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Abstract

The problem of the junction between a cylinder and a truncated cone
at low frequencies is investigated, in particular for the case of acute angles.
An analytical model of the radiation impedance of the cylinder into the
truncated cone is derived for the general case of a cone of finite length.
When the cone is infinite and the angle is right, the problem is similar to
the classical problem of a tube radiating in an infinite baffle. The model is
based on a general formulation of the junction of several waveguides at low
frequencies (when only the fundamental mode propagates in each guide),
and on the assumption that at high frequencies, the radiation impedance
of the cylinder is equal to its characteristic impedance. The model has the
form of an equivalent circuit, and involves several parameters related to
the geometry (the areas of the surfaces defining the matching cavity and
the volume of this cavity). In addition, the model requires one supplemen-
tary parameter only, i.e., the low frequency value of the added mass (or
length correction), which has to be determined numerically (the Finite El-
ement Method is used). Analytical and numerical results agree very well
at low and moderate frequencies, up to the cutoff of the first higher-order
mode. For the radiation into an infinite flange, the results improve upon
those in a recent publication that were obtained by optimization. The
case of obtuse angles is more complicated and is briefly discussed. Finally
for the case of infinite cones, the reflection coefficient is compared to that
obtained in previous studies.

keywords: conical tubes, acoustic radiation impedance, cylinder-cone, wind
instruments
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Figure 1: Geometry of the problem. The total length of the cone is o = £+ 1,
the half-angle at the apex is 9. The plane and spherical surfaces across the tubes
define the junction of the two waveguides.

1 Introduction

The calculation of the radiation of tubes into infinite space, when only the
fundamental, planar mode propagates, is a classical issue: the definitive papers
are by Levine and Schwinger [I] for a tube without flange and Norris and Sheng
[2] for a tube in an infinite flange. Conversely the more general problem of the
radiation of a cylindrical tube into a conical tube has been rarely treated, but
Chester [3] and Martin [4] gave interesting formulas for the case of small angles.
The present paper investigates this problem, but generalizes it by considering
the possibility of a finite length for the truncated cone. In other words, the
matching of planar waves in a cylinder and spherical waves in a truncated cone
is studied. Radiation will be a particular case when the cone is infinite. The
basis of the study is a general formulation for the junction of several waveguides
at low frequencies [5].

Figure [1l shows the geometry of the problem. Both tubes are without flow,
and with perfectly rigid walls: thus the fundamental modes are uniform modes
in both tubes. The subscript 0 refers to the output of the cylinder, while the
subscripts 1 and 2 correspond to the input and output of the truncated cone. ¢
is the half-angle at the cone apex.

Section[2ldescribes the transfer matrix for the fundamental mode of spherical
waves in a truncated cone. Section Bl presents the problem as a junction of
two waveguides and the formulation as an equivalent electric circuit. Section
[ shows that this formulation, together with an assumption concerning the
high frequency behavior, leads to a general approximate formula for the output
impedance of the cylinder. With the knowledge of the geometry and only one
supplementary parameter, which is the added mass at low frequencies, it is
possible to deduce a complete impedance curve at frequencies lying below the
cutoff of the first-order higher mode in the cylinder. This is the main result
of the present paper. For the particular case of an infinite cone and an angle
¥ = m/2, this formula is compared with the exact result given by Norris and



Sheng [2].

For other values of 1, no exact result is available. The Finite Element
Method (FEM) is used for the case of cones of finite length, and this allows
the added mass to be determined and then the comparison of the analytical
formula with the numerical result. Section [6] presents the problem of obtuse
angles. Finally, Section [7] presents the results of Chester [3] and Martin [4] in
comparison with those given by the present method, for the case of an infinite
cone.

2 Input admittance of a conical tube

Using a change in variables, the propagation of the fundamental mode of spher-
ical waves can be classically described by a transfer matrix identical to that of
planar waves (see e.g. [6]), as follows:

Px B cos kl Jpesin kl Pa 1)
Ve ), j(pe)~tsinkl  coskl Va ),
with V; = i—_Pi i=1,2

Jkpczx;

The equation is written in the frequency domain. P; and V; are the acoustic
pressure and velocity at the distance x; from the apex, j2 = —1, ¢ the speed
of sound, p the gas density k = w/c, w the angular frequency, ¢ = x2 — ;.
The quantity ‘71 can be called the symmetric velocity, because the asymmetric
transmission line corresponding to spherical waves becomes symmetrical with
this appropriate choice of variables. This allows a symmetric acoustic admit-
tance, Y; to be defined as:

- _SVi_ S

Yi (2)

P, b jwpr;
where S; is the cross section area at distance z; from the apex. The expression
of the area S; of the spherical cap is S; = 2mz?(1 — cosd)), with sind = ro/x;1.

The fundamental mode is the only propagating mode up to the cutoff fre-
quency of the first higher-order mode. In Ref. [7], an approximate formula is
given for this frequency, which depends on the abscissa in the cone (thus on the
radius r at this abscissa). We write it in the following form:

) ] 3.832
kr_msmﬂ Wlthu—m, (3)

where p is the order of the Legendre polynomial. When ¢ tends to 0 (case of a
cylinder), kr tends to the well known value of 3.832 for a cylindrical tube. For
¥ increasing toward 7/2, the value of kr decreases monotonically to V6 = 2.45

(n=2).
3 Matching of a cylinder and a truncated cone

In Ref. [5], a general low frequency formulation for the junction of several cylin-
drical guides was proposed. For the case where only one mode propagates, the



Figure 2: Equivalent electrical circuit of the junction between the two guides.
The subscripts 0 and 1 correspond to the cylindrical and conical guides, respec-
tively. Co1 = V/pc?, where V is the volume of the junction.

formulation takes into account the existence of evanescent modes in the differ-
ent guides. When only two guides are considered (with indices 0 and 1), the
formulation reduces to:

B pc® (1 1 . (Moo Mo 3 Uo

(R ) =[5 () (i i ) roe] (55,)
Py,1 and Up,; are the planar mode pressure and flow rate, respectively. The
subscripts 0 and 1 are related to the surfaces defining the junction cavity: these
surfaces can be chosen arbitrarily, but it is convenient to use a cavity as small
as possibleE. The shape of the first matrix is due to the mass conservation (V' is
the volume of the junction). The minus sign before U; is used for convenience
for ensuring the symmetry of the input and output, thus for exhibiting the
symmetry of the matrix M (which is due to reciprocity). M is proportional to
the density p. The elements M;;, which represent the effect of evanescent modes
on both sides of the junction, can be calculated by solving the Laplace equation
(for an incompressible fluid). The terms of higher order in frequency are matrices
depending on both the compressibility and the density. Equivalently, they can
be replaced by a variation of the elements of the matrix M with frequency. The
equivalent electrical circuit is shown in Fig.

The derivation of Eq. ([ is detailed in Ref. [5]. The result is formal, because
the method is in general not an effective computation method of the elements of
the matrices. It is based on several steps: 1) derivation of an integral equation
for the matching cavity with the free space Green function; ii) projection on
the modes of the different guides; iii) closing of the evanescent modes on their
characteristic impedance (a condition of validity of Eq. (@) is that the length
of each guide is long enough and avoids any coupling of the extremities by
evanescent modes); and finally iv) a series expansion of the Green function
with respect to frequency.

LFor certain cases, it is possible to choose a junction without volume (e.g., for a sudden
discontinuity in cross section). Then the equations are replaced by Ug + Ui = 0, and the
expression of Py — P; with respect to the flow rates.



This formulation is valid also for the fundamental mode of spherical waves,
when it is the unique propagating mode, and can be used for the junction
between a cylindrical guide of radius rg, and a truncated cone. The matching
volume between the output of the cylinder and the input of the truncated cone
(see Fig. M) has the following expression:

i 2
T sin?d [24 cos;?)] - (5)
3[1 + cos V]

It is convenient to reduce the problem by using dimensionless variables: the
impedances are reduced by the characteristic impedance of the cylindrical tube,
Zeoy = pc/(mrE). Lowercase characters are used for the dimensionless variables
(e.g. w1 is the dimensionless version of Y7 in Eq. (@))). krg is the reduced
frequency, and the Laplace variable is noted s = jkrg. The following expressions
are found:

~ 1 ¢ 1+ cosd
= + ——, with == 6= 53 6
Y1 Y1 s withh 1 sin 0 ¢ 9 ( )
V  pc . \%4

wwﬂ_—r% = sco1 with ¢o1 = W—Tg; (7)
2

jwMijm = SMyjy, where mi; = MU@ (8)
pc

¢ is the ratio of plane to spherical surfaces. The output impedance zo = Py/Up
of the cylindrical tube is given by Eq. (), or by the equivalent circuit of Fig.
After some algebra, it is found to be:

1 1
B {yl + smq1 Smm} |:SCo1 + Smw}

20 = ) ) + S(moo — mlo). (9)
[— + ==+ Sm11}
SCo1 Y1

4 General formulas for the output impedance of
the cylinder

4.1 Conditions for the case of an infinite conical tube

Consider an infinite conical tube. It is assumed that for any value of ¢, the
high-frequency asymptotic value of a radiation impedance zy is the characteristic
impedance Z.g of the fundamental mode in the cone. Relationships between the
masses m;; are sought by using this assumption. At the input of the truncated

cone, the symmetric admittance is Yi=5 /pe, thus:

1 1 1 [ sinﬂ]
1+ .

y1zz+%zz (10)

S

At higher frequencies, the compliance term 1/(sco1) is of order s~%, and can be
neglected in Eq. ([@)). Similarly 1/y; ~ ¢. Thus at higher frequencies:

+ smog = 1. (11)



The identification of the two highest order terms leads to:

m%o = Mmi1Mmoo (12)
mi1 = §m00. (13)

Eq. ([@2) gives two solutions for mjg. The positive value leads to a resonant
curve for the output impedance, while the negative value gives a very good
approximation formula, as shown hereafter.
At lower frequencies: zg reduces to the impedance of a mass, and is denoted
sm:
zZ0 = Sm = s(m1 +mi1 — 2m10 + moo). (14)

m needs to be computed by numerical methods (which is done in Section [Bl). It
is the coefficient of the so-called “length correction” at the end of the cylindrical
tube, or more accurately, the added mass. For the limit case ¥ = 7/2 (tube in
an infinite baffle), it is known to be m = 0.82159 (see [28]). With the knowledge
of this quantity, the model is complete. The three masses m;; are given by:

mop = (m*ml)/(lﬂL\/Z)Q; (15)

mi = (moo ; mio = —/Cmoo.

4.2  General and simplified formulas

The general formula is therefore as follows:

— 1+ y1s(m —mq) + s*co1maoo (16)
0 scor +y1(1+ s2cormay)

For the case of an infinite cone, this formula becomes:

sm + s2(m — m1)ma /¢ + s3micormoo

= . 17
0TIy smy /¢ + s2co1(mi1 +m1) + s3mico1mao (a7)

At lower frequencies, it can be checked that:
Re(z0) = —s*m3/¢ = Re(1/y1). (18)

This is due to the conservation of both the acoustic power and the flow rate
between the two surfaces Sy and Sj.

In Section[Hlit will be shown that m—m; ~ (cg1. Thus a simplified expression
can be sought for Eq. (I6), in particular for smaller angles and lower frequencies:

1
20 = + y15001§ ) (19)
5¢o1 + Y1
4.3 Case of the radiation into an infinite flange
For the case ¥ = 7/2, Eq. (7)) becomes:
0.82159s + 0.321652 + 0.0368s3
1+ s+ 0.3701s2 + 0.0368s3 ’

For this case, looking at the poles of the denominator, it can be checked that
two roots are complex conjugate and one is real, all real parts being negative.

zZo0 = (20)
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Figure 3: Real and imaginary parts of the radiation impedance zy in an infinite
flange (¢ = 90). Black, solid line: exact result [2]; black, dash-dot line, ap-
proximate result [9]; grey (red online), dashed line: Eq. (20)); grey (red online),
dotted line: Eq. I)).

Thus the inverse Fourier Transform is causal (see Ref. [9]). Figure Bl shows the
comparison of the exact result (Ref. [2]) with the approximate formula given
in Ref. [9], and with Eq. (@20). Except at very high frequencies, this formula
is excellent. This is remarkable, because it is built with the knowledge of the
low frequency added mass only. As explained in Section 2 the expected limit
of validity of Eq. (20) is kro = 2.45. However the equation remains valid for
frequencies above this limit, where at least two propagating modes are expected,
as well as a corresponding directivity pattern in the radiated field.
For the same case, cop1 = 2/3, and Eq. ([9) becomes:

_ 5s/6+s%/3

=1 ' 21
1+s+s2/3 (21)

20
The simplicity of this formula is remarkable. 5/6 = 0.8333 is very close to the
exact value of the length correction at zero frequency. The other coefficients are
close to those obtained by optimization in [9]: 0.324 instead of 1/3 and 1.003

instead of 1 (for the term in s) in the denominator. Figure B shows that the
result of Eq. (2I)) is very close to that of Ref. [9].

5 Numerical calculation of the low frequency
added mass

5.1 Method

For ¢ < 7/2, the added mass coefficient m is not known. Therefore a numerical
method, the FEM is used. In order to avoid complications with an anechoic
termination, two reactive boundary conditions are investigated: i) a rigid wall;
and ii) a perfectly soft wall. In both cases the wall is perfectly spherical and



the condition is valid at every angle, thus at the input of the cone, ideally only
the fundamental mode can be propagating under the cutoff of the higher-order
modes. The cylinder has a certain length, ¢y, sufficient to avoid the presence of
evanescent modes at its input. The computed input impedance of the cylinder
is projected to its output, giving the desired impedance 2y, and the mass m is
obtained by using formula (I8) at low frequency.

The FE model was formed as an axi-symmetric geometry. The cylinder radius
and length were 1 and 5 cm, respectively, and the truncated conic section was
5 cm long, as measured along its central axis, for all cone half angles. The side
walls were defined as rigid and the spherical boundary at the output of the cone
was defined as either rigid or soft (P, = 0). A constant acceleration was specified
across the entire input plane. A fine mesh was constructed with triangular
elements and a maximum element size of 0.001 meter. Numerical simulations
were conducted for cone half angles from 5 to 105 degrees in increments of 5
degrees, with an additional set of simulations at 115, 125, and 135 degrees.

5.2 Numerical result for the low frequency added mass

From the knowledge of the admittance at the output of the cone, Y5, the input
admittance y; is derived. Using Eqs. () and (@), the following expression is

found:

11 jtankl+ Yape/S
p= by Lk Yape/Se 22)
smi ¢ 14 jYapc/Sy tan ké

For a perfectly soft termination (Y3 = o0), Y, is infinite, while for a perfectly
rigid termination, Yape/Se = —1/(jkxz2). In both cases, the admittance y; is
purely imaginary. The value of the mass m is derived from Eq. (I6):

zo(y1 + sco1) — 1
S [yl + 8601(1 - Czoyl)/(l + \/6)2] -

For krg = 0.01, the accuracy of the value of m can be assessed to be better than
0.1%, when changing the frequency to another low frequency, or when changing
the termination (soft to rigid), or when changing the length ¢ of the truncated
cone. The calculation is done for several values ©J. Figure ] shows that the mass
m — my is roughly proportional to the quantity (co1, the ratio ranging between
0.93 and unity. A fit formula is found to be:

m=my + (23)

m —my =~ Ccop [1 — 0.0758in(1.75 * )] (24)

with an error smaller than 1% for ¢ < 7/2. For small angles, {co1 < m;. This
leads to the simplest value for m: m = m1 = 0.5 cot(9/2). The latter expression
is equivalent to that of Tyte [10].

5.3 Verification for the case of cones of finite length

With the value obtained for the mass m, it is possible to compare the general
model (I8) with the FEM result for a cone of finite length, for the two termi-
nations considered. The model is found to be very good, as shown in Figs.
and [ for the case ¢ = 50. For this angle, the cutoff frequency of the first higher
order mode at the cone input is krg = 3.36. Figure [0l shows the pressure field
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Figure 4: The quantity (m —m1)/(c19 with respect to the angle ¢ (in degrees).
Dotted line: expression given by Eq. (24]).
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Figure 5: Output impedance zy (imaginary part) of a cylinder terminated in
a truncated cone, the latter being terminated into a perfectly soft spherical
cap. ¥ = 50. FEM result: grey (red online) line; Formula (I6]): black, solid
line; Formula (I9): dotted line. At low frequencies, the FEM results and Eq.
([I6) are indistinguishable. Above middle frequencies, non-axisymmetric modes
appear in the FEM curve.
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Figure 6: Pressure field for a frequency above the first cutoff frequency: krg =
3.57. 9 = 50. One half of the system is shown. The scale is arbitrary.
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Figure 7: Pressure field for a frequency corresponding to a non axi-symmetric
mode. kro = 1.99. ¥ = 50. One half of the system is shown. The scale is
arbitrary.
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Figure 8: Output impedance zy (imaginary part) of a cylinder terminated in
a truncated cone, the latter being terminated into a perfectly rigid spherical
cap. ¢ = 50. FEM result: grey (red online) line; Formula (I6]): black line;
Formula (I3)): dotted line. At low frequencies, the FEM results and Eq. (I6) are
indistinguishable. Above middle frequencies, non-axisymmetric modes appear
in the FEM curve.

for a frequency higher than the cutoff (kro = 3.57). A slight dependence of the
field on the angle ¥ is observed.

At rather high frequencies, the FEM results exhibit thin peaks on the output
impedance curve: these peaks do not exist in the analytical formula. The reason
lies in the creation of higher order spherical, propagating modes. The above
mentioned cutoff value kry = 3.57 corresponds to the property of the modes at
the entry of the truncated cone. However, the duct modes which are evanescent
at this location are propagating far from the entry. For the example computed,
the cutoff at the output of the truncated cone is 4.47 times lower. Therefore
a kind of tunneling effect can happen, and cavity modes (i.e., modes of a cone
of finite length) can be created (by the change in conicity) without spherical
symmetry through evanescent duct modes. It has been checked that for certain
frequencies, the spherical symmetry is destroyed in the cone, and nodal lines
appear: this is shown in Fig. [ for the frequency of the first non-axisymmetric
mode in Fig. Bl at krg = 1.99. This mode shape is similar to those found in the
work by Hoersch [I1].

Going further in the comparison between numerical results and the formulas,
we choose to compute the relative error for the first and second impedance
minima (anti-resonances), defined as follows: error = (f./fy — 1), where f, and
fp are the analytical and numerical results, respectively. The relative error for
the resonance frequencies is less useful because it is extremely small, and the
calculation of an average error on the impedance value over the frequency range
would be more difficult to interpret. Figure [ shows that the error increases
monotonically when the angle ) increases. Results for the two formulas (If)
and ([I3) can also be distinguished. The results for an intermediate formula,
obtained by using the value of m given by Eq. (24]) into Eq. (If]) are not shown,
because they are very close to those of Eq. ([6) with the numerical value of m.

11
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Figure 9: Relative error for the frequencies of the first and second minima
of impedance modulus |zg| (¢ in degrees) ooo Eq. ([If), +++ Eq. ([I3). The
termination of the cone is perfectly soft.

Figure [@ shows also some results for obtuse angles, which are discussed in
the next section.

6 The case of obtuse angles

6.1 Limit of the extension of the previous analysis

When the angle ¢ is obtuse, the distance between the plane and spherical sur-
faces of the matching volume becomes large, and it cannot be regarded as smaller
than the wavelength. Therefore it is expected that the results become much less
accurate for such angles. However it is observed in Fig. [ that up to ¢ = 100°,
there is a perfect continuity of the error, and the analytical formulas remain
satisfactory. Then, above this value, the error rapidly increases. Therefore an-
other model should be found for a correct description of this case. A recent
paper investigated this case using a hybrid FEM [12].

6.2 Radiation of cylindrical tube without flange

For the case ¥ = m, the results are expected to be very bad, because many
coefficients of the formula diverge (this case corresponds to the radiation of a
tube without flange, see Ref [I]). The limit of formula ([I7) is undetermined,
and its use is meaningless, because the apex of the cone tends to infinity and
therefore the radius x; becomes infinite.

However another model can be considered, with a sphere having its center
at the output of the cylinder, and with a radius R. The same calculations as
previously described can be made with the following parameters:

a? « 4

Ciz;mliz;Cw:@ (25)

12
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Figure 10: Real and imaginary parts of the radiation impedance zy without
flange (¢ = 180). Black, solid line: exact result [I]; black, dash-dot line, ap-
proximate result [9]; grey (red online), dashed line: Eq. ([IT) for o = 1; grey
(red online), dotted line: Eq. (28]).

where a = ro/R. With the knowledge of the added-mass coefficient m = 0.6133,
Eq. (T0) can be used. Empirically it is found that the best value for R is close
to ro. We have not yet a clear interpretation of this result. Figure shows
the comparison of the exact result of Ref. [I] with that of Eq. (IT) for a =1
and with the result proposed by Ref. [9]. The accuracy of the two approximate
results is similar, but the qualitative conclusion of the present paper remains
valid: with the knowledge of the low frequency added mass, it is possible to
deduce a rather satisfactory approximate impedance curve.
Furthermore, the simplified formula (I9) leads to the following result:

_ T1s/12+s?/3

= 26
=0 1+ s+ s2/3 (26)

where 7/12 = 0.5833. A discussion similar to that provided for the infinite flange
case can be applied, but this formula is less satisfactory than Eq. (2I) (see Fig.

D).

7 Small angles; discussion of previous results of
the literature for the case of an infinite cone

The present section aims to discuss the results of Chester [3] and Martin [4]
concerning the case of an infinite cone. The comparison will be done for the
modulus of the reflection coefficient of planar waves in the cylindrical duct (for
brevity we do not discuss the behavior of the argument).

Chester gave an analytical formula, obtained with the following hypothe-
sis: the expansion in modes of the cylindrical duct can be extended inside the

13
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Figure 11: Modulus of the reflection coefficient at the output of the cylinder for
three angles: 10, 40 and 90 degrees. Comparison of Martin’s formula (dotted
line, green online) and Chester’s formula (dash-dot line, green online) with Eq.
(@6) (solid line, red online). The black, thick line is the exact result for 90
degrees.

matching volume (notice that this implies that the rigid walls of the cylinder are
elongated). Egs. (15) and (4) of Chester’s paper give the value of the impedance
zo. Numerical coeflicients are given by a table. We do not reproduce the data
here, but Fig. [Tl shows the result, and compares it to Formulas (I8 and ([IJ),
with Ry = (20 — 1)/(z0 + 1), for 3 values of ¥ and with the exact result for
¥ = 90. Chester’s formula appears to be useful only at rather small angles. It
can be noticed that the author himself mentioned that for smaller angles the
result is very close to that of a simplified formula, which it turns out is that
zo = 1/y1 (with the addition of a phase shift).

In Ref. [4], Martin gave another approximate formula. The method was the
analytical application of the Green theorem, and the expected validity is for
small angles and low frequencies. The formula can be written in the form:

sin? 9 — 4¢ [exp(—s sin(9)/(2¢)) — 1]
—sin? 9 + 4(¢s? '

Figure [[1l shows that it is an excellent approximation for small angles, and it is
less satisfactory for wide angles.

Furthermore Martin discussed simplified formulas for small angles and low
frequencies. He gave an expansion with respect to frequency, limited to the first
order of the frequency. This yields Ry = —1 + 2scsc, and a negative real
part of the impedance zy. However if the orders of magnitude of ¥ and s are
considered to be similar, the following formula is found:

Ry = (27)

9

Rf:719+2s'

(28)

This result is the same by using either Formula (I9]) or Formula [27]), the missing
terms being of the 3rd order (s¥?, 9¥s?). This corresponds to Eq. (@) for

14



small angles, therefore to the assumption that both the mass (m — m;) and
the matching volume can be ignored. This approximation is consistent with the
approximation of the horn equation (often called ”Webster equation”) written
in spherical waves (see [7,[13]), which leads to an accuracy much higher than
that using plane waves [14].

8 Conclusion

The main interest of the approach presented in the paper is the possibility
to derive a knowledge of a complete impedance curve from the knowledge of
the geometry and one supplementary parameter only: the low frequency added
mass. Formula (I8) together with the fit formula ([24)) gives very satisfactory
results when compared to numerical results for finite length cones and acute
angles.

The case of obtuse angles seems to be more difficult, even if the results for
slightly obtuse angles are not bad. The limitation is not only relative to angles,
but also to frequencies: this is not surprising, and anyway in practice, for non
perfectly cylindrical tubes, the appearance of higher order propagating modes
occurs near krg = 1.8.

The results for the standard case of the radiation of a tube without flange
or with an infinite flange compare favorably with the fit formulas obtained by
optimization in Ref. [9].

It is remarkable that approximate formulas can take various forms (see Refs.
[BL4[9]). Our formulation derives from an electrical circuit. Would it be possible
to improve it? Three new parameters would be added if the third-order terms in
Eq. @) are included. This would likely be possible, but in practice, situations
at higher frequencies with one propagating mode only are rare.

Finally, it is probable that the use of the general formulation (@) could be
used also for other problems, such as the matching of truncated cones with
different angles.
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