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Abstract

In this paper, we provide two main contributions in PAC-Bayesian theory for domain adap-
tation where the objective is to learn, from a source distribution, a well-performing majority
vote on a different target distribution. On the one hand, we propose an improvement of the
previous approach proposed by Germain et al. (2013), that relies on a novel distribution
pseudodistance based on a disagreement averaging, allowing us to derive a new tighter
PAC-Bayesian domain adaptation bound for the stochastic Gibbs classifier. We specialize
it to linear classifiers, and design a learning algorithm which shows interesting results on
a synthetic problem and on a popular sentiment annotation task. On the other hand, we
generalize these results to multisource domain adaptation allowing us to take into account
different source domains. This study opens the door to tackle domain adaptation tasks by
making use of all the PAC-Bayesian tools.

Keywords: Domain Adaptation, PAC-Bayesian Theory, Multisource

1. Introduction

As human beings, we learn from what we saw before. Think about our education process:
when a student attends to a new course, he has to make use of the knowledge he acquired
during previous courses. However, in machine learning the most commun assumption is
based on the fact that the learning and test data are drawn from the same probability dis-
tribution. This strong assumption may be clearly irrelevant for a lot of real tasks including
those where we desire to adapt a model from one task to another one. For instance, a spam
filtering system suitable for one user can be poorly adapted to another who receives signif-
icantly different emails. In other words, the learning data associated with one or several
users could be unrepresentative of the test data coming from another one. This enhances
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the need to design methods for adapting a classifier from learning (source) data to test
(target) data. One solution to tackle this issue is to consider the domain adaptation frame-
work1, which arises when the distribution generating the target data (the target domain)
differs from the one generating the source data (the source domain). In such a situation,
it is well known that domain adaptation is a hard and challenging task even under strong
assumptions (Ben-David and Urner, 2012; Ben-David et al., 2010b; Ben-David and Urner,
2014). Note that domain adaptation with learning data coming from different source do-
mains is referred to as multisource or multiple sources domain adaptation (Crammer et al.,
2007; Mansour et al., 2009c; Ben-David et al., 2010a).

Among the existing approaches in the literature to address domain adaptation, the
instance weighting-based methods allow one to deal with the covariate-shift problem (e.g.,
Huang et al., 2006; Sugiyama et al., 2008), where source and target domains diverge only in
their marginals, i.e., they share the same labeling function. Another technique is to exploit
self-labeling procedures, where the objective is to transfer the source labels to the target
unlabeled points (e.g., Bruzzone and Marconcini (2010); Habrard et al. (2013); Morvant
(2014). A third solution is to learn a new common representation from the unlabeled part
of source and target data. Then, a standard supervised learning algorithm can be executed
on the source labeled instances (e.g., Glorot et al. (2011); Chen et al. (2012)).

The work presented in this paper stands into a popular class of approaches, that relies
on a distance between the source distribution and the target distribution. Such distance
depends on the setH of hypothesis (or classifiers) considered by the learning algorithm. The
intuition behind this approach is that one must look for a set H that minimizes the distance
while preserving good performances on the source data; if the distributions are close under
this measure, then generalization ability may be “easier” to quantify. In fact, defining
such a measure to quantify how much the domains are related is a major issue in domain
adaptation. For example, in the context of binary classification with the 0-1 loss function,
Ben-David et al. (2010a); and Ben-David et al. (2006) have considered the H∆H-divergence
between the marginal distributions. This quantity is based on the maximal disagreement
between two classifiers, allowing them to deduce a domain adaptation generalization bound
based on the VC-dimension theory. The discrepancy distance proposed by Mansour et al.
(2009a) generalizes this divergence to real-valued functions and more general losses, and
is used to obtain a generalization bound based on the Rademacher complexity. In this
context, Cortes and Mohri (2011, 2014) have specialized the minimization of the discrepancy
to regression with kernels. In these situations, domain adaptation can be viewed as a
multiple trade-off between the complexity of the hypothesis class H, the adaptation ability
of H according to the divergence between the marginals, and the empirical source risk.
Moreover, other measures have been exploited under different assumptions, such as the
Rényi divergence suitable for importance weighting (Mansour et al., 2009b), or the measure
proposed by C. Zhang (2012) which takes into account the source and target true labeling,
or the Bayesian “divergence prior” (Li and Bilmes, 2007) which favors classifiers closer to the
best source model. However, a majority of methods prefer to perform a two step approach:
(i) first construct a suitable representation by minimizing the divergence, then (ii) learn a
model on the source domain in the new representation space.

1. See the surveys proposed by Jiang (2008); Quionero-Candela et al. (2009); and Margolis (2011).
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The novelty of our contribution is to explore the PAC-Bayesian framework to tackle
domain adaptation in a binary classification situation without target labels (sometimes
called unsupervised domain adaptation). Given a prior distribution over a family of clas-
sifiers H, PAC-Bayesian theory (introduced by McAllester (1999)) focuses on algorithms
that output a posterior distribution ρ over H (i.e., a ρ-average over H) rather than just a
single classifier h ∈ H. Following this principle, we propose a pseudometric which evaluates
the domain divergence according to the ρ-average disagreement of the classifiers over the
domains. This disagreement measure shows many advantages. First, it is ideal for the
PAC-Bayesian setting, since it is expressed as a ρ-average over H. Second, we prove that
it is always lower than the popular H∆H-divergence. Last but not least, our measure can
be easily estimated from samples. Indeed, based on this disagreement measure, we derived
in a previous work (Germain et al., 2013) a first PAC-Bayesian domain adaptation bound
expressed as a ρ-averaging. In this paper, we provide a new version of this result, that
does not change the philosophy supported by the previous bound, but clearly improves
the theoretical result: The domain adaptation bound is now tighter and easier to interpret.
Thanks to this new result, we also derive2 three new PAC-Bayesian domain adaptation gen-
eralization bounds. Then, in contrast to the majority of methods that perform a two steps
procedure, we design an algorithm tailored to linear classifiers, called PBDA, which jointly
minimizes the multiple trade-offs implied by the bounds. The first two quantities being,
as usual in the PAC-Bayesian approach, the complexity of the majority vote measured by
a Kullback-Leibler divergence and the empirical risk measured by the ρ-average errors on
the source sample. The third quantity corresponds to our domain divergence and assesses
the capacity of the posterior distribution to distinguish some structural difference between
the source and target samples. Finally, we extend our results to domain adaptation with
multiple sources by considering a mixture of different source domains as done by Ben-David
et al. (2010a).

The rest of the paper is structured as follows. Section 2 deals with two seminal works on
domain adaptation. The PAC-Bayesian framework is then recalled in Section 3. Note that
for sake of completeness, we provide for the first time the explicit deviation of the algorithm
PBGD3 (Germain et al., 2009a) tailored to linear classifiers in supervised learning. Our
main contribution, which consists in a domain adaptation bound suitable for PAC-Bayesian
learning, is presented in Section 4. Then, we derive our new algorithm for PAC-Bayesian
domain adaptation in Section 5, that we experiment in Section 6. Afterwards, we generalize
this analysis to multisource domain adaptation in Section 7. Before concluding in Section 9,
we discuss two important points in Section 8: (i) two different results for the multisource
setting that imply open-questions for deriving new algorithms, (ii) the comparison between
our new result and the one provided in (Germain et al., 2013).

2. In this paper, we was very keen to improve the readability of our proofs, particularly those provided
by Germain et al. (2013) as supplementary material. The proof techniques may be of independent
interest.
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2. Domain Adaptation Related Works

In this section, we review the two seminal works in domain adaptation that are based on a
divergence measure between the domains (Ben-David et al., 2010a; Ben-David et al., 2006;
Mansour et al., 2009a).

2.1 Notations and Setting

We consider domain adaptation for binary classification tasks where X ⊆ Rd is the input
space of dimension d and Y = {−1,+1} is the label set. The source domain PS and the
target domain PT are two different distributions over X × Y (unknown and fixed), DS and
DT being the respective marginal distributions over X. We tackle the challenging task
where we have no target labels. A learning algorithm is then provided with a labeled source
sample S = {(xsi , ysi )}mi=1 constituted of m examples drawn i.i.d.3 from PS , and an unlabeled
target sample T = {xtj}m

′
j=1 constituted of m′ examples drawn i.i.d. from DT . Note that, we

denote the distribution of a m-sample by (PS)m. We suppose that H is a set of hypothesis
functions for X to Y . The expected source error and the expected target error of h ∈ H
over PS , respectively PT , are the probability that h errs on the entire distribution PS ,
respectively PT ,

RPS (h)
def
= E

(xs,ys)∼PS
L0-1

(
h(xs), ys

)
, and RPT (h)

def
= E

(xt,yt)∼PT
L0-1

(
h(xt), yt

)
,

where L0-1(a, b)
def
= I[a 6= b] is the 0-1 loss function which returns 1 if a 6= b and 0 otherwise.

The empirical source error RS(·) on the learning sample S is

RS(h)
def
=

1

m

∑
(xs,ys)∈S

L0-1

(
h(xs), ys

)
.

The main objective in domain adaptation is then to learn—without target label—a clas-
sifier h ∈ H leading to the lowest expected target error RPT (h).

We also introduce the expected source disagreement RDS (h, h′) and the expected target
disagreement RDT (h, h′) of (h′, h) ∈ H2, which measure the probability that two classifiers
h and h′ do not agree on the respective marginal distributions, and are defined by

RDS (h, h′)
def
= E

xs∼DS
L0-1

(
h(xs), h′(xs)

)
and RDT (h, h′)

def
= E

xt∼DT
L0-1

(
h(xt), h′(xt)

)
.

The empirical source disagreement RS(h, h′) on S and the empirical target disagreements
RT (h, h′) on T are

RS(h, h′)
def
=

1

m

∑
xs∈S

L0-1

(
h(xs), h′(xs)

)
and RT (h, h′)

def
=

1

m′

∑
xt∈T

L0-1

(
h(xt), h′(xt)

)
.

Note that, depending on the context, S denotes either the source labeled sample {(xsi , ysi )}mi=1

or its unlabeled part {xsi}mi=1.

3. i.i.d. stands for independent and identically distributed.
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Note also that the expected error RP (h) on a distribution P can be viewed as a shortcut
notation for the expected disagreement between a hypothesis h and a labeling function fP
that assigns the true label to an example description according with respect to P . We have

RP (h) = RD(h, fP ) = E
x∼D

L0-1

(
h(x), fP (x)

)
,

where D is the marginal distribution of P over X.

2.2 Necessity of a Domain Divergence

The domain adaptation objective is to find a low-error target hypothesis, even if the target
labels are not available. Even under strong assumptions, this task can be impossible to solve
(Ben-David and Urner, 2012; Ben-David et al., 2010b). However, for deriving generalization
ability in a domain adaptation situation (with the help of a domain adaptation bound), it
is critical to make use of a divergence between the source and the target domains: the
more similar the domains, the easier the adaptation appears. Some previous works have
proposed different quantities to estimate how a domain is close to another one (C. Zhang,
2012; Ben-David et al., 2010a; Mansour et al., 2009a,b; Ben-David et al., 2006; Li and
Bilmes, 2007). Concretely, two domains PS and PT differ if their marginals DS and DT are
different, or if the source labeling function differs from the target one, or if both happen.
This suggests taking into account two divergences: one betweenDS andDT and one between
the labeling. If we have some target labels, we can combine the two distances as C. Zhang
(2012). Otherwise, we preferably consider two separate measures, since it is impossible to
estimate the best target hypothesis in such a situation. Usually, we suppose that the source
labeling function is somehow related to the target one, then we look for a representation
where the marginals DS and DT appear closer without losing performances on the source
domain.

2.3 Domain Adaptation Bounds for Binary Classification

We now review the first two seminal works which propose domain adaptation bounds based
on a marginal divergence.

First, under the assumption that there exists a hypothesis in H that performs well on
both the source and the target domain, Ben-David et al. (2010a); and Ben-David et al.
(2006) have provided the following domain adaptation bound.

Theorem 1 (Ben-David et al. (2010a); Ben-David et al. (2006)) Let H be a (sym-
metric4) hypothesis class. We have

∀h ∈ H, RPT (h) ≤ RPS (h) + 1
2dH∆H(DS , DT ) + µh∗ , (1)

where
1
2dH∆H(DS , DT )

def
= sup

(h,h′)∈H2

∣∣RDT (h, h′)−RDS (h, h′)
∣∣

is the H∆H-distance between the marginals DS and DT , and

µh∗
def
= RPS (h∗) +RPT (h∗)

4. In a symmetric hypothesis space H, for every h ∈ H, its inverse −h is also in H.
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is the error of the best hypothesis overall, denoted h∗, and defined by

h∗
def
= argmin

h∈H

(
RPS (h) +RPT (h)

)
.

This bound depends on four terms. RPS (h) is the classical source domain expected error.
1
2dH∆H(DS , DT ) depends on H and corresponds to the maximum disagreement between
two hypotheses of H. In other words, it quantifies how hypothesis from H can “detect”
differences between these marginals: the lower this measure is for a given H, the better
are the generalization guarantees. The last term µh∗ = RPS (h∗) + RPT (h∗) is related to
the best hypothesis h∗ over the domains and act as a quality measure of H in terms of
labeling information. If h∗ does not have a good performance on both the source and the
target domain, then there is no way one can adapt from this source to this target. Hence, as
pointed out by the authors, Equation (1), together with the usual VC-bound theory, express
a multiple trade-off between the accuracy of some particular hypothesis h, the complexity
of H, and the “incapacity” of hypothesis of H to detect difference between the source and
the target domain.

Second, Mansour et al. (2009a) have extended the H∆H-distance to the discrepancy
divergence for regression and any symmetric loss L fulfilling the triangle inequality. Given
L : [−1,+1]2 → R+ such a loss, the discrepancy discL(DS , DT ) between DS and DT is

discL(DS , DT )
def
= sup

(h,h′)∈H2

∣∣∣ E
xt∼DT

L(h(xt), h′(xt))− E
xs∼DS

L(h(xs), h′(xs))
∣∣∣ .

Note that with the 0-1 loss in binary classification, we have

1
2dH∆H(DS , DT ) = discL0-1 (DS , DT ) .

Even if these two divergences may coincide, the following domain adaptation bound of
Mansour et al. (2009a) differs from Theorem 1.

Theorem 2 (Mansour et al. (2009a)) Let H be a (symmetric) hypothesis class. We
have

∀h ∈ H, RPT (h)−RPT (h∗T ) ≤ RDS (h∗S , h) + discL0-1 (DS , DT ) + ν(h∗S ,h
∗
T ) , (2)

where
ν(h∗S ,h

∗
T )

def
= RDS (h∗S , h

∗
T )

is the disagreement between the ideal hypothesis on the target and source domains defined
respectively as

h∗T
def
= argmin

h∈H
RPT (h) , and h∗S

def
= argmin

h∈H
RPS (h) .

In this context, Equation (2) can be tighter5 since it bounds the difference between the
target error of a classifier and the one of the optimal h∗T . This bound expresses a trade-off

5. Equation (1) can lead to an error term 3 times higher than Equation (2) in some cases (Mansour et al.,
2009a).
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between the disagreement (between h and the best source hypothesis h∗S), the complexity
of H (with the Rademacher complexity), and—again—the “incapacity” of hypothesis to
detect differences between the domains.

To conclude, the domain adaptation bounds (1) and (2) suggest that if the divergence
between the domains is low, a low-error classifier over the source domain might perform well
on the target one. These divergences compute the worst case of the disagreement between
a pair of hypothesis. We propose in Section 4 an average case approach by making use of
the essence of the PAC-Bayesian theory, which is known to offer tight generalization bounds
(McAllester, 1999; Germain et al., 2009a; Parrado-Hernández et al., 2012).

3. PAC-Bayesian Theory in Supervised Learning

Let us now review the classical supervised binary classification framework called the PAC-
Bayesian theory, first introduced by McAllester (1999). This theory succeeds to provide
tight generalization guarantees on majority vote classifiers, without relying on any validation
set.

Throughout this section, we adopt an algorithm design perspective: we interpret the
various forms of the PAC-Bayesian theorem as a guide to derive new machine learning
algorithms. Indeed, the PAC-Bayesian analysis of domain adaptation provided in the forth-
coming sections is oriented by the motivation of creating a new adaptive algorithms.

3.1 Notations and Setting

Traditionally, the PAC-Bayesian theory considers weighted majority votes over a set H of
binary hypothesis. Given a prior distribution π over H and a training set S, the learner
aims at finding the posterior distribution ρ over H leading to a ρ-weighted majority vote
Bρ (also called the Bayes classifier) with good generalization guarantees and defined by

Bρ(x)
def
= sign

[
E
h∼ρ

h(x)
]
.

Minimizing RPS (Bρ) the risk of Bρ is known to be NP-hard. In the PAC-Bayesian approach,
it is replaced by the risk of the stochastic Gibbs classifier Gρ associated with ρ. In order
to predict the label of an example x, the Gibbs classifier first draws a hypothesis h from H
according to ρ, then returns h(x) as label. Note that the error of the Gibbs classifier on a
domain PS corresponds to the expectation of the errors over ρ:

RPS (Gρ)
def
= E

h∼ρ
RPS (h) . (3)

In this setting, if Bρ misclassifies x, then at least half of the classifiers (under ρ) errs on x.
Hence, we have

RPS (Bρ) ≤ 2RPS (Gρ) .

Another result on the relation between RPS (Bρ) and RPS (Gρ) is the C-bound of Lacasse
et al. (2006) expressed as

RPS (Bρ) ≤ 1−
(
1− 2RPS (Gρ)

)2
1− 2RDS (Gρ, Gρ)

, (4)

7
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where RDS (Gρ, Gρ) corresponds to the disagreement of the classifiers over ρ:

RDS (Gρ, Gρ)
def
= E

(h,h′)∼ρ2
RDS (h, h′) . (5)

Equation (4) suggests that for a fixed numerator, i.e., a fixed risk of the Gibbs classifier,
the best majority vote is the one with the lowest denominator, i.e., with the greatest
disagreement between its voters (see Laviolette et al. (2011) for further analysis).

Finally, we introduce the notion of expected joint error of a pair of classifiers (h, h′)
drawn according to the distribution ρ, defined as

ePS (Gρ, Gρ)
def
= E

(h,h′)∼ρ2
E

(x,y)∼PS
L0-1

(
h(x), y

)
× L0-1

(
h′(x), y

)
. (6)

The PAC-Bayesian theory allows one to bound the expected error RPS (Gρ) in terms of
two major quantities: the empirical error RS(Gρ) = Eh∼ρRS(h) estimated on a sample S

drawn i.i.d. from PS and the Kullback-Leibler divergence KL(ρ‖π)
def
= Eh∼ρ ln ρ(h)

π(h) . The
three main PAC-Bayes theorems, that we present in the next section, have been proposed
by McAllester (1999); Seeger (2002); Langford (2005); and Catoni (2007).

3.2 Three Versions of the PAC-Bayesian Theorem

First, let consider the KL-divergence kl(a ‖ b) between two Bernoulli distributions with
success probability a and b, defined by

kl(a ‖ b) def
= a ln

a

b
+ (1− a) ln

1− a
1− b

.

Seeger (2002); and Langford (2005) have derived the following PAC-Bayesian theorem in
which the trade-off between the complexity and the risk is handled by kl(·‖·).

Theorem 3 (Seeger (2002); Langford (2005)) For any domain PS over X × Y , any
set of hypothesis H, and any prior distribution π over H, any δ ∈ (0, 1], with a probability
at least 1− δ over the choice of S ∼ (PS)m, for every ρ over H, we have

kl
(
RS(Gρ)

∥∥∥RPS (Gρ)
)
≤ 1

m

[
KL(ρ ‖π) + ln

2
√
m

δ

]
.

This version of the PAC-Bayes theorem offers a tight bound, especially for low empirical
risk. However, due to the kl (RS(Gρ) ‖RPS (Gρ)) term, this bound remains difficult to
interpret: the link between the empirical risk RS(Gρ) and the “true” risk RPS (Gρ) is not
given by a close form. Thus, from an algorithmic point of view, finding the distribution ρ
that minimizes the bound on RPS (Gρ) given by Theorem 3 might be a difficult task.

The following version of the PAC-Bayes theorem, which was the first proposed (McAllester,
1999), appears easier to interpret since it links the terms RS(Gρ) and RPS (Gρ) by a linear
relation. Note that Theorem 4 can be straightforwardly obtained from Theorem 3 using
Pinsker’s inequality:

2(q − p)2 ≤ kl(q ‖ p) . (7)

8
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Theorem 4 (McAllester (1999)) For any domain PS over X×Y , any set of hypothesis
H, any prior distribution π over H, and any δ ∈ (0, 1], with a probability at least 1− δ over
the choice of S ∼ (PS)m, for every ρ over H, we have∣∣∣RPS (Gρ)−RS(Gρ)

∣∣∣ ≤
√

1

2m

[
KL(ρ ‖π) + ln

2
√
m

δ

]
.

Theorems 3 and 4 suggest that, in order to minimize the expected risk, a learning
algorithm should performs a trade-off between the empirical risk minimization RS(Gρ) and
KL-divergence minimization KL(ρ ‖π) (roughly speaking the complexity term).

The nature of this trade-off can be explicitly controlled in Theorem 5 below. This PAC-
Bayesian result, first proposed by Catoni (2007), is defined with a hyperparameter (here
named c). It appears to be a natural tool to design PAC-Bayesian algorithms. We present
this result in the simplified form suggested by Germain et al. (2009b).

Theorem 5 (Catoni (2007)) For any domain PS over X × Y , for any set of hypothesis
H, any prior distribution π over H, any δ ∈ (0, 1], and any real number c > 0, with a
probability at least 1− δ over the choice of S ∼ (PS)m, for every ρ on H, we have

RPS (Gρ) ≤
c

1− e−c

[
RS(Gρ) +

KL(ρ‖π) + ln 1
δ

m× c

]
.

The bound given by Theorem 5 has two interesting characteristics. First, choosing
c = 1√

m
, the bound becomes consistent: it converges to 1× [RS(Gρ) + 0] as m grows. Second,

as described in Section 3.3, its minimization is closely related to the minimization problem
associated with the SVM when ρ is an isotropic Gaussian over the space of linear classifiers
(Germain et al., 2009a). Hence, the value c allows us to control the trade-off between the
empirical risk RS(Gρ) and the complexity term 1

m KL(ρ‖π).

3.3 Supervised PAC-Bayesian Learning of Linear Classifiers

Let us consider H as a set of linear classifiers in a d-dimensional space. Each hw′ ∈ H is
defined by a weight vector w′ ∈ Rd:

hw′(x)
def
= sgn

(
w′ · x

)
,

where · denotes the dot product.

By restricting the prior and the posterior distributions over H to be Gaussian distribu-
tions, Langford and Shawe-Taylor (2002); Ambroladze et al. (2006); and Parrado-Hernández
et al. (2012) have specialized the PAC-Bayesian theory in order to bound the expected risk
of any linear classifier hw ∈ H. More precisely, given a prior π0 and a posterior ρw defined
as spherical Gaussians with identity covariance matrix respectively centered on vectors 0
and w, for any hw′ ∈ H, we have

π0(hw′)
def
=

(
1√
2π

)d
exp

(
−1

2
‖w′‖2

)
,

and ρw(hw′)
def
=

(
1√
2π

)d
exp

(
−1

2
‖w′ −w‖2

)
.
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An interesting property of these Gaussian distributions is that the prediction of the ρw-weighted
majority vote Bρw(·) coincides with the one of the linear classifier hw(·). Indeed, we have

∀x ∈ X, ∀w ∈ H, hw(x) = Bρw(x)

= sign

[
E

hw′∼ρw
hw′(x)

]
.

Moreover, the expected risk of the Gibbs classifier Gρw on a domain PS is then given by

RPS (Gρw) = E
(x,y)∼PS

E
hw′∼ρw

L0-1

(
hw′(x), y

)
= E

(x,y)∼PS
E

hw′∼ρw
I
(
hw′(x) 6= y

)
= E

(x,y)∼PS
E

hw′∼ρw
I
(
yw′ · x ≤ 0

)
= E

(x,y)∼PS

1√
2π

∫
Rd

exp

(
−1

2
‖w′ −w‖2

)
I
(
yw′ · x ≤ 0

)
dw′

= E
(x,y)∼PS

[
1− Pr

t∼N (0,1)

(
t ≤ y

w · x
‖x‖

)]
= E

(x,y)∼PS
Φ

(
y

w · x
‖x‖

)
,

where we defined

Φ(a)
def
=

1

2

[
1− Erf

(
a√
2

)]
,

with Erf(·) is the Gauss error function defined as

Erf (b)
def
=

2√
π

∫ b

0
exp

(
−t2
)

dt . (8)

Finally, the KL-divergence between ρw and π0 becomes simply

KL(ρw‖π0) = 1
2‖w‖

2 .

3.3.1 Objective Function and Gradient

Based on the specialization of the PAC-Bayesian theory to linear classifiers, Germain et al.
(2009a) suggested to minimize a PAC-Bayesian bound on RPS (Gρw). For sake of com-
pleteness, we provide here more mathematical details than in the original conference paper
(Germain et al., 2009a). We will build on this PAC-Bayesian learning algorithm (for super-
vised leaning) in our domain adaptation work.

Given a sample S = {(xsi , ysi )}mi=1 and a hyperparameter C > 0, the learning algorithm
performs a gradient descent in order to find an optimal weight vector w that minimizes

F (w) = CmRS(Gρw) + KL(ρw‖π0)

= C
m∑
i=1

Φ

(
yi

w · xi
‖xi‖

)
+

1

2
‖w‖2 . (9)

10
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It turns out that the optimal vector w corresponds to the distribution ρw that minimizes the
value of the bound on RPS (Gρw) given by Theorem 5, with the parameter c of the theorem
being the hyperparameter C of the learning algorithm. It is important to point out that
PAC-Bayesian theorems bound simultaneously RPS (Gρw) for every ρw on H. Therefore, one
can “freely” explore the domain of objective function F to choose a posterior distribution ρw
that gives, thanks to Theorem 5, a bound valid with probability 1− δ.

The minimization of Equation (9) by gradient descent corresponds to the learning al-
gorithm called PBGD3 of Germain et al. (2009a). The gradient of F (w) is given the vec-
tor ∇F (w):

∇F (w) = C
m∑
i=1

Φ′
(
yi

w · xi
‖xi‖

)
yi xi
‖xi‖

+ w ,

where Φ′(a) = − 1√
2π

exp
(
−1

2a
2
)

is the derivative of Φ(·) at point a.

Similarly to the SVM, the learning algorithm PBGD3 realizes a trade-off between the
empirical risk (expressed by the loss Φ(·)) and the complexity of the learned linear classifier
(expressed by the regularizer ‖w‖2). This similarity increases when we use a kernel function,
as described next.

3.3.2 Using a kernel function

The kernel trick allows to substitute inner products by a kernel function k : Rd × Rd → R
in Equation (9). If k is a Mercer kernel, it implicitly represents a function φ : X → Rd′ that
maps an example of X into an arbitrary d′-dimensional space6, such that

∀(x,x′) ∈ X2, k(x,x′) = φ(x) · φ(x′) .

Then, a dual weight vector ααα = (α1, α2, . . . , αm) ∈ Rm encodes the linear classifier w ∈ Rd′

as a linear combination of examples of S:

w =
m∑
i=1

αi φ(xi) , and thus hw(x) = sgn

[
m∑
i=1

αik(xi,x)

]
.

By the representer theorem (Schölkopf et al., 2001), the vector w minimizing Equa-
tion (9) can be recovered by finding the vector ααα that minimizes

F (ααα) = C

m∑
i=1

Φ

(
yi

∑m
j=1 αjKi,j√

Ki,i

)
+

1

2

m∑
i=1

m∑
j=1

αiαjKi,j , (10)

where K is the kernel matrix of size m × m. That is, Ki,j
def
= k(xi,xj) . The gradient of

F (ααα) is simply given the vector ∇F (ααα) = (α′1, α
′
2, . . . α

′
m), with

α′# = C
m∑
i=1

Φ

(
yi

∑m
j=1 αjKi,j√

Ki,i

)
yiKi,#√
Ki,i

+
m∑
j=1

αiKi,# , for # ∈ {1, 2, . . . ,m } .

6. We consider here that the induced space is finite-dimensional.
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3.3.3 Improving the Algorithm Using a Convex Objective

An annoying drawback of PBGD3 is that the objective function is non-convex and the
gradient descent implementation needs many random restarts. In fact, we made extensive
empirical experiments after the ones described by Germain et al. (2009a) and saw that
PBGD3 achieves an equivalent accuracy (and at a fraction of the running time) by replacing
the loss function Φ(·) of Equations (9) and (10) by its convex relaxation, which is

Φcvx(a)
def
= max

{
Φ(a),

1

2
− a√

2π

}

=


1

2
− a√

2π
if a ≤ 0,

Φ(a) otherwise.

The derivative of Φcvx(·) at point a is then Φ′cvx(a) = −1√
2π

if a < 0, and Φ′(a) otherwise.

Note that Figure 1 in Section 5 illustrates the functions Φ(·) and Φcvx(·) .

In the following we present our contributions on PAC-Bayesian domain adaptation.

4. PAC-Bayesian Theorems for Domain Adaptation

The originality of our contribution is to theoretically design a domain adaptation framework
for PAC-Bayesian approach. In Section 4.1, we propose a domain comparison pseudometric
suitable in this context. We then derive PAC-Bayesian domain adaptation bounds in Sec-
tion 4.2, that improves the result proposed in Germain et al. (2013). Finally, note that in
Section 5 we see that using the previous approach in a domain adaptation way is a relevant
strategy: we specialize our result to linear classifiers.

4.1 A Domain Divergence for PAC-Bayesian Analysis

In the following, while the domain adaptation bounds presented in Section 2 focus on a
single classifier, we first define a ρ-average disagreement measure to compare the marginals.
Then, this leads us to derive our domain adaptation bound suitable for the PAC-Bayesian
approach.

As discussed in Section 2.2, the derivation of generalization ability in domain adaptation
critically needs a divergence measure between the source and target marginals.

4.1.1 Designing the Divergence

We define a domain disagreement pseudometric7 to measure the structural difference be-
tween domain marginals in terms of posterior distribution ρ over H. Since we are interested
in learning a ρ-weighted majority vote Bρ leading to good generalization guarantees, we
propose to follow the idea behind the C-bound presented in Equation (4): given PS , PT ,
and ρ, if RPS (Gρ) and RPT (Gρ) are similar, then RPS (Bρ) and RPT (Bρ) are similar when

E
(h,h′)∼ρ2

RDS (h, h′) and E
(h,h′)∼ρ2

RDT (h, h′) are also similar. Thus, the domains PS and PT

7. A pseudometric d is a metric for which the property d(x, y) = 0⇔ x = y is relaxed to
d(x, y) = 0⇐ x = y.

12
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are close according to ρ if the divergence between E
(h,h′)∼ρ2

RDS (h, h′) and E
(h,h′)∼ρ2

RDT (h, h′)

tends to be low. Our pseudometric is defined as follows.

Definition 6 Let H be a hypothesis class. For any marginal distributions DS and DT over
X, any distribution ρ on H, the domain disagreement disρ(DS , DT ) between DS and DT is
defined by

disρ(DS , DT )
def
=

∣∣∣∣ E
(h,h′)∼ρ2

[
RDT (h, h′)−RDS (h, h′)

]∣∣∣∣
=
∣∣∣RDT (Gρ, Gρ)−RDS (Gρ, Gρ)

∣∣∣ .
Note that disρ(·, ·) is symmetric and fulfills the triangle inequality.

4.1.2 Comparison of the H∆H-divergence and our domain disagreement

While the H∆H-divergence of Theorem 1 is difficult to jointly optimize with the empirical
source error, our empirical disagreement measure is easier to manipulate: we simply need to
compute the ρ-average of the classifiers disagreement instead of finding the pair of classifiers
that maximizes the disagreement. Indeed, disρ(·, ·) depends on the majority vote, which
suggests that we can directly minimize it via the empirical disρ(S, T ) and the KL-divergence.
This can be done without instance reweighing, space representation changing or family of
classifiers modification. On the contrary, 1

2dH∆H(·, ·) is a supremum over all h ∈ H and
hence, does not depend on the h on which the risk is considered. Moreover, disρ(·, ·) (the
ρ-average) is lower than the 1

2dH∆H(·, ·) (the worst case). Indeed, for every H and ρ over
H, we have

1
2 dH∆H(DS , DT ) = sup

(h,h′)∈H2

∣∣RDT (h, h′)−RDS (h, h′)
∣∣

≥ E
(h,h′)∼ρ2

∣∣RDT (h, h′)−RDS (h, h′)
∣∣

≥ disρ(DS , DT ) .

4.1.3 PAC-Bayesian bounds for our domain disagreement

The following theorems show that disρ(DS , DT ) can be bounded in terms of the classical
PAC-Bayesian quantities: the empirical disagreement disρ(S, T ) estimated on the source
and target samples, and the KL-divergence between the prior and posterior distribution
on H.

For the sake of simplicity, let first suppose thatm = m′, i.e., the size of S and T are equal.
Here is a “Seeger’s type” PAC-Bayesian bound for our domain disagreement disρ.

Theorem 7 For any distributions DS and DT over X, any set of hypothesis H, and any
prior distribution π over H, any δ ∈ (0, 1], with a probability at least 1− δ over the choice
of S × T ∼ (DS ×DT )m, for every ρ on H, we have

kl

(
disρ(S, T ) + 1

2

∥∥∥∥∥disρ(DS , DT ) + 1

2

)
≤ 1

m

[
2 KL(ρ‖π) + ln

2
√
m

δ

]
.

13
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Proof Deferred to Appendix B.

Here is a “McAllester’s type” PAC-Bayesian bound for our domain disagreement disρ
obtained straightforwardly from Theorem 7.

Corollary 8 For any distributions DS and DT over X, any set of hypothesis H, and any
prior distribution π over H, any δ ∈ (0, 1], with a probability at least 1− δ over the choice
of S × T ∼ (DS ×DT )m, for every ρ on H, we have

∣∣∣disρ(DS , DT )− disρ(S, T )
∣∣∣ ≤ 2×

√
1

2m

[
2 KL(ρ‖π) + ln

2
√
m

δ

]
.

Proof The result is obtained by using Pinsker’s inequality (Equation (7)) on Theorem 7.

Here is a “Catoni’s type” PAC-Bayesian bound which helps us to derive a domain
adaptation algorithm in the following.

Theorem 9 For any distributions DS and DT over X, any set of hypothesis H, any prior
distribution π over H, any δ ∈ (0, 1], and any real number α > 0, with a probability at least
1− δ over the choice of S × T ∼ (DS ×DT )m, for every ρ on H, we have

disρ(DS , DT ) ≤ 2α

1− e−2α

[
disρ(S, T ) +

2 KL(ρ‖π) + ln 2
δ

m× α
+ 1

]
− 1 .

Proof Deferred to Appendix C.

Similarly to the empirical risk bound of Catoni (2007) shown by Theorem 5, the above
domain disagreement bound is consistent if one puts α = 1

2
√
m

. Indeed, it converges to

1× [disρ(S, T ) + 0 + 1]− 1 as m grows.

The last result of this section tackles the situation where m 6= m′, i.e., the sizes of S
and T are different.

Theorem 10 For any marginal distributions DS and DT over X, any set of hypothesis H,
any prior distribution π over H, any δ ∈ (0, 1], with a probability at least 1 − δ over the
choice of S ∼ (DS)m and T ∼ (DT )m

′
, for every ρ over H, we have

∣∣∣∣ disρ(DS , DT )− disρ(S, T )

∣∣∣∣ ≤
√

2 KL(ρ‖π) + ln4
√
m
δ

2m
+

√
2 KL(ρ‖π) + ln4

√
m′

δ

2m′
.

Proof Deferred to Appendix D.

Note that Theorem 10 is very similar to the result of Corollary 8. In fact, in the particular
case m = m′, Theorem 10 differs from Corollary 8 only by the 4

√
m term inside the

logarithm, instead of 2
√
m.

14



PAC-Bayesian Theorems for Domain Adaptation

4.2 PAC-Bayesian Theorems for Domain Adaptation

We now derive our main result in the following theorem: a domain adaptation bound
relevant in a PAC-Bayesian setting.

4.2.1 A domain adaptation bound for the stochastic Gibbs classifier

Theorem 11 below relies on the domain disagreement of Definition 6, and also on expected
joint error of Equation (6).

Theorem 11 Let H be a hypothesis class. We have

∀ρ on H, RPT (Gρ) ≤ RPS (Gρ) +
1

2
disρ(DS , DT ) + λρ ,

where λρ is the deviation between the expected joint errors of Gρ on the target and source
domains:

λρ
def
=

∣∣∣∣ E
(h,h′)∼ρ2

[
E

(x,y)∼PT
L0-1

(
h(x), y

)
L0-1

(
h′(x), y

)
− E

(x,y)∼PS
L0-1

(
h(x), y

)
L0-1

(
h′(x), y

)]∣∣∣∣
=

∣∣∣ ePT (Gρ, Gρ)− ePS (Gρ, Gρ)
∣∣∣ . (11)

Proof First, notice that for any distribution P on X × Y (and corresponding marginal
distribution D on X), we have

RP (Gρ) =
1

2
RD(Gρ, Gρ) + eP (Gρ, Gρ) , (12)

as

2RP (Gρ) = E
(h,h′)∼ρ2

E
(x,y)∼P

[
L0-1

(
h(x), y

)
+ L0-1

(
h′(x), y

)]
= E

(h,h′)∼ρ2
E

(x,y)∼P

[
1× L0-1

(
h(x), h′(x)

)
+ 2× L0-1

(
h(x), y

)
L0-1

(
h′(x), y

)]
= RD(Gρ, Gρ) + 2× eP (Gρ, Gρ) .

Therefore,

RPT (Gρ)−RPS (Gρ) =
1

2

(
RDT (Gρ, Gρ)−RDS (Gρ, Gρ)

)
+
(
ePT (Gρ, Gρ)− ePS (Gρ, Gρ)

)
≤ 1

2

∣∣∣RDT (Gρ, Gρ)−RDS (Gρ, Gρ)
∣∣∣+
∣∣∣ePT (Gρ, Gρ)− ePS (Gρ, Gρ)

∣∣∣
=

1

2
disρ(DS , DT ) + λρ .

Our bound is, in general, incomparable with the ones of Theorems 1 and 2. It can
be seen as a trade-off between different quantities. The terms RPS (Gρ) and disρ(DS , DT )
are similar to the first two terms of the domain adaptation bound of Ben-David et al.
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(2010a) (Equation (1)): RPS (Gρ) is the ρ-average risk over H on the source domain, and
disρ(DT , DS) measures the ρ-average disagreement between the marginals but is specific to
the current ρ. The other term λρ measures the deviation between the expected joint target
and source errors of Gρ. According to this theory, a good domain adaptation is possible
if this deviation is low. However, since we suppose that we do not have any label in the
target sample, we cannot control or estimate it. In practice, we suppose that λρ is low and
we neglect it. In other words, we assume that the labeling information between the two
domains is related and that considering only the marginal agreement and the source labels
is sufficient to find a good majority vote. Another important point comes from the fact
that this bound is not degenerated when the source and target distributions are the same
or close, see Section 8.2 for a discussion on this point.

We provide in the next section three PAC-Bayesian theorems that justifies the empirical
optimization of the bound of Theorem 11.

4.2.2 PAC-Bayesian theorems for domain adaptation

Finally, our Theorem 11 leads to a PAC-Bayesian bounds based on both the empirical source
error of the Gibbs classifier and the empirical domain disagreement pseudometric estimated
on a source and target samples.

From the preceding “Seeger’s type” results, one can then obtain the following PAC-
Bayesian domain adaptation bound.

Theorem 12 For any domains PS and PT (respectively with marginals DS and DT ) over
X × Y , any set of hypothesis H, any prior distribution π over H, and any δ ∈ (0, 1], with
a probability at least 1− δ over the choice of S × T ∼ (PS ×DT )m, we have

RPT (Gρ) ≤ supRρ + 1
2 supDρ + λρ ,

where λρ is defined by Equation (11), and

Rρ
def
=
{
r : kl

(
RS(Gρ)

∥∥r) ≤ 1
m

[
KL(ρ‖π) + ln 4

√
m
δ

]}
,

Dρ
def
=
{
d : kl

(disρ(S,T )+1
2

∥∥d+1
2

)
≤ 1

m

[
2 KL(ρ‖π) + ln 4

√
m
δ

]}
.

Proof The result is obtained by inserting Theorems 3 and 7 (with δ := δ
2) in Theorem 11.

The following bound is based on the Catoni’s approach and corresponds to the one from
which we derive—in Section 5—our algorithm for PAC-Bayesian domain adaptation.

Theorem 13 For any domains PS and PT (resp. with marginals DS and DT ) over X×Y ,
any set of hypothesis H, any prior distribution π over H, any δ ∈ (0, 1], any real numbers
α > 0 and c > 0, with a probability at least 1− δ over the choice of S × T ∼ (PS ×DT )m,
for every posterior distribution ρ on H, we have

RPT (Gρ) ≤ c′RS(Gρ) + α′ 1
2 disρ(S, T ) +

(
c′

c
+
α′

α

)
KL(ρ‖π) + ln 3

δ

m
+ λρ + 1

2(α′−1) ,

where λρ is defined by Equation (11), and where c′
def
=

c

1− e−c
, and α′

def
=

2α

1− e−2α
.
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Proof In Theorem 11, we replace RS(Gρ) and disρ(S, T ) by their upper bound, obtained
from Theorem 5 and Theorem 9, with δ chosen respectively as δ

3 and 2δ
3 . In the latter case,

we use

2 KL(ρ‖π) + ln 2
2δ/3 = 2 KL(ρ‖π) + ln 3

δ

< 2
(
KL(ρ‖π) + ln 3

δ

)
.

We now present a result based on the McAllester’s bound, which allows us to easily deal
with different size of samples.

Theorem 14 For any domains PS and PT (respectively with marginals DS and DT ) over
X ×Y , and for any set H of hypothesis, for any prior distribution π over H, any δ ∈ (0, 1],
with a probability at least 1 − δ over the choice of S1 ∼ (PS)m1, S2 ∼ (DS)m2, and T ∼
(DT )m

′
, for every ρ over H, we have

RPT (Gρ) ≤ RS1(Gρ) + 1
2 disρ(S2, T ) + λρ

+

√
KL(ρ‖π) + ln

4
√
m1

δ

2m1
+

√
2 KL(ρ‖π) + ln

8
√
m2

δ

8m2
+

√
2 KL(ρ‖π) + ln 8

√
m′

δ

8m′
.

where λρ is defined by Equation (11).

Proof We insert Theorems 4 and 10 (with δ := δ
2) in Theorem 11.

Under the assumption that the domains are somehow related in terms of labeling agree-
ment on PS and PT (for every distribution ρ over H), i.e., a low disρ(DS , DT ) implies a
negligible λρ, a natural solution for a PAC-Bayesian domain adaptation algorithm without
target label is to minimize the bound of Theorem 13 by disregarding λρ. Notice that a
major advantage of our domain adaptation bound is that we can jointly optimize the risk
and the divergence with a theoretical justification.

5. PAC-Bayesian Domain Adaptation Learning of Linear Classifiers

In this section, we design a learning algorithm for domain adaptation inspired by the PAC-
Bayesian learning algorithm of Germain et al. (2009a). That is, we adopt the specialization
of the PAC-Bayesian theory to linear classifier described in Section 3.3. Note that the code
of our algorithm is available on-line.8

5.1 Minimizing the PAC-Bayesian Domain Adaptation Bound

Let consider a prior π0 and a posterior ρw that are spherical Gaussian distributions over a
space of linear classifiers, exactly as defined in Section 3.3.

8. See http://graal.ift.ulaval.ca/pbda.

17

http://graal.ift.ulaval.ca/pbda


Germain, Habrard, Laviolette and Morvant

Given a source sample S = {(xsi , ysi )}mi=1 and a target sample T = {(xti)}mi=1, we focus on
the minimization of the bound given by Theorem 13. We work under the assumption that
the term λρw of the bound is negligible. Thus, the posterior distribution ρw that minimizes
the bound on RT (Gρw) is the same that minimizes

CmRS(Gρw) +Am disρw(S, T ) + KL(ρw‖π0) . (13)

The values A > 0 and C > 0 are hyperparameters of the algorithm. Note that the constants
α and c of Theorem 13 can be recovered from any A and C.

5.1.1 Domain Disagreement of Linear Classifiers

We know from Equation (9) how to compute the terms RS(Gρw) and KL(ρw‖π0) of Equa-
tion (13). Let now derive the value of disρw(S, T ), i.e., the empirical domain disagreement
between S and T of a distribution ρw over linear classifiers.

First, for any marginal D, we obtain

RD(Gρw , Gρw) = E
x∼D

E
(h,h′)∼ρ2w

L0-1

(
h(x), h′(x)

)
= E

x∼D
E

(h,h′)∼ρ2w
I[h(x) 6= h′(x)]

= E
x∼D

E
(h,h′)∼ρ2w

(
I[h(x) = 1] I[h′(x) = −1] + I[h(x) = −1] I[h′(x) = 1]

)
= 2 E

x∼D
E

(h,h′)∼ρ2w
I[h(x) = 1] I[h′(x) = −1]

= 2 E
x∼D

E
h∼ρw

I[h(x) = 1] E
h′∼ρw

I[h′(x) = −1]

= 2 E
x∼D

Φ

(
w · x
‖x‖

)
Φ

(
−w · x
‖x‖

)
.

Thus,

disρw(S, T ) =
∣∣∣RS(Gρw , Gρw)−RT (Gρw , Gρw)

∣∣∣
=

∣∣∣∣∣ 1

m

m∑
i=1

Φdis

(
w · xsi
‖xsi‖

)
− 1

m

m∑
i=1

Φdis

(
w · xti
‖xti‖

)∣∣∣∣∣ ,
where

Φdis(a)
def
= 2 Φ(a) Φ(−a) . (14)

5.1.2 Objective Function and Gradient

From the results of Sections 3.3.1 and 5.1.1, we obtain that Equation (13) equals to

C

m∑
i=1

Φ

(
ysi

w · xsi
‖xsi‖

)
+A

∣∣∣∣∣
m∑
i=1

[
Φdis

(
w · xsi
‖xsi‖

)
− Φdis

(
w · xti
‖xti‖

)]∣∣∣∣∣+
1

2
‖w‖2 ,

which is highly non-convex. To make the optimization problem more tractable, we replace
the loss function Φ(·) by its convex relaxation Φcvx(·) (as in Section 3.3.3) and minimize the
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Figure 1: Behaviour of functions Φ(·), Φcvx(·) and Φdis(·).

resulting cost function by gradient descent. Even if this optimization task is still not convex
(Φdis(·) is quasiconcave), our empirical study shows no need to perform many restarts to
find a suitable solution.9

We name this domain adaptation algorithm PBDA. To sum up, given a source sample
S = {(xsi , ysi )}mi=1, a target sample T = {(xti)}mi=1, and hyperparameters A and C, the
algorithm PBDA performs gradient descent to minimize the following objective function:

G(w) = C

m∑
i=1

Φcvx

(
ysi

w · xsi
‖xsi‖

)
+A

∣∣∣∣∣
m∑
i=1

[
Φdis

(
w · xsi
‖xsi‖

)
− Φdis

(
w · xti
‖xti‖

)]∣∣∣∣∣+ 1

2
‖w‖2 . (15)

where

Φ(a)
def
=

1

2

[
1− Erf

(
a√
2

)]
,

Φcvx(a)
def
= max

{
Φ(a),

1

2
− a√

2π

}
,

Φdis(a)
def
= 2× Φ(a)× Φ(−a) ,

with Erf(·) the Gauss error function defined in Equation (8). Figure 1 illustrates these three
functions.

The gradient ∇G(w) of the Equation (15) is then given by

∇G(w) = C

m∑
i=1

Φ′cvx

(
ysiw · xsi
‖xsi‖

)
ysix

s
i

‖xsi‖
+ w

+ s×A

(
m∑
i=1

[
Φ′dis

(
w · xti
‖xti‖

)
xti
‖xti‖

− Φ′dis

(
w · xsi
‖xsi‖

)
xsi
‖xsi‖

])
,

9. We observe empirically that a good strategy is to first find the vector w minimizing the convex problem
of PBGD3 described in Section 3.3.3, and then use this w as a starting point for the gradient descent
of PBDA.
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where Φ′cvx(a) and Φ′dis(a) are respectively the derivatives of functions Φcvx(·) and Φdis(·)
evaluated at point a, and

s = sgn

(
m∑
i=1

[
Φdis

(
w · xsi
‖xsi‖

)
− Φdis

(
w · xti
‖xti‖

)])
.

We extend these equations to kernels in the following subsection.

5.1.3 Using a Kernel Function

The kernel trick allows us to work with dual weight vector ααα ∈ R2m that is a linear classifier
in an augmented space. Given a kernel k : Rd × Rd → R, we have

hw(x) = sgn

[
m∑
i=1

αik(xsi ,x) +

m∑
i=1

αi+mk(xti,x)

]
.

Let us denote K the kernel matrix of size 2m× 2m such as Ki,j
def
= k(xi,xj) , where

x# =

{
xs# if # ≤ m
xt#−m otherwise.

In that case, the objective function of Equation (15) is rewritten in term of the vector
ααα = (α1, α2, . . . α2m) as

G(ααα) = C
m∑
i=1

Φcvx

(
ysi

∑2m
j=1 αjKi,j√

Ki,i

)

+A

∣∣∣∣∣
m∑
i=1

[
Φdis

(∑2m
j=1 αjKi,j√

Ki,i

)
− Φdis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)]∣∣∣∣∣+
1

2

2m∑
i=1

2m∑
j=1

αiαjKi,j .

The gradient of the latter equation is given by the vector ∇G(ααα) = (α′1, α
′
2, . . . α

′
2m), with

α′# = C

m∑
i=1

Φ′cvx

(
ysi

∑2m
j=1 αjKi,j√

Ki,i

)
ysi Ki,#√

Ki,i
+

2m∑
j=1

αiKi,#

+ s×A

(
m∑
i=1

[
Φ′dis

(∑2m
j=1 αjKi,j√

Ki,i

)
Ki,#√
Ki,i
− Φ′dis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)
Ki+m,#√
Ki+m,i+m

])
,

where

s = sgn

(
m∑
i=1

[
Φdis

(∑2m
j=1 αjKi,j√

Ki,i

)
− Φdis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)])
.
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6. Experiments

6.1 General Setup

PBDA10 has been evaluated on a toy problem and a sentiment dataset. For our ex-
periments, we minimize the objective function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python library11. PBDA has been compared with:

• SVM learned only from the source domain, i.e., without adaptation. We made use of
the SVM-light library (Joachims, 1999).

• PBGD3, presented in Section 3.3, and learned only from the source domain, i.e.,
without adaptation.

• DASVM of Bruzzone and Marconcini (2010), an iterative domain adaptation algorithm
which tries to maximize iteratively a notion of margin on self-labeled target examples.
We implemented DASVM with the LibSVM library (Chang and Lin, 2001).

• CODA of Chen et al. (2011), a co-training domain adaptation algorithm, which looks
iteratively for target features related to the training set. We used the implementation
provided by the authors. Note that in (Chen et al., 2011) has showed best results on
the dataset considered in our Section 6.4.

Each parameter is selected with a grid search via a classical 5-folds cross-validation (CV )
on the source sample for PBGD3 and SVM, and via a 5-folds reverse/circular validation
(RCV ) on the source and the (unlabeled) target samples for CODA, DASVM, and PBDA.
We describe this latter point in the following section. Note that for PBDA we search on a
20 × 20 parameter grid for a A between 0.01 and 106 and a parameter C between 1.0 and
108, both on a logarithm scale.

6.2 A Note about the Reverse Validation

A crucial question in domain adaptation is the validation of the hyperparameters. One
solution is to follow the principle proposed by Zhong et al. (2010) which relies on the use
of a reverse validation approach. This approach is based on a so-called reverse classifier
evaluated on the source domain. We propose to follow it for tuning the parameters of
PBDA, DASVM and CODA. Note that Bruzzone and Marconcini (2010) have proposed a
similar method, called circular validation, in the context of DASVM.

Concretely, in our setting, given k-folds on the source labeled sample (S = S1∪ . . .∪Sk),
k-folds on the unlabeled target T sample (T = T1 ∪ . . . ∪ Tk) and a learning algorithm
(parametrized by a fixed tuple of hyperparameters), the reverse cross validation risk on the
ith fold is computed as follow. Firstly, the source set S \ Si is used as labeled examples
and the target set T \ Ti is used as unlabeled sample for learning a classifier h′. Secondly,
using the same algorithm, a reverse classifier h′r is learned using the self-labeled sample
{(x, h′(x))}x∈T\Ti as the source set and the unlabeled part of S\Si as target sample. Finally,
the reverse classifier h′r is evaluated on Si. We summarize this principle on Figure 2. The

10. We made our code available at the following URL: http://graal.ift.ulaval.ca/pbda/
11. Available at http://www.scipy.org/
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Figure 2: The principle of the reverse/circular validation in our setting.

process is repeated k times to obtain the reverse cross validation risk averaged across all
folds.

6.3 Toy Problem: Two Inter-Twinning Moons

The source domain considered here is the classical binary problem with two inter-twinning
moons, each class corresponding to one moon (Figure 3). We then consider seven different
target domains by rotating anticlockwise the source domain according to seven angles (from
10◦ to 90◦). The higher the angle, the more difficult the problem becomes. For each domain,
we generate 300 instances (150 of each class). Moreover, to assess the generalization ability
of our approach, we evaluate each algorithm on an independent test set of 1, 000 target points
(not provided to the algorithms). We make use of a Gaussian kernel for all the methods.
Each domain adaptation problem is repeated ten times, and we report the average error
rates on Table 1. Note that since CODA decomposes features for applying co-training, it is
not appropriate here (we have only two features).

We remark that our PBDA provides the best performances except for 50◦ and 20◦, indi-
cating that PBDA accurately tackles domain adaptation tasks. It shows a nice adaptation
ability, especially for the hardest problem, probably due to the fact that disρ is tighter and
seems to be a good regularizer in a domain adaptation situation. The adaptation versus
risk minimization trade-off suggested by Theorem 14 appears in Figure 3. Indeed, the plot
illustrates that PBDA accepts to have a lower source accuracy to maintain its performance
on the target domain, at least when the source and the target domains are not so different.
Note however that for large angles, PBDA prefers to “focus” on the source accuracy. We
claim that this is a reasonable behavior for a domain adaptation algorithm.

6.4 Sentiment Analysis Dataset

We consider the popular Amazon reviews dataset (Blitzer et al., 2006) composed of reviews
of four types of Amazon.com c© products (books, DVDs, electronics, kitchen appliances).
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Table 1: Average error rate results for seven rotation angles.

PBGD3CV SVMCV DASVMRCV PBDARCV

10◦ 0 0 0 0
20◦ 0.088 0.104 0 0.094
30◦ 0.210 0.24 0.259 0 .103
40◦ 0.273 0.312 0.284 0 .225
50◦ 0.399 0.4 0 .334 0.412
70◦ 0.776 0.764 0.747 0 .626
90◦ 0.824 0.828 0.82 0 .687

Figure 3: Illustration of the decision boundary of PBDA on three rotations angles for fixed
parameters A = C = 1. The two classes of the source sample are green and pink,
and target (unlabeled) sample is grey. The bottom plot shows corresponding
source and target errors. We intentionally avoid to tune PBDA parameters to
highlight its inherent adaptation behavior.

Originally, the reviews corresponded to a rate between one and five stars and the feature
space (of unigrams and bigrams) has on average a dimension of 100, 000. For sake of
simplicity and for considering a binary classification task, we propose to follow a setting
similar to the one proposed by Chen et al. (2011). Then the two possible classes are:
+1 for the products with a rank higher that 3 stars, −1 for those with a rank lower or
equal to 3 stars. The dimensionality is reduced in the following way: Chen et al. (2011)
only kept the features that appear at least ten times in a particular DA task (it remains
about 40, 000 features), and pre-processed the data with a standard tf-idf re-weighting.
One type of product is a domain, then we perform twelve domain adaptation tasks. For
example, “books→DVDs” corresponds to the task for which books is the source domain and
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Table 2: Error rates for sentiment analysis dataset. B, D, E, K respectively denotes books,
DVDs, electronics, kitchen.

PBGD3CV SVMCV DASVMRCV CODARCV PBDARCV

B→D 0 .174 0.179 0.193 0.181 0.183
B→E 0.275 0.290 0 .226 0.232 0.263
B→K 0.236 0.251 0 .179 0.215 0.229
D→B 0 .192 0.203 0.202 0.217 0.197
D→E 0.256 0.269 0 .186 0.214 0.241
D→K 0.211 0.232 0.183 0 .181 0.186
E→B 0.268 0.287 0.305 0.275 0 .232
E→D 0.245 0.267 0 .214 0.239 0.221
E→K 0 .127 0.129 0.149 0.134 0.141
K→B 0.255 0.267 0.259 0 .247 0 .247
K→D 0.244 0.253 0 .198 0.238 0.233
K→E 0.235 0.149 0.157 0.153 0 .129

Average 0.226 0.231 0 .204 0.210 0.208

DVDs the target one. The algorithms use a linear kernel and consider 2, 000 labeled source
examples and 2, 000 unlabeled target examples. We evaluate them on separate target test
sets proposed by Chen et al. (2011) (between 3, 000 and 6, 000 examples), and we report
the results on Table 2. We make the following observations.

First, as expected, the domain adaptation approaches provide the best average results.
Then, PBDA is on average better than CODA, but less accurate than DASVM. However,
PBDA is competitive: the results are not significantly different from CODA and DASVM.
Moreover, we have observed that PBDA is significantly faster than CODA and DASVM: these
two algorithms are based on costly iterative procedures increasing the running time by at
least a factor of five in comparison of PBDA. In fact, the clear advantage of PBDA is that
we jointly optimize the terms of our bound in one step.

6.5 Combining PBDA and Representation Learning

As discussed in the introduction, there exist several families of approaches used to tackle the
domain adaptation problem. The present work focuses on the minimization of a distance
metric between the source and target distributions. Now, we ask ourselves whether it can
be fruitful to combine our PBDA algorithm with another approach. To do so, we executed
PBDA on top of the Marginalized Stacked Denoising Autoencoders (mSDA) introduced
by Chen et al. (2012).

In brief, mSDA is an unsupervised algorithm that learn a new representation of the train-
ing samples. As a “denoising autoencoders” algorithm, it finds a representation from which
one can (approximatively) reconstruct the original features of an example from its noisy
counterpart. The originality of mSDA is to learn a representation that allows reconstructing
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Table 3: Error rates for mSDA representations on sentiment analysis dataset.

SVMCV PBDACV+RCV PBDARCV PBDACV SVMTEST PBDATEST

B→D 0.172 0.174 0.181 0.174 0.171 0.170
B→E 0.243 0.235 0.235 0.308 0.221 0.179
B→K 0.189 0.181 0.181 0.185 0.158 0.158
D→B 0.179 0.178 0.178 0.189 0.174 0.175
D→E 0.223 0.233 0.233 0.327 0.195 0.165
D→K 0.152 0.155 0.155 0.163 0.152 0.147
E→B 0.239 0.246 0.246 0.251 0.226 0.233
E→D 0.233 0.232 0.230 0.232 0.225 0.230
E→K 0.128 0.123 0.123 0.133 0.127 0.115
K→B 0.229 0.230 0.230 0.225 0.221 0.217
K→D 0.209 0.216 0.311 0.208 0.209 0.200
K→E 0.138 0.134 0.142 0.134 0.138 0.133

Average 0.195 0.195 0.204 0.211 0.185 0.177

both source and target unlabeled examples. Then, one can execute any supervised learning
algorithm on the new representation of source samples, for which the labels are known.

That is, given a source sample S = {(xsi , ysi )}mi=1 and a target sample T = {(xti)}m
′

i=1,
mSDA takes the unlabeled parts of S and T , {xs1, . . . ,xsm,xt1, . . . ,xtm′}, and learn a feature
map f : X → X ′, where X ′ is a new input space (of real-valued vector). In (Chen et al.,
2012), a linear SVM is executed using Sf = {(f(xsi ), y

s
i )}mi=1 as training data, and the

hyper-parameter C is selected by standard cross-validation.

We compare the performance of SVM on mSDA representation to PBDA on the same rep-
resentations. That is, we obtain a new representation of both source Sf = {(f(xsi ), y

s
i )}mi=1

and target Tf = {(f(xti))}m
′

i=1 data, using mSDA. Then, we execute PBDA using Sf and Tf .

This comparison is done using the Amazon reviews dataset. For the sake of comparison,
we used the dataset pre-processed by Chen et al. (2012), which is slightly different from the
one used in Section 6.4. Indeed, each domain share the same 5, 000 features, and no tf-idf
re-weighting is applied. For each pair source-target, mSDA representations are generated
using a corruption probability of 50% and a number of layers of 5. Then, SVM and PBDA

are executed on the same representations.

The results are reported in Table 3. The PBDA algorithm, when we select the hyperpa-
rameter by reverse cross-validation (PBDARCV ), is not always as good as the cross-validated
SVM (SVMCV ). However, by looking closer at the results, we notice that there often exists
hyperparameters for which PBDA is better on the testing set than the best achievable SVM

(as reported by the columns PBDATEST and SVMTEST ). This suggests that it might be
advantageous to mix mSDA and PBDA learning strategies. However, the hyperparameters
selection is still a challenge in domain adaption, when we do not have any target labels,
even if the reverse cross-validation method is a sound strategy. For exploratory purposes,
we report on Table 3 the risk of PBDA while performing the model selection by standard
cross-validation (PBDACV ) and while we consider the mean of the cross-validation and the
reverse cross-validation score (PBDACV+RCV ). Interestingly, the latter method is a better
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selection criterion than taking one or the other validation risk separately in this experiment,
both being misleading in some situations.12

7. Generalization of the PAC-Bayesian Domain Adaptation Theorems to
Multisource Domain Adaptation

In this section, we generalize our main analysis to multisource domain adaptation.

7.1 Multisource Domain Adaptation Setting

We now consider n different source domains {PSj}nj=1 over X × Y (along with {DSj}nj=1

the associated marginal distributions over X). In addition to the target m′-sample T with
m′ unlabeled examples drawn i.i.d. from the target marginal DT , we have one i.i.d. source
learning sample Sj per domains PSj (possibly of different size).

Similarly to Ben-David et al. (2010a), we study this issue when the relationship between
the source domains and the target one is captured by a distribution v over the set of source
domains {PSj}nj=1. This distribution defines a mixture of source domains that we denote
by P vS , and its marginal over X by Dv

S , and Sv = {Sj}nj=1 corresponds to the set of source
samples. On the source domains, we then consider the following v-weighted true error of
the Gibbs classifier Gρ:

RP vS (Gρ)
def
= E

PSj∼v
RPSj (Gρ)

= E
PSj∼v

E
h∼ρ

RPSj (h)

=
n∑
j=1

v(PSj ) E
h∼ρ

RPSj (h) .

Its empirical counterpart is defined as

RSv(Gρ)
def
=

n∑
j=1

v(PSj ) E
h∼ρ

RSj (h) .

Note that another solution for tackling multisource domain adaptation in a PAC-Bayesian
philosophy could be to learn different posterior distribution over H from different sources.
Indeed, instead of learning a shared ρ on every domains (including the target one), we can
learn a model for each domain, and then try to learn a good target majority vote over this
set of models. In this situation, one could derive a PAC-Bayesian analysis similar to the one
provided by Pentina and Lampert (2014) for life-long learning. However, this setting clearly
appears to be not pertinent to extend our one-source domain analysis to multiple sources,
since they treat the prior distribution as a random variable, which is not our setting.

7.2 Generalization of the ρ-Disagreement to Multiple Sources

One natural solution to generalize the ρ-disagreement of Definition 6 to the multisource
setting described in above is to make use of the v-weighted sum of each ρ-disagreement

12. It is important point out that experiments on other datasets showed us that the CV + RCV method
not systematically outperforms the reverse cross-validation method alone.
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between a source distribution and the target one EDSj∼v disρ(DSj , DT ), for which we can

easily extend Theorem 11. However, we prefer to consider the following definition that is
clearly tighter than the latter one.

Definition 15 Let H be a hypothesis class. For marginal distributions {DSj}nj=1 and DT

over X, any distribution v on {DSj}nj=1, any distribution ρ on H, the domain disagreement
disρ(D

v
S , DT ) between the mixture of source distribution Dv

S and the target distribution DT

is defined by

disρ(D
v
S , DT )

def
=

∣∣∣∣∣ E
(h,h′)∼ρ2

[
RDT (h, h′)− E

DSj∼v
RDSj (h, h

′)

] ∣∣∣∣∣
=

∣∣∣∣∣RDT (Gρ, Gρ)− E
DSj∼v

RDSj (Gρ, Gρ)

∣∣∣∣∣ .
As noticed before, we trivially have

disρ(D
v
S , DT ) ≤ E

DSj∼v
disρ(DSj , DT ) . (16)

Therefore, one can use the various PAC-Bayesian bounds presented in Section 4.1.3 to
obtain an empirical guarantee over disρ(D

v
S , DT ) from a collection of observations from each

domain. In particular, Corollary 16 below is directly obtained from Theorem 9.

For sake of simplicity, the results presented for the multisource setting suppose that every
sample shares the same size m. We use the shortcut notation Sv ∼ (P vS)m to denote the
collection of n source samples of m examples. That is, Sv = {Sj}nj=1, where Sj ∼ (PSj )

m.

Corollary 16 For any distributions {DSj}nj=1 and DT over X, any set of hypothesis H,
any distribution v over {DSj}nj=1, any prior distribution π over H, any δ ∈ (0, 1], and any
real number α > 0, with a probability at least 1 − δ over the choice of Sv ∼ (P vS)m and
T ∼ (DT )m, for every ρ on H, we have

disρ(D
v
S , DT ) ≤ 2α

1− e−2α

[
E

DSj∼v
disρ(S

v, T ) +
2 KL(ρ‖π) + ln 2

δ + lnn

m× α
+ 1

]
− 1 .

Proof We upper bound the right hand side of Equation (16) by upper-bounding each
individual term of the expectation using Theorem 9. That is, we bound

v(PS1) disρ(S1, T ), v(PS2) disρ(S2, T ), . . . , v(PSn) disρ(Sn, T ) ,

each one with probability 1− δ
n . Thereafter, we regroup these n bounds together to obtain

the final result, which stands with probability 1− δ.

The bound given by Corollary 16 can suffer from the inequality of Equation (16).
A better generalization guarantee is given by Theorem 17 below, that bounds directly
disρ(D

v
S , DT ), and does not rely on a term “lnn” like we have in Corollary 16.
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Theorem 17 For any distributions {DSj}nj=1 and DT over X, any set of hypothesis H,
any distribution v over {DSj}nj=1, any prior distribution π over H, any δ ∈ (0, 1], and any
real number α > 0, with a probability at least 1 − δ over the choice of Sv ∼ (P vS)m and
T ∼ (DT )m, for every ρ on H, we have

disρ(D
v
S , DT ) ≤ 2α

1− e−2α

[
disρ(S

v, T ) +
2 KL(ρ‖π) + ln 2

δ

m× α
+ 1

]
− 1 .

Proof Deferred to Appendix E.

Note that Theorem 7, Corollary 8 and Theorem 10 can also be rewritten to bound the
multisource domain disagreement following the same proof techniques than we used for
Theorem 17.

7.3 Multisource Domain Adaptation Bound for the Stochastic Gibbs Classifier

Let now generalize the domain adaption bound of RPT (Gρ) presented by Theorem 11 to
our multisource setting.

Theorem 18 Let H be a hypothesis class. We have

∀ρ on H, ∀v on {PSj}nj=1, RPT (Gρ) ≤ RP vS (Gρ) +
1

2
disρ(D

v
S , DT ) + λvρ ,

where λvρ is the deviation between the expected joint error of Gρ on the source domains and
the target one:

λvρ
def
=

∣∣∣∣∣ E
(h,h′)∼ρ2

[
E

(x,y)∼PT
L0-1

(
h(x), y

)
L0-1

(
h′(x), y

)
− E
PSj∼v

E
(x,y)∼PSj

L0-1

(
h(x), y

)
L0-1

(
h′(x), y

)]∣∣∣∣∣
=
∣∣∣ ePT (Gρ, Gρ)− E

PSj∼v
ePSj (Gρ, Gρ)

∣∣∣ . (17)

See Equation (6) for the definition of ePSj (Gρ, Gρ).

Proof We follow the same steps than in the proof of Theorem 11. Indeed, from Equa-
tion (12), we have

RPT (Gρ)−RP vS (Gρ)

=
1

2

(
RDT (Gρ, Gρ)− E

PSj∼v
RDSj (Gρ, Gρ)

)
+
(
ePT (Gρ, Gρ)− E

PSj∼v
ePSj (Gρ, Gρ)

)
≤ 1

2

∣∣∣RDT (Gρ, Gρ)− E
PSj∼v

RDSj (Gρ, Gρ)
∣∣∣+
∣∣∣ePT (Gρ, Gρ)− E

PSj∼v
ePSj (Gρ, Gρ)

∣∣∣
=

1

2
disρ(D

v
S , DT ) + λvρ .
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7.4 PAC-Bayesian Theorem for Multisource Domain Adaptation

Building on Theorems 17 and 18, we now present a PAC-Bayesian theorem for multisource
domain adaptation.

Theorem 19 For any domains {PSj}nj=1 and PT (respectively with marginals {DS}nj=1 and
DT ) over X × Y , any distribution v over {PSj}nj=1, and for any set H of hypothesis, for
any prior distribution π over H, any δ ∈ (0, 1], with a probability at least 1 − δ over the
choice of Sv ∼ (P vS)m and T ∼ (DT )m, for every ρ over H, we have

RPT (Gρ) ≤ c′RSv(Gρ) + α′ 1
2 disρ(S

v, T ) +

(
c′

c
+
α′

α

)
KL(ρ‖π) + ln 3

δ

m
+ λvρ + 1

2(α′−1) ,

where λvρ is defined by Equation (17), and where c′
def
=

c

1− e−c
and α′

def
=

2α

1− e−2α
.

Proof In Theorem 18, replace RSv(Gρ) and disρ(D
v
S , DT ) by their upper bound, obtained

from Theorem 5 and Theorem 17, with δ chosen respectively as δ
3 and 2δ

3 .

Theorem 19 above is a generalization of Theorem 13. It is straightforward to generalize
Theorems 12 and 14 as well to the multisource setting.

It is important to point out that the above theorem, which naturally generalizes our
one-source domain analysis, supposes that the distribution v over P vS is fixed (or known).
However, we can prove generalization bounds that involve v given a prior distribution u
over P vS . On the one hand, it is possible to derive a result for a distribution ρ on H fixed.
On the other hand, such a result can be also derive on v and ρ at the same time. These
two results can be helpful to derive another kind of approaches, and we detail and discuss
these bounds in the in Section 8.1.

7.5 PBDA for Multisource Domain Adaptation

Regarding the results of Section 7, optimizing the PAC-Bayesian multisource domain adap-
tation bounds of Theorem 19 is equivalent to minimize the following trade-off

CmRSv(Gρw) +Am disρw(Sv, T ) + KL(ρw‖π0) ,

where

disρw(Sv, T ) =
∣∣∣RSv(Gρw , Gρw)−RT (Gρw , Gρw)

∣∣∣,
and Sv = {Sj}nj=1 =

{
{(xsij , ysij}mi=1

}
j=1

are the n source samples coming from the mixture

of source domains P vS , and T = {(xti)}mi=1 is the target sample. Given the vectors of weights
v = {v(PSj )}nj=1 over the source domains, finding the optimal ρw is then equivalent to find
the vector w that minimizes

C

n∑
j=1

m∑
i=1

v(PSj ) Φ

(
ysij

w · xsij
‖xsij‖

)
+A

∣∣∣∣∣∣
m∑
i=1

 n∑
j=1

v(PSj ) Φdis

(
w · xsij
‖xsij‖

)
− Φdis

(
w · xti
‖xti‖

)∣∣∣∣∣∣+‖w‖
2

2
.
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Note that if v is an uniform distribution, i.e., every source domain is equally probable, one
can solve above optimization problem using the learning algorithm PBDA of Section 5, with
S :=

⋃n
j=1 Sj as the source sample. In Section 8.1, we discuss the possibility of creating

other kind of learning algorithm, namely by learning v, the weights of source distributions.

8. Discussions

In this section, we discuss two points related to this paper. Firstly, we present two others
results in multisource domain adaptation that lead to open-questions related to the devi-
ation of new multisource algorithms. Secondly, we point out the differences between our
new version of the PAC-Bayesian domain adaptation bound (Theorem 11) and the version
proposed in Germain et al. (2013).

8.1 Other Results for Multiple Source Domain Adaptation

In Section 7, we studied multisource domain adaptation when we suppose that we know the
distribution v over P vS . However, this ideal situation cannot be always verified. Then either
one can fix v as the uniform distribution, or one can learn v given a prior distribution u on
P vS . This latter point can be justified by the two following theorems.

Firstly, we can prove a bound similar to Theorem 19, but applied on the distribution v
on the source domains instead of the distribution ρ on H.

Theorem 20 For any domains {PSj}nj=1 and PT (respectively with marginals {DS}nj=1 and
DT ) over X × Y , any prior distribution u over {PSj}nj=1, and for any set H of hypothesis,

for any fixed distribution13 π over H, any δ ∈ (0, 1], with a probability at least 1 − δ over
the choice of Sv ∼ (P vS)m and T ∼ (DT )m, for every v over {PSj}nj=1, we have

RPT (Gπ) ≤ c′RSv(Gπ) + α′ 1
2 disρ(S

v, T ) +

(
c′

c
+

α′

2α

)
KL(v‖u) + ln 3

δ

m
+ λvρ + 1

2(α′−1) ,

where λvρ is defined by Equation (17), and where c′
def
=

c

1− e−c
and α′

def
=

2α

1− e−α
.

Proof Deferred to Appendix F.

Secondly, it is possible to prove the same kind of generalization bounds for the distribu-
tion v over the source domains and the distribution ρ over H at the same time. This result
is stated in the next theorem.

Theorem 21 For any domains {PSj}nj=1 and PT (respectively with marginals {DS}nj=1 and
DT ) over X × Y , any prior distribution u over {PSj}nj=1, and for any set H of hypothesis,
for any prior distribution π over H, any δ ∈ (0, 1], with a probability at least 1− δ over the
choice of Sv ∼ (P vS)m and T ∼ (DT )m, for every v over {PSj}nj=1, and every ρ over H, we

13. To avoid confusion with ρ that we usually want to learn, we denote this fixed distribution π.
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have

RPT (Gρ) ≤ c′RSv(Gρ) + α′ 1
2 disρ(S

v, T ) +

(
c′

c
+
α′

α

)
KL(ρ‖π) + KL(v‖u) + ln 3

δ

m

+ λvρ + 1
2(α′−1) ,

Proof Deferred to Appendix G.

These two theorems open the door to the conception of two different algorithms for PAC-
Bayesian multisource domain adaptation when we desire to learn both the distributions v
on P vS and ρ on H. On the one hand, Theorem 20 suggests that one could derive a two
steps algorithm for PAC-Bayesian multisource domain adaptation, according the following
principle:

(i) Given a fixed distribution π over H, we can learn v by minimizing a trade-off between
RSv(Gπ), disρ(S

v, T ) and KL(v‖u).

(ii) Then, for learning ρ, we simply have to optimize PBDA given this learned v.

On the other hand, Theorem 21 implies that we can jointly learn v and ρ by optimizing
the trade-off between RSv(Gρ), disρ(S

v, T ), KL(v‖u) and KL(ρ‖π). This leads to exiting
research directions.

8.2 Comparison with the first PAC-Bayesian domain adaptation bound

As said in Section 4, our PAC-Bayesian domain adaptation bound (of Theorem 11) improves
the one provided in Germain et al. (2013). We recall that our bound is expressed as follows.
For every distribution ρ on H, we have

RPT (Gρ) ≤ RPS (Gρ) +
1

2
disρ(DS , DT ) +

∣∣∣ ePT (Gρ, Gρ)− ePS (Gρ, Gρ)
∣∣∣︸ ︷︷ ︸

λρ

. (18)

Germain et al. (2013) proved the next result.14 For every distribution ρ on H, we have

RPT (Gρ) ≤ RPS (Gρ) + disρ(DS , DT ) +RPT (Gρ∗T ) +RDT (Gρ, Gρ∗T ) +RDS (Gρ, Gρ∗T )︸ ︷︷ ︸
λρ,ρ∗

T

, (19)

where ρ∗T = argminρ RPT (Gρ) is the best distribution on the target domain.

The improvement of Equation (18) over Equation (19) relies on two main points. On
the one hand, our new result contains only the half of disρ(DS , DT ). On the other hand,
contrary to λρ,ρ∗T of Equation (19), the term λρ of Equation (18) does not depend anymore
on the best ρ∗T on the target domain. This implies that our new bound is not degenerated

14. The proof of Equation (19) relies on several triangle inequalities and on an artificial introduction of a
source error term RPS (Gρ) (see Germain et al. (2013) for more technical details). Therefore, the proof
of Equation (18) seems simpler as it is only based the rewriting of the risk introduced by Equation (12).
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when the two distributions PS and PT are equal (or very close). Conversely, when PS = PT ,
the bound of Equation (19) gives

RPT (Gρ) ≤ RPT (Gρ) +RPT (Gρ∗T ) + 2RDT (Gρ, Gρ∗T ) ,

which is at least 2RPT (Gρ∗T ). Moreover, the term 2RDT (Gρ, Gρ∗T ) is greater than zero for
any ρ when the support of ρ and ρ∗T in H is constituted of at least two different classifiers.

Finally, note that these improvements do not change the form and the philosophy of
the PAC-Bayesian theorems of Section 4.2.2, and then of the algorithm PBDA of Section 5.
Indeed, the only differences stand in 1

2 disρ(DS , DT ) and in the value of λρ.

9. Conclusion and Future Work

In this paper, we define a domain divergence pseudometric that is based on an average
disagreement over a set of classifiers, along with consistency bounds for justifying its es-
timation from samples. This measure helps us to derive a first PAC-Bayesian bound for
domain adaptation. Moreover, from this bound we design a well-founded and competitive
algorithm (PBDA) that can jointly optimize the multiple trade-offs implied by th bound for
linear classifiers. In addition, we generalize our analysis to multisource domain adaptation,
allowing us to take into account informations from different source domains according to
their relations to the target one.

We think that this PAC-Bayesian analysis opens the door to develop new domain adap-
tation methods by making use of the possibilities offered by the PAC-Bayesian theory, and
gives rise to new interesting directions of research, among which the following ones.

Firstly, the PAC-Bayesian approach allows one to deal with an a priori belief on what
are the best classifiers; in this paper we opted for a non-informative prior that consists on
a Gaussian centered at the origin of the linear classifier space. The question of finding a
relevant prior in a domain adaptation situation is an exciting direction which could also be
exploited when some few target labels are available. Moreover, as pointed out by Pentina
and Lampert (2014), this notion of prior distribution could modelize an information learned
from previous tasks. This suggests that we can extend our multisource analysis to issues
related to lifelong learning where the objective is to perform well on future tasks, for which
so far no data has been observed (Thrun and Mitchell, 1995).

Another promising issue is to address the problem of the hyperparameter selection.
Indeed, the adaptation capability of our algorithm PBDA could be even put further with a
specific PAC-Bayesian validation procedure. An idea would be to propose a kind of (reverse)
validation technique that takes into account some particular prior distributions. Another
possible solution could be to explicitly control the neglected term in the domain adaptation
bound. This is also linked with model selection for domain adaptation tasks.

Besides, deriving a result similar to Equation (4) (the C-bound) for domain adaptation
could be of high interest. Indeed, such an approach considers the first two moments of the
margin of the weighted majority vote. This could help us to take into account both a kind
of margin information over unlabeled data and the distribution disagreement (these two
elements seem of crucial importance in domain adaptation).
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Appendix A. Some Tools

Lemma 22 (Markov’s inequality) Let Z be a random variable and t ≥ 0, then

P (|Z| ≥ t) ≤ E (|Z|) / t .

Lemma 23 (Jensen’s inequality) Let Z be an integrable real-valued random variable and
g(·) any function.

If g(·) is convex, then
g(E [Z]) ≤ E [g(Z)] .

If g(·) is concave, then
g(E [Z]) ≥ E [g(Z)] .

Lemma 24 (Maurer (2004)) Let X = (X1, . . . , Xm) be a vector of i.i.d. random vari-
ables, 0 ≤ Xi ≤ 1, with E Xi = µ. Denote X ′ = (X ′1, . . . , X

′
m), where X ′i is the unique

Bernoulli ({0, 1}-valued) random variable with E X ′i = µ. If f : [0, 1]n → R is convex, then

E [f(X)] ≤ E [f(X ′)] .

Lemma 25 (from Inequalities (1) and (2) of Maurer (2004)) Let m ≥ 8, and X =
(X1, . . . , Xm) be a vector of i.i.d. random variables, 0 ≤ Xi ≤ 1. Then

√
m ≤ E exp

[
m kl

(
1

m

n∑
i=1

Xi

∥∥∥E [Xi]

)]
≤ 2
√
m.

Lemma 26 (Change of measure inequality) For any set H, for any distributions π
and ρ on H, and for any measurable function φ : H → R, we have

E
f∼ρ

φ(f) ≤ KL(ρ‖π) + ln

(
E
f∼π

eφ(f)

)
.

Lemma 27 Given any set H, and any distributions π and ρ on H, let ρ̂ and π̂ two distri-
butions over H2 such that ρ̂(h, h′)

def
= ρ(h)ρ(h′) and π̂(h, h′)

def
= π(h)π(h′). Then

KL(ρ̂‖π̂) = 2 KL(ρ‖π) .
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Proof

KL(ρ̂‖π̂) = E
(h,h′)∼ρ2

ln
ρ(h)ρ(h′)

π(h)π(h′)

= E
h∼ρ

ln
ρ(h)

π(h)
+ E
h′∼ρ

ln
ρ(h′)

π(h′)

= 2 E
h∼ρ

ln
ρ(h)

π(h)

= 2 KL(ρ‖π) .

Appendix B. Proof of Theorem 7

Proof Firstly, we propose to upper-bound

d(1) def
= E

(h,h′)∼ρ2

[
RDS (h, h′)−RDT (h, h′)

]
by its empirical counterpart

d
(1)
S × T

def
= E

(h,h′)∼ρ2

[
RS(h, h′)−RT (h, h′)

]
.

To achieve this, we consider an “abstract” classifier ĥ
def
= (h, h′) ∈ H2 chosen according a

distribution ρ̂, with ρ̂(ĥ) = ρ(h)ρ(h′). Let us define the “abstract” loss of ĥ on a pair of
examples (xs,xt) ∼ DS×T = DS ×DT by

Ld(1)(ĥ,x
s,xt)

def
=

1 + L0-1(h(xs), h′(xs))− L0-1(h(xt), h′(xt))

2
.

Therefore, the “abstract” risk of ĥ on the joint distribution is defined as

R
(1)
DS×T

(ĥ) = E
xs∼DS

E
xt∼DT

Ld(1)(ĥ,x
s,xt) ,

which empirical counterpart is

R
(1)
S×T (ĥ) = E

(xs,xt)∼S×T
Ld(1)(ĥ,x

s,xt) .

The error of the related Gibbs classifier of these two quantities are

R
(1)
DS×T

(Gρ̂) = E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ) and R
(1)
S×T (Gρ̂) = E

ĥ∼ρ̂
R

(1)
S×T (ĥ) . (20)

It is easy to show that

d(1) = 2R
(1)
DS×T

(Gρ̂)− 1 and d
(1)
S × T = 2R

(1)
S×T (Gρ̂)− 1 . (21)
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Now, let us consider the non-negative random variable E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
.

We apply Markov’s inequality (Lemma 22). For every δ ∈ (0, 1], with a probability at
least 1− δ over the choice of S × T ∼ (DS×T )m, we have

E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
≤ 1

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)

=
1

δ
E
ĥ∼π̂

E
S×T∼(DS×T )m

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)

≤ 1

δ
E
ĥ∼π̂

2
√
m,

where the last inequality comes from the Maurer’s lemma (Lemma 25).
By taking the logarithm of each outermost sides of the previous equation, we then obtain

ln

[
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]
≤ ln

2
√
m

δ
.

Let us now find a lower bound of the left side of the last equation by using the change
of measure inequality (Lemma 26) and the Jensen’s inequality (Lemma 23) on the convex
function kl(·‖·). We have

ln

[
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]
≥ E

ĥ∼ρ̂
m kl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
−KL(ρ̂‖π̂)

≥ m kl

(
E
ĥ∼ρ̂

R
(1)
S×T (ĥ)

∥∥ E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ)

)
−KL(ρ̂‖π̂)

= m kl
(
R

(1)
S×T (Gρ̂)

∥∥R(1)
DS×T

(Gρ̂)
)
− 2 KL(ρ‖π) .

Note that the last equality is obtained from Equation (20) and Lemma 27.

We finally obtain

kl
(
R

(1)
S×T (Gρ̂)

∥∥R(1)
DS×T

(Gρ̂)
)
≤ 1

m

[
2 KL(ρ ‖π) + ln

2
√
m

δ

]
.

With Equation (21), the previous line gives us a bound on d(1) from its empirical counter-

part d
(1)
S × T . Hence, with probability at least 1− δ over the choice of S × T ∼ (DS ×DT )m,

kl

(
d
(1)
S × T+1

2

∥∥∥d(1)+1
2

)
≤ 1

m

[
2 KL(ρ ‖π) + ln

2
√
m

δ

]
.

Lemma 28 (stated below) gives

kl

(
|d(1)S × T|+1

2

∥∥∥ |d(1)|+1
2

)
≤ 1

m

[
2 KL(ρ ‖π) + ln

2
√
m

δ

]
,

which, since |d(1)| = disρ(DS , DT ) and |d(1)
S × T | = disρ(S, T ) , implies the result.
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Lemma 28 For a, b ∈ [−1,+1], we have

kl
(

1+|a|
2

∥∥∥ 1+|b|
2

)
≤ kl

(
1+a

2

∥∥∥ 1+b
2

)
.

Proof There are four cases to consider.

Case 1: Let a ≥ 0 and b ≥ 0.
This first case is trivial, since |a| = a and |b| = b.

Case 2: Let a ≤ 0 and b ≤ 0.
This case reduces to Case 1 because kl(q‖p) = kl(1−q‖1−p) for all (q, p) ∈ [0, 1]2 .
Then

kl
(

1+|a|
2

∥∥∥ 1+|b|
2

)
= kl

(
1−a

2

∥∥∥ 1−b
2

)
= kl

(
1+a

2

∥∥∥ 1+b
2

)
.

Case 3: Let a ≤ 0 and b ≥ 0.
From straightforward calculations, we show that

kl
(

1+|a|
2

∥∥∥1+|b|
2

)
− kl

(
a+1

2

∥∥∥1+b
2

)
= kl

(
1−a

2

∥∥∥1+b
2

)
− kl

(
1+a

2

∥∥∥1+b
2

)
=

(
1−a

2 −
1+a

2

)
ln

(
1

1+b
2

)
+
((

1− 1−a
2

)
−
(

1− 1+a
2

))
ln

(
1

1− 1+b
2

)

= −a ln

(
1

1+b
2

)
+ a ln

(
1

1− 1+b
2

)
= −a ln

(
1

1+b
2

)
+ a ln

(
1

1−b
2

)

= a ln
(

1+b
1−b

)
≤ 0 .

Case 4: Let a ≥ 0 and b ≤ 0.
This case reduces to Case 3, since kl(q‖p) = kl(1−q‖1−p) for all (q, p) ∈ [0, 1]2 .
Hence,

kl
(

1+|a|
2

∥∥∥ 1+|b|
2

)
= kl

(
1+a

2

∥∥∥ 1−b
2

)
≤ kl

(
1+a

2

∥∥∥ 1+b
2

)
.
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Appendix C. Detailed Proof of Theorem 9

Proof Similarly as in the proof of Theorem 7 (see Appendix B), we will first bound

d(1) def
= E

(h,h′)∼ρ2

[
RDS (h, h′)−RDT (h, h′)

]
by its empirical counterpart.

Refer to the proof of Theorem 7 for the definitions of R
(1)
DS×T

(ĥ) and R
(1)
DS×T

(Gρ̂), as well as

their empirical counterparts R
(1)
S×T (ĥ) and R

(1)
S×T (Gρ̂).

As Ld(1) lies in [0, 1], we can bound R
(1)
DS×T

(Gρ̂) following the proof process of Theorem 5

(with c = 2α). To do so, we define the convex function,

F(x)
def
= − ln

[
1− (1− e−2α)x

]
, (22)

and consider the non-negative random variable E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR
(1)
S×T (ĥ)

)
.

We apply Markov’s inequality (Lemma 22). For every δ ∈ (0, 1], with a probability at
least 1− δ

2 over the choice of S × T ∼ (DS×T )m, we have

E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR
(1)
S×T (ĥ)

)
≤ 2

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR
(1)
S×T (ĥ)

)

=
2

δ
E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
E

S×T∼(DS×T )m
e−2mαR

(1)
S×T (ĥ) .

By taking the logarithm on each side of the previous inequality, we obtain

ln

[
E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR
(1)
S×T (ĥ)

)]
= ln

[
2

δ
E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
E

S×T∼(DS×T )m
e−2mαR

(1)
S×T (ĥ)

]
. (23)

For a classifier ĥ, let us define a random variable Xĥ that follows a binomial distribution

of m trials with a probability of success R
(1)
DS×T

(ĥ) denoted by B
(
m,R

(1)
DS×T

(ĥ)
)
. Lemma 24

gives

E
S×T∼(DS×T )m

e−2mαR
(1)
S×T (ĥ) ≤ E

Xĥ∼B(m,R
(1)
DS×T

(ĥ))

e−2αXĥ

=

m∑
k=0

Pr
Xĥ∼B(m,R

(1)
DS×T

(ĥ))

(
Xĥ = k

)
e−2αk

=

m∑
k=0

(
m
k

)(
R

(1)
S×T (ĥ)

)k(
1−R(1)

S×T (ĥ)
)m−k

e−2αk

=

m∑
k=0

(
m
k

)(
R

(1)
S×T (ĥ)e−2α

)k (
1−R(1)

S×T (ĥ)
)m−k

=
[
R

(1)
S×T (ĥ)e−2α +

(
1−R(1)

S×T (ĥ)
)]m

.
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The last line result, together with the choice of F (Equation (22)), leads to

E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
E

S×T∼(DS×T )m
e−2mαR

(1)
S×T (ĥ)

≤ E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
[
R

(1)
S×T (ĥ)e−2α +

(
1−R(1)

S×T (ĥ)
)]m

= E
ĥ∼π̂

1 = 1 .

We can now upper bound Equation (23) simply by

ln

[
E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR
(1)
S×T (ĥ)

)]
≤ ln

2

δ
.

Let us now find a lower bound of the left side of the last equation by using the change
of measure inequality (Lemma 26) and the Jensen’s inequality (Lemma 23) on the convex
function F :

ln

[
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]
≥ E

ĥ∼ρ̂
m
(
F(R

(1)
DS×T

(ĥ))− 2αR
(1)
S×T (ĥ)

)
−KL(ρ̂‖π̂)

≥ m

[
F

(
E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ)

)
− 2α E

ĥ∼ρ̂
R

(1)
S×T (ĥ)

]
−KL(ρ̂‖π̂)

= mF
(
R

(1)
DS×T

(Gρ̂))− 2mαR
(1)
S×T (Gρ̂)− 2 KL(ρ‖π)

)
.

The last equality is obtained from Equation (20) and Lemma 27. This, in turn, implies

F(R
(1)
DS×T

(Gρ̂)) ≤ 2αR
(1)
S×T (Gρ̂) +

2 KL(ρ‖π) + ln 2
δ

m
.

Now, by isolating R
(1)
DS×T

(Gρ̂), we obtain

R
(1)
DS×T

(Gρ̂) ≤
1

1− e−2α

[
1− e−

(
2αR

(1)
S×T (Gρ̂) + 1

m(2 KL(ρ‖π)+ln 2
δ )
)]
,

and, from the inequality 1− e−x ≤ x ,

R
(1)
DS×T

(Gρ̂) ≤
1

1− e−2α

[
2αR

(1)
S×T (Gρ̂) +

2 KL(ρ‖π) + ln 2
δ

m

]
.

It then follows from Equation (21) that, with probability at least 1 − δ
2 over the choice of

S × T ∼ (DS ×DT )m, we have

d(1) + 1

2
≤ 2α

1− e−2α

[
d

(1)
S × T + 1

2
+

2 KL(ρ‖π) + ln 2
δ

m× 2α

]
. (24)

We now bound
d(2) def

= E
(h,h′)∼ρ2

[
RDT (h, h′)−RDS (h, h′)

]
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using exactly the same argument as for d(1) except that we instead consider the following
“abstract” loss of ĥ on a pair of examples (xs,xt) ∼ DS×T = DS ×DT :

Ld(2)(ĥ,x
s,xt)

def
=

1 + L0-1(h(xt), h′(xt)− L0-1(h(xs), h′(xs)))

2
.

We then obtain, with probability at least 1− δ
2 over the choice of S × T ∼ (DS ×DT )m,

d(2) + 1

2
≤ 2α

1− e−2α

[
d

(2)
S × T + 1

2
+

2 KL(ρ‖π) + ln 2
δ

m× 2α

]
. (25)

To finish the proof, note that by definition, we have that d(1) = −d(2). Hence, we have

|d(1)| = |d(2)| = disρ(DS , DT ), and |d(1)
S × T | = |d

(2)
S × T | = disρ(S, T ).

Then, the maximum of the bound on d(1) (Equation (24)) and the bound on d(2) (Equa-
tion (25)) gives a bound on disρ(DS , DT ). By the union bound, with probability 1− δ over
the choice of S × T ∼ (DS ×DT )m, we have

|d(1)|+ 1

2
≤ α

1− e−2α

[
|d(1)
S × T |+ 1 +

2 KL(ρ‖π) + ln 2
δ

m× α

]
,

or, which is equivalent to

disρ(DS , DT ) ≤ 2α

1− e−2α

[
disρ(S, T ) +

2 KL(ρ‖π) + ln 2
δ

m× α
+ 1

]
− 1 ,

and we are done.

Appendix D. Proof of Theorem 10

Proof Let us consider the non-negative random variable E
(h,h′)∼π2

e2m(RDS (h,h′)−RS(h,h′))2 .

We apply Markov’s inequality (Lemma 22). For every δ ∈ (0, 1], with a probability at
least 1− δ

2 over the choice of S ∼ (DS)m, we have

E
(h,h′)∼π2

e2m(RDS (h,h′)−RS(h,h′))2 ≤ 2

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h′)−RS(h,h′))2

=
2

δ
E

(h,h′)∼π2
E

S∼(DS)m
e2m(RDS (h,h′)−RS(h,h′))2

≤ 2

δ
E

(h,h′)∼π2
E

S∼(DS)m
ekl(RS(h,h′) ‖RDS (h,h′)) (26)

≤ 2

δ
E

(h,h′)∼π2
2
√
m. (27)
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Line (26) comes from Pinsker’s inequality, and Line (27) comes from the Maurer’s lemma
(Lemma 25). By taking the logarithm on each outermost side of the previous inequality,
we obtain

ln E
(h,h′)∼π2

e2m(RDS (h,h′)−RS(h,h′))2 ≤ ln
4
√
m

δ
. (28)

Let us now find a lower bound of the left side of the last equation by using the change
of measure inequality (Lemma 26) and the Jensen’s inequality (Lemma 23).

ln E
(h,h′)∼π2

e2m(RDS (h,h′)−RS(h,h′))2

≥ E
(h,h′)∼ρ2

2m(RDS (h, h′)−RS(h, h′))2 −KL(ρ2‖π2)

≥ 2m

(
E

(h,h′)∼ρ2
RDS (h, h′)− E

(h,h′)∼ρ2
RS(h, h′)

)2

−KL(ρ2‖π2)

= 2m
(
RDS (Gρ, Gρ)−RS(Gρ, Gρ)

)2
− 2 KL(ρ‖π) .

The last equality is obtained from Equation (20) and Lemma 27. We finally obtain

2m
(
RDS (Gρ, Gρ)−RS(Gρ, Gρ)

)2
≤ 2 KL(ρ ‖π) + ln

4
√
m

δ
,

and we conclude, with a probability at least 1− δ
2 over the choice of S ∼ (DS)m,

∣∣∣∣RDS (Gρ, Gρ)−RS(Gρ, Gρ)

∣∣∣∣ ≤
√

1

2m

[
2 KL(ρ ‖π) + ln

4
√
m

δ

]
. (29)

Following the exact same proof process with the random variable E
(h,h′)∼π2

e2m′(RDT (h,h′)−RT (h,h′))2,

we obtain, with a probability at least 1− δ
2 over the choice of T ∼ (DT )m

′
,

∣∣∣∣RDT (Gρ, Gρ)−RT (Gρ, Gρ)

∣∣∣∣ ≤
√√√√ 1

2m′

[
2 KL(ρ ‖π) + ln

4
√
m′

δ

]
. (30)

Joining Inequalities (29) and (30) with the union bound (that assure that both results
hold simultaneously with probability 1− δ), gives the result because∣∣∣∣RDS (Gρ, Gρ)−RDT (Gρ, Gρ)

∣∣∣∣ = disρ(DS , DT ) ,∣∣∣∣RS(Gρ, Gρ)−RT (Gρ, Gρ)

∣∣∣∣ = disρ(S, T ) ,

and because if |a1 − b1| ≤ c1 and |a2 − b2| ≤ c2, then |(a1 − a2)− (b1 − b2)| ≤ c1 + c2.
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Appendix E. Proof of Theorem 17

Proof The proof follow all the steps of the proof of Theorem 9 (see Appendix C). The
only difference is that, in order to obtain a guarantee over disρ(D

v
S , DT ), we bound

d̂(1) def
= E

(h,h′)∼ρ2

[
E

DSj∼v
RDSj (h, h

′)−RDT (h, h′)

]
by its empirical counterpart

d̂
(1)
Sv×T

def
= E

(h,h′)∼ρ2

[
E

DSj∼v
RSj (h, h

′)−RT (h, h′)

]
.

To do so, we define the “abstract” loss of ĥ
def
= (h, h′) ∈ H2 on a tuple of n + 1 examples

(xs1 , . . . ,xsn ,xt) ∼ DS1 × . . .×DSn ×DT by

L
d̂(1)

(ĥ,xs1 , . . . ,xsn ,xt)
def
=

1

2

[
1 + E

DSj∼v
L0-1(h(xsj ), h′(xsj ))− L0-1(h(xt), h′(xt))

]
.

Again, we obtain the result by following the proof of Theorem 9.

Appendix F. Proof of Theorem 20

We first need the following result.

Theorem 29 For any distributions {DSj}nj=1 and DT over X, any set of hypothesis H,
for any prior distribution u over {DSj}nj=1, any distribution π over H, any δ ∈ (0, 1], and
any real number α > 0, with a probability at least 1 − δ over the choice of Sv ∼ Dv

S, and
T ∼ (DT )m, for every distribution v over {DSj}nj=1, we have

disπ(Dv
S , DT ) ≤ 2α

1− e−2α

[
disπ(Sv, T ) +

KL(v‖u) + ln 2
δ

n× α
+ 1

]
− 1 .

Proof The proof follows a process similar to the proof of Theorem 9 in Appendix C: we
separately bound

RDT (Gρ, Gρ)− E
DSj∼v

RDSj (Gρ, Gρ) and E
DSj∼v

RDSj (Gρ, Gρ)−RDT (Gρ, Gρ) ,

by rescaling their value into [0, 1].

Then, we easily obtain the result of Theorem 20.

Proof of Theorem 20 In Theorem 18, replace RSv(Gρ) and disρ(D
v
S , DT ) by their up-

per bound, obtained from Theorem 5 applied on RP vS (Gπ) = EPSj∼v RPSj (Gπ) (instead of

RPS (Gρ)) and Theorem 29, with δ chosen respectively as δ
3 and 2δ

3 .
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Appendix G. Proof of Theorem 21

Proof Consider the data distribution P def
= PS1 × PS2 × . . . × PSn . The loss of a classifier

h ∈ H on a tuple of examples ( (x1, y1), . . . , (xn, yn) ) ∼ P is defined as the mean of the
zero-loss L0-1

(
h(xj), yj

)
on each example of the tuple (i.e., j ∈ {1, . . . , n}).

Thanks to this convention, and by a slight abuse of notation, we can write the expected
risk on P of a classifier h ∈ H as

RP(h)
def
= E

((x1,y1),...,(xn,yn))∼P

1

n

n∑
j=1

L0-1

(
h(xj), yj

)
=

1

n

n∑
j=1

RPSj (h) ,

and the expected disagreement of a pair of classifiers (h, h′) ∈ H2 on the corresponding

marginal distribution D def
= DS1 ×DS2 × . . .×DSn as

RD(h, h′)
def
= E

(x1,...,xn)∼D

1

n

n∑
j=1

L0-1

(
h(xj), h

′(xj)
)

=
1

n

n∑
j=1

RDSj (h, h
′) .

Let now define new posterior ρv and prior πu on H:

ρv(h) = ρ(h)

n∑
j=1

v(PSj ) and πu(h) = π(h)

n∑
j=1

u(PSj ) .

From above definitions, one can easily show

RP vS (Gρ) = RP(Gρv) , and disρ(D
v
S , DT ) = disρv(D, DT ) .

Moreover, we have

KL(ρv‖πu) = E
h∼ρv

ln
ρv(h)

πu(h)

= E
h∼ρ

n∑
j=1

v(PSj )

[
ln
ρ(h)

π(h)
+ ln

v(PSj )

u(PSj )

]

= E
h∼ρ

ln
ρ(h)

π(h)
+

n∑
j=1

v(PSj ) ln
v(PSj )

u(PSj )

= KL(ρ‖π) + KL(v‖u) .

From Theorem 13, with a probability at least 1−δ over the choice of S×T ∼ (P×DT )m,
for every posterior distribution ρv on H, we have

RPT (Gρ) ≤ c′RS(Gρv) + α′ 1
2disρv(S, T ) +

(
c′

c
+
α′

α

)
KL(ρv‖πu) + ln 3

δ

m
+ λρv + 1

2(α′−1) ,

and we obtain the final result by the substitution of RS(Gρv), disρv(S, T ), and KL(ρv‖πu)
with their equivalent expression.
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