate formula given in Ref. [9],
and with Eq. (21). Notice that the aim of Ref. [9] was to propose approximate
formulas satisfying Hermitian symmetry for the reflection coefficient, and
causality for the impulse response. These two requirements are satisfied by
Eq. (21). Except at very high frequencies, this formula is excellent. This
is remarkable, because it is built with the knowledge of the zero frequency
added mass only. As explained in Section 2, the expected limit of validity
of Eq. (21) is kr0 = 2.45. However the equation remains valid for frequencies
above this limit, where at least two propagating modes are expected, as well
as a corresponding directivity pattern in the radiated field.
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Figure 3: Real and imaginary parts of the radiation impedance z0 in an
infinite flange (ϑ = 90). Black, solid line: exact result [2]; black, dash-dot
line, approximate result [9]; grey (red online), dashed line: Eq. (21); grey
(red online), dotted line: Eq. (22).

For the same case, c01 = 2/3, and Eq. (20) becomes:

z0 =
5s/6 + s2/3

1 + s+ s2/3
. (22)

The simplicity of this formula is remarkable. 5/6 = 0.8333 is very close to the
exact value of the length correction at zero frequency. The other coefficients
are close to those obtained by optimization in [9]: 0.324 instead of 1/3 and
1.003 instead of 1 (for the term in s) in the denominator. Figure 3 shows
that the result of Eq. (22) is very close to that of Ref. [9].

5 Numerical calculation of the zero frequency

added mass

5.1 Method

For ϑ < π/2, the added mass coefficient m is not known. Therefore the
Finite Element Method is used. In order to avoid complications with an
anechoic termination, two reactive boundary conditions are investigated: i)
a rigid wall; and ii) a perfectly soft wall. In both cases the wall is perfectly
spherical and the condition is valid at every angle, thus at the input of the
cone, ideally only the fundamental mode can be propagating under the cutoff
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of the higher-order modes. The cylinder has a certain length, `0, sufficient
to avoid the presence of evanescent modes at its input (at surface Sin). The
boundary value problem is as follows: the Helmholtz equation is applied to
the volume comprised between surfaces Sin and S2, and the other walls are
defined as rigid (Neumann boundary condition). The spherical boundary at
the output of the cone was defined as either rigid or soft (P2 = 0). On the
surface Sin a unit acceleration is fixed at a constant value and the pressure
is computed on the surface Sin. Thus the input impedance is computed on
the same surface, then it is projected to the output of the cylinder, giving
the desired impedance z0 on surface S0, and the mass m is obtained by
using formula (17) in the limit of zero frequency. The choice of solving the
Helmholtz equation is done in order to compare the numerical results with
the results of the analytical formulas, at non zero frequencies (see Section
5.3).

The FE model was formed as an axi-symmetric geometry. The cylinder
radius and length were 1 and 5 cm, respectively, and the truncated conic
section was 5 cm long, as measured along its central axis, for all cone half
angles. A fine mesh was constructed with triangular elements and a maxi-
mum element size of 0.001 meter. Numerical simulations were conducted for
cone half angles from 5 to 105 degrees in increments of 5 degrees, with an
additional set of simulations at 115, 125, and 135 degrees.

5.2 Numerical result for the zero frequency added mass

From the knowledge of the admittance at the output of the cone, Y2, the input
admittance y1 is derived. Using Eqs. (1) and (6), the following expression is
found:

y1 =
1

sm1

+
1

ζ

j tan k`+ Ỹ2ρc/S2

1 + jỸ2ρc/S2 tan k`
. (23)

For a perfectly soft termination (Y2 =∞), Ỹ2 is infinite, while for a perfectly

rigid termination, Ỹ2ρc/S2 = −1/(jkx2). In both cases, the admittance y1 is
purely imaginary. The value of the mass m is derived from Eq. (17):

m = m1 +
z0(y1 + sc01)− 1

s
[
y1 + sc01(1− ζz0y1)/(1 +

√
ζ)2
] . (24)

For kr0 = 0.01, the accuracy of the value of m can be assessed to be better
than 0.1%, when changing the frequency to another very low frequency, or
when changing the termination (soft to rigid), or when changing the length `
of the truncated cone. The calculation is done for several values of ϑ. Figure
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Figure 4: The quantity (m−m1)/ζc10 with respect to the angle ϑ (in degrees).
Dotted line: expression given by Eq. (25).

4 shows that the mass m−m1 is roughly proportional to the quantity ζc01,
the ratio ranging between 0.93 and unity. A fit formula is found to be:

m−m1 ' ζc01 [1− 0.075 sin(1.75 ∗ ϑ)] (25)

with an error smaller than 1% for ϑ < π/2. For small angles, ζc01 � m1.
This leads to the simplest value for m: m = m1 = 0.5 cot(ϑ/2). The latter
expression is equivalent to that of Tyte [10].

5.3 Verification for the case of cones of finite length

With the value obtained for the mass m, it is possible to compare the general
model (17) with the FEM result for a cone of finite length and for the two
terminations considered. The model is found to be very good, as shown in
Figs. 5 and 8 for the case ϑ = 50. For this angle, the cutoff frequency of the
first higher order mode at the cone input is kr0 = 3.36. Figure 6 shows the
pressure field for a frequency higher than the cutoff (kr0 = 3.57). A slight
dependence of the field on the angle ϑ is observed.

At rather high frequencies, the FEM results exhibit thin peaks on the
output impedance curve: these peaks do not exist in the analytical formula.
The reason lies in the creation of higher order spherical, propagating modes.
The above mentioned cutoff value kr0 = 3.57 corresponds to the property
of the modes at the entry of the truncated cone. However, the duct modes
which are evanescent at this location are propagating far from the entry. For
the example computed, the cutoff at the output of the truncated cone is
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Figure 5: Output impedance z0 (imaginary part) of a cylinder terminated in
a truncated cone, the latter being terminated into a perfectly soft spherical
cap. ϑ = 50. FEM result: grey (red online) line; Formula (17): black, solid
line; Formula (20): dotted line. At low frequencies, the FEM results and
Eq. (17) are indistinguishable. Above middle frequencies, non-axisymmetric
modes appear in the FEM curve.

Figure 6: Pressure field for a frequency above the first cutoff frequency:
kr0 = 3.57. ϑ = 50. One half of the system is shown. The scale is arbitrary.
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Figure 7: Pressure field for a frequency corresponding to a non axi-symmetric
mode. kr0 = 1.99. ϑ = 50. One half of the system is shown. The scale is
arbitrary.
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Figure 8: Output impedance z0 (imaginary part) of a cylinder terminated in
a truncated cone, the latter being terminated into a perfectly rigid spherical
cap. ϑ = 50. FEM result: grey (red online) line; Formula (17): black line;
Formula (20): dotted line. At low frequencies, the FEM results and Eq. (17)
are indistinguishable. Above middle frequencies, non-axisymmetric modes
appear in the FEM curve.
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Figure 9: Relative error for the frequencies of the first and second minima
of impedance modulus |z0| (ϑ in degrees) ooo Eq. (17), +++ Eq. (20). The
termination of the cone is perfectly soft.

4.47 times lower. Therefore a kind of tunneling effect can happen, and cavity
modes (i.e., modes of a cone of finite length) can be created (by the change in
conicity) without spherical symmetry through evanescent duct modes. It has
been checked that for certain frequencies, the spherical symmetry is destroyed
in the cone, and nodal lines appear: this is shown in Fig. 7 for the frequency
of the first non-axisymmetric mode in Fig. 5, at kr0 = 1.99. This mode
shape is similar to those found in the work by Hoersch [11].

Going further in the comparison between numerical results and the formu-
las, we choose to compute the relative error for the first and second impedance
minima (anti-resonances), defined as follows: error = (fa/fb − 1), where fa
and fb are the analytical and numerical results, respectively. The relative er-
ror for the resonance frequencies is less useful because it is extremely small,
and the calculation of an average error on the impedance value over the fre-
quency range would be more difficult to interpret. Figure 9 shows that the
error increases monotonically when the angle ϑ increases. Results for the
two formulas (17) and (20) can also be distinguished. The results for an
intermediate formula, obtained by using the value of m given by Eq. (25)
into Eq. (17) are not shown, because they are very close to those of Eq. (17)
with the numerical value of m.

Figure 9 shows also some results for obtuse angles, which are discussed
in the next section.
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Figure 10: Real and imaginary parts of the radiation impedance z0 without
flange (ϑ = 180). Black, solid line: exact result [1]; black, dash-dot line,
approximate result [9]; grey (red online), dashed line: Eq. (18) for α = 1;
grey (red online), dotted line: Eq. (27).

6 The case of obtuse angles

6.1 Limit of the extension of the previous analysis

When the angle ϑ is obtuse, the distance between the plane and spherical
surfaces of the matching volume becomes large, and it cannot be regarded
as smaller than the wavelength. Therefore it is expected that the results
become much less accurate for such angles. However it is observed in Fig.
9 that up to ϑ = 100◦, there is a perfect continuity of the error, and the
analytical formulas remain satisfactory. Then, above this value, the error
rapidly increases. Therefore another model should be found for a correct
description of this case. A recent paper investigated this case using a hybrid
FEM [12].

6.2 Radiation of cylindrical tube without flange

For the case ϑ = π, the results are expected to be very bad, because many
coefficients of the formula diverge (this case corresponds to the radiation of a
tube without flange, see Ref [1]). The limit of formula (18) is undetermined,
and its use is meaningless, because the apex of the cone tends to infinity and
therefore the radius x1 becomes infinite.
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However another model can be considered, with a sphere having its center
at the output of the cylinder, and with a radius R. The same calculations as
previously described can be made with the following parameters:

ζ =
α2

4
; m1 =

α

4
; c10 =

4

α3
(26)

where α = r0/R. With the knowledge of the added-mass coefficient m =
0.6133, Eq. (18) can be used. Empirically it is found that the best value for
R is close to r0. We have not yet a clear interpretation of this result. Figure
10 shows the comparison of the exact result of Ref. [1] with that of Eq. (18)
for α = 1 and with the result proposed by Ref. [9]. The accuracy of the two
approximate results is similar, but the qualitative conclusion of the present
paper remains valid: with the knowledge of the zero frequency added mass,
it is possible to deduce a rather satisfactory approximate impedance curve.

Furthermore, the simplified formula (20) leads to the following result:

z0 =
7s/12 + s2/3

1 + s+ s2/3
(27)

where 7/12 = 0.5833. A discussion similar to that provided for the infinite
flange case can be applied, but this formula is less satisfactory than Eq. (22)
(see Fig. 10).

7 Small angles; discussion of previous results

of the literature for the case of an infinite

cone

The present section aims to discuss the results of Chester [3] and Martin [4]
concerning the case of an infinite cone. The comparison will be done for the
modulus of the reflection coefficient of planar waves in the cylindrical duct
(for brevity we do not discuss the behavior of the argument).

Chester gave an analytical formula, obtained with the following hypoth-
esis: the expansion in modes of the cylindrical duct can be extended inside
the matching volume (notice that this implies that the rigid walls of the
cylinder are elongated). Eqs. (15) and (4) of Chester’s paper give the value
of the impedance z0. Numerical coefficients are given by a table. We do not
reproduce the data here, but Fig. 11 shows the result, and compares it to
Formulas (17) and (20), with Rf = (z0 − 1)/(z0 + 1), for 3 values of ϑ and
with the exact result for ϑ = 90. Chester’s formula appears to be useful only

16



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|R
f
|

kr
0

10°

40°

90°

Figure 11: Modulus of the reflection coefficient at the output of the cylinder
for three angles: 10, 40 and 90 degrees. Comparison of Martin’s formula
(dotted line, green online) and Chester’s formula (dash-dot line, green online)
with Eq. (17) (solid line, red online). The black, thick line is the exact result
for 90 degrees.

at rather small angles. It can be noticed that the author himself mentioned
that for smaller angles the result is very close to that of a simplified formula,
which it turns out is z0 = 1/y1 (with the addition of a phase shift).

In Ref. [4], Martin gave another approximate formula. The method was
the analytical application of the Green theorem, and the expected validity
is for small angles and low frequencies. The formula can be written in the
form:

Rf =
sin2 ϑ− 4ζ [exp(−s sin(ϑ)/(2ζ))− 1]

− sin2 ϑ+ 4ζs2
. (28)

Figure 11 shows that it is an excellent approximation for small angles, and
it is less satisfactory for wide angles.

Furthermore Martin discussed simplified formulas for small angles and
low frequencies. He gave an expansion with respect to frequency, limited
to the first order of the frequency. This yields Rf = −1 + 2s cscϑ, and a
negative real part of the impedance z0. However if the orders of magnitude
of ϑ and s are considered to be similar, the following formula is found:

Rf = − ϑ

ϑ+ 2s
. (29)

This result is the same by using either Formula (20) or Formula (28), the
missing terms being of the 3rd order (sϑ2, ϑs2). This corresponds to Eq. (6)
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for small angles, therefore to the assumption that both the mass (m−m1) and
the matching volume can be ignored. This approximation is consistent with
the approximation of the horn equation (often called ”Webster equation”)
written in spherical waves (see [7, 13]), which leads to an accuracy much
higher than that using plane waves [14].

8 Conclusion

The main interest of the general analysis presented in the paper is the possi-
bility to derive a knowledge of a complete impedance curve from the knowl-
edge of the geometry and one supplementary parameter only: the zero fre-
quency added mass. Formula (17) together with the fit formula (25) gives
very satisfactory results when compared to numerical results for finite length
cones and acute angles.

The case of obtuse angles seems to be more difficult, even if the results
for slightly obtuse angles are not bad. The limitation is not only relative to
angles, but also to frequencies: this is not surprising, and anyway in practice,
for imperfect cylindrical tubes, the appearance of higher order propagating
modes occurs near kr0 = 1.8.

The results for the standard case of the radiation of a tube without flange
or with an infinite flange compare favorably with the fit formulas obtained
by optimization in Ref. [9].

It is remarkable that approximate formulas can take various forms (see
Refs. [3, 4, 9]). Our formulation derives from an electrical circuit. Would
it be possible to improve it? Three new parameters would be added if the
third-order terms in Eq. (4) are included. This would likely be possible, but
in practice, situations at higher frequencies with one propagating mode only
are rare.

Finally, it is probable that the use of the general formulation (4) could
be used also for other problems, such as the matching of truncated cones
with different angles. The treatment of radiation of tubes with flanges of
finite thickness [15, 16] could also be an interesting problem to investigate.
Furthermore the knowledge of various cases of the cone terminal impedance
on surface S2 would be an important subject, in order to extend the utility
of the general analytical presented in this paper.
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Appendix A: Formula for a junction of two

waveguides at low frequencies

We consider the junction of two waveguides, with rigid walls. Fig. 1 shows
the example studied. In each of them, a surface normal to the guide axis
is chosen (plane if the guide is cylindrical, spherical if it is conical). The
surface areas are S0 and S1. In each guide, the choice of the abscissa of these
surfaces is arbitrary, but it is useful to choose the junction cavity as small as
possible. In each guide, several duct modes exist. In the junction cavity, the
following classical integral equation can be written in the frequency domain:

p(r) = jωρ

∫
S

G(r, r′)v(r′)dS ′, (A1)

where S is the surface of the cavity and G(r, r′) the Green’s function for
the cavity with rigid walls (Neumann boundary conditions). p and v are the
acoustic pressure and normal velocity in the cavity, r and r′ the coordinate
vector of two points in the cavity. In the present case S = S0 + S1. For
other choices of the surfaces Si (i = 0 or 1), a part of S can be a rigid wall,
with a vanishing normal velocity. In Guide i , the eigenmodes are denoted
ψipq(w), where w is the 2D vector on the surface. A column vector ψi is
built, by ordering the (double infinity of) modes of Guide i in order by cutoff
frequency. Orthogonality can be written as a matrix relationship:

S−1i

∫
Si

ψi
tψidS = 1, (A2)

where 1 is the identity matrix. Then, two vectors, Pi and Ui, are built with
the coefficients for the expansion of the pressure and normal velocity fields
on the surface Si, as follows:

p(w,zi) = tψi(w)Pi and v(w, zi) = S−1i
tψi(w)Ui , (A3)

zi is the axial coordinate on the surface Si in Guide i. Because of the Neu-
mann condition on the walls, one of the modes is the uniform mode (also
called fundamental mode, i.e., planar or spherical), independent of the vec-
tor w. With the expansion (A3), the integral equation can be re-written in
the form of a matrix relationship:(

P0

P1

)
=

(
Z00 Z01

Z10 Z11

)(
U0

U1

)
(A4)

where the matrices Zij are:

Zij =
jωρ

S0S1

∫
Si

∫
Sj

ψiG(r, r′) tψjdSidS
′
i. (A5)
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The dimension of these four matrices is doubly infinite. It is now possible to
write Eq. (A4) in the form of a super-matrix impedance:

P = ZU. (A6)

The first step of the proof is achieved. The second step consists of the
separation of propagating and evanescent modes. The vector P is re-ordered,
writing first the vector p of the propagating modes (2 elements, because at
low frequencies, only the fundamental modes propagate), then the vector
P′of the evanescent modes (similarly for U). Therefore the matrix Z can be
partitioned in four parts, as follows:(

p
P′

)
=

(
z tz′

z′ Z′

)(
u
U′

)
(A7)

z is the impedance matrix (of order 2) restricted to the propagating modes
in the two guides, z′ is the impedance matrix relating one propagating mode
and one evanescent mode, tz′ is the transpose of z′(because of reciprocity, the
matrix Z is symmetrical), and Z′ is the matrix Z restricted to the evanes-
cent modes. If the guides are long enough, their lengths are infinite for the
evanescent modes, and the impedance of each of them is its characteristic
impedance Z′c, which is a diagonal matrix:

P′ = −Z′cU
′. (A8)

Finally, using Eqs. (A7) and (A8), the impedance matrix relationship for
the propagating modes is found to be:

p =
[
z− tz′(Z′+Z′c)

−1z′
]
u. (A9)

In order to calculate the partition, we write:

ψi =

(
1
ψ′i

)
. (A10)

Orthogonality of the uniform modes with any other mode implies:∫
Si

ψ′idS = 0 (A11)

(only the fundamental mode contributes to the average quantities). We are
interested in the series expansion of the result with respect to frequency.
At low frequencies, the characteristic impedance of the evanescent modes,
which is purely imaginary, is proportional to jωρ (this comes from the Euler
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equation). The 3D modal expansion of the Green’s function of a closed cavity
is classically written as follows:

G(r, r′) =
1

V

∑
mnp

φmnp(r)φmnp(r
′)

k2mnp − k2
(A12)

where φmnp(r) are the orthonormal modes in the cavity. Because the cavity
is closed with Neumann boundary conditions, a uniform, fundamental 3D
mode exists with k000 = 0, and the following expression can be derived at
the zeroth order in ω:

G(r, r′) = −c2(ω2V )−1 +G0(r, r
′) +O(ω2), (A13)

G0(r, r
′) is the sum of the term corresponding to the non-uniform modes,

which is independent of frequency. The missing term is of order ω2. Analyz-
ing the frequency dependence of the terms in Eq. (A9), it appears that at
low frequencies:

• the matrix z can be divided in two terms as shown in Eq. (4).

• the matrices z′ and Z′ are proportional to jωρ : because of Eq. (A11),
there is no term inversely proportional to jω.

Finally the matrix tz′(Z′+Z′c)
−1z′ is proportional to jωρ, and Eq. (A9)

yields the shape of Eq. (4).
We remark that when the junction cavity has a zero volume, Eq. (4) has

to be replaced by U0 = U1 (in order for the pressure to be finite, the sum of
the flow rates vanish), and

P0 − P1 = jω
(
M00 −M10 M01 −M11)

)( U0

−U1

)
(A14)

Formula (A9) can be generalized to an arbitrary number of guides as well as
an arbitrary number of propagating modes. Equation (4) can be generalized
to an arbitrary number of guides where only the fundamental mode propa-
gates, as well as Eq. (A14) for the case V = 0. The latter case, without
compressibility effect, has been treated in many papers of the literature for
the problems of 2- , 3- or 4-guide junction using either the mode-matching
method, or the conformal mapping (see, e.g., [16–21]). The matched asymp-
totic expansion was also used in order to find the shape of the impedance
matrix (or of the equivalent circuit (see, e.g., [19, 22]).
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