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Abstract. Urban congestion is a major problem in our society for qual-
ity of life and for productivity. The increasing communication abilities of
vehicles and recent advances in artificial intelligence allow new solutions
to be considered for traffic regulation, based on real-time information
and distributed cooperative decision-making models. The paper presents
a mechanism allowing a distributed regulation of the right-of-way of the
vehicles at an intersection. The decision-making relies on an automatic
negotiation between communication-equipped vehicles, taking into ac-
count the travel context and the constraints of each vehicle. During this
negotiation, the vehicles exchange arguments, in order to take into ac-
count various types of information, on individual and network scales.
Our mechanism deals with the continuous aspect of the traffic flow and
performs a real-time regulation.

Keywords: Urban traffic control, regulation, negotiation, cooperative systems,
intersection, multi-agent system

1 Introduction

Various traffic control methods have been developed in the last decades in order
to optimize the use of existing urban structures. As the intersection is a conflict
zone causing important slowdowns, most urban traffic control systems focus on
the intersection regulation, optimizing the right-of-way at traffic lights. Artificial
intelligence enabled to investigate new methods for traffic modeling and regu-
lation, especially with multi-agent technologies that are able to solve various
problems in a decentralized way [6]. Today’s communication technology enables
the design of regulation methods based on real-time communication of accurate
information. Each vehicle on a network has a traffic context, and the information
that constitutes this context can be useful to perform an efficient regulation: the
accumulated delay since the start of the vehicle’s journey, its current position,
its short and long-term intentions, etc.

Due to the large amount of information, some strategies regulate the traffic
on isolated intersection [12]. Some strategies are network-wide control [16] and



others focus on the coordination on several intersections creating what is called
“green waves” [10]. Green wave reduces stops and gos that cause important
time losses. The efficiency of this phenomenon in classical regulation highlights
the importance of designing mechanisms enabling coordination at the scale of
several intersections. [12] proposes a right-of-way awarding mechanism based on
reservation for autonomous vehicles. It relies on a policy called FCFS (First
Come First Served), granting the right-of-way to each vehicle asking for it, as
soon as possible. This mechanism allows to take into account human drivers by
using a classical traffic light policy for human drivers, and giving the right-of-
way on red lights to automatic vehicles using the FCFS policy. Although this
mechanism accommodates human drivers, its main benefits are due to the FCFS
policy and the presence of autonomous vehicles.

In this paper, we propose a different right-of-way awarding mechanism on the
intersection scale and tackle two complementary aspects. Firstly, we take into
account the traffic context in order to make accurate decisions: the global context
(network scale information) and the individual context of each vehicle (history,
current information, intentions) are useful information that can be used to pro-
duce a fair and efficient regulation policy. Secondly, to have a distributed deci-
sion, the vehicles make the decision by themselves in order to deal with the large
amount of information. To achieve these goals, we propose a regulation method
based on an automatic negotiation mechanism, supported by intelligent agents
representing the vehicles’ interests. Our mechanism has to bring the vehicles to
reach a collective decision in which each vehicle can put forward its individual
constraints, suggest solutions and take part in the final decision in real time.
Such right-of-way awarding mechanism has to efficiently take into account both
autonomous vehicles and human drivers in a communication-equipped vehicle.
A fundamental part of our research consists in the conceptualization of multilat-
eral interactions in terms of individual and collective interests. This paper shows
a possibility to take some steps towards new foundations of interactions. Based
on this, we propose a new negotiation framework for an agent-based traffic reg-
ulation and tackle the continuous aspect of the traffic flow. In such negotiations,
vehicles build various right-of-way awarding proposals that we call “configura-
tions”. These configurations are expounded to the other vehicles of their area,
that can raise arguments about the benefits and drawbacks of each configura-
tion. The vehicles decide on the configuration to adopt collectively, with the help
of the intersection that contributes to the coordination of the interactions.

The remainder of this article is organized as follows. Section 2 presents the
intersection model we opted for, and the problem of right-of-way awarding as
it stands at an intersection. Section 3 details the method used by agents to
build configuration proposals while turning the problem into a CSP (Constraint
Satisfaction Problem). Section 4 presents the negotiation mechanism enabling
the vehicles to make a collective decision from their individual configuration
proposals. It introduces the continuity problem and we detail how the agents
tackle it. Section 5 gives the experimental results. Finally, section 6 explores
future directions and concludes the paper.



2 Problem description and intersection modeling

The problem we are concerned with in this paper is to allocate an admission
date to each vehicle arriving at an intersection. This date is defined as a time-slot
during which the vehicle has the right-of-way to go into the intersection and cross
it. A configuration has to enable an efficient traffic and respect various physical
and safety constraints, taking the individual travel context of the vehicles and
the global traffic context into account. An agent-based model is used where
vehicles and intersections are the agents. The physical representation of the
network consists in a cellular automaton model. Cellular automaton models are
widely used in literature because they keep the main properties of a network
while being relatively simple to use [7]. The intersection is composed of several
incoming lanes, called “approaches”, and a central zone called “conflict zone”.
We call “trajectory” the path of a vehicle across the intersection. Each approach
and each trajectory is a succession of cells (cf. Figure 1). A cell out of the conflict
zone belongs to exactly one approach. A cell in the conflict zone may belong to
one or several trajectories. In this case, this cell is called a “conflict spot”.

Fig. 1. Intersection with 12 approaches and 12 outcoming lanes, divided into cells.
The approaches are numbered from 1 to 12. The conflict zone is crossed by various
trajectories, also divided in cells. The cells of the conflict zone are conflict spots. Colored
cells are vehicles, e.g. v1 on the approach 1 is a vehicle coming from the west, about to
cross the intersection to the north.

The moving rules of the vehicles are: (1) If a vehicle is on the front cell of
an approach, this vehicle moves one cell forward and drives into the intersection



(the first cell of its trajectory) if and only if it has the right-of-way. (2) If a
vehicle is on an approach, it moves forward if and only if the next cell of the
approach is empty, or becomes empty during this time step. (3) If a vehicle is in
the conflict zone, it necessarily moves forward. Our method has to guarantee for
each vehicle that it will not meet any other vehicle in the cells of its trajectory.
The decision is distributed: each vehicle agent is able to reason and communicate
with the intersection and the other vehicles. To propose a mechanism enabling
the vehicles to perform a distributed decision making, the agents may build
partial solutions based on their individual constraints, and then merge these
partial solutions. Since the admission dates making a configuration are strongly
interdependent because of safety constraints, merging partial solutions would be
a complex task that would require multiple iterated interactions for the agents
with several messages to exchange, and would slow down the decision process.
Therefore, in our approach the vehicles build individually full configurations of
the intersection and then collectively deliberate on these configurations.

3 Modeling the right-of-way allocation problem to build
configurations

In order to build configurations, we model the right-of-way allocation problem
as a Constraint Satisfaction Problem (CSP) [13]. The CSP fits our problem since
it is easy to represent its structural constraints (physical constraints and safety
constraints). Let V be the set of all vehicles approaching an intersection, and
tcur be the current date in time steps. A configuration is a set c = {t1, ..., tk}
where each ti is the admission date in the conflict zone accorded to vi ∈ V . For
each vi ∈ V , appi is the approach on which is vi, di the distance (in number of
cells) between vi and the conflict zone, traji is vi’s trajectory inside the conflict
zone. T is the set of all the trajectories inside the conflict zone. pos(cell1, traj)
is the distance, in number of cells, between the cell cell1 and the beginning of
the conflict zone on the trajectory traj (the first cell in the conflict zone has the
position 0). sp is the speed of the vehicles in cells by time step. In our model,
sp = 1 cell/time step. We identify 3 types of structural constraints for vehicles,
based on the following rules:

R1. Distance rule A vehicle has to cross the distance separating it from the
conflict zone before entering it. We have: ∀vi ∈ V, ti > tcur + di

sp

R2. Anteriority rule A vehicle cannot enter the conflict zone before the vehi-
cles preceding it on its lane (this rule could be removed with a more complex
model that would take overtaking into account). We have:
∀vi, vj ∈ V 2, appi = appj , di < dj ⇒ ti < tj

R3. Conflict rule Two vehicles cannot be in the same cell at the same time. If
the vehicles belong to the same lane or trajectory, the moving rules prevent
this case. However, if a cell is a conflict point then we have to model this
rule for the vehicles belonging to different trajectories. In a basic version,

we have: ∀vi, vj ∈ V 2,∀cell1 ∈ traji, cell1 ∈ trajj ⇒ (ti + pos(cell1,traji)
sp ) 6=



(tk +
pos(cell1,trajj)

sp ). This rule must be reinforced for safety reasons. Indeed,
adding a time lapse tsafe between the passage of a vehicle on a cell cell1 and
the passage of a vehicle in a conflicting trajectory on this cell enhances the
drivers’ safety (tsafe is fixed by an expert). The complete conflict rule is the
following:
∀vi, vj ∈ V 2,∀cell1 ∈ traji, cell1 ∈ trajj ⇒∣∣∣(ti + pos(cell1,traji)

sp )− (tk +
pos(cell1,trajj)

sp )
∣∣∣ > tsafe

A configuration c is valid iff c respects the three rules R1, R2 and R3 and:
∀vi ∈ V,∃ti ∈ c, where each ti is vi’s admission date. The scenario represented
in Figure 1 illustrates these three types of structural constraints. Let’s consider
the three vehicles v1, v2, v3 approaching the intersection at tcur = 0. The above
rules generate the following 6 constraints:
- R1 (ct1) t1 > 4; (ct2) t2 > 6; (ct3) t3 > 6
- R2 (ct4) t2 > t1
- R3 (ct5) |(t1 + 4)− (t3 + 2)| > 2; (ct6) |(t2 + 4)− (t3 + 2)| > 2

With this CSP model, an agent uses a solver to find compatible admission
dates (i.e. respecting the above constraints) for a set V neg ⊆ V of vehicles ap-
proaching an intersection. For any configuration c, ∀vi ∈ V neg,∃di ∈ c such as
di respects the above structural constraints. Several possible configurations may
exist for a given situation. A vehicle initially has limited perceptions, however it
is able to know in real-time the position of the vehicles around the intersection.
As this work conforms the cooperative approach of intelligent transportation
systems ([2],[9]), each vehicle has a cooperative behavior with the intersection
and communicates its trajectory when it enters the approach of the intersec-
tion. With its computation abilities and the available information, a vehicle
runs a solver to produce configurations. The use of an objective function en-
ables to guide the CSP solver’s search. Moreover, an agent can add additional
constraints to its solver as guidelines. If an agent estimates that a particular
constraint may produce configurations likely to improve its individual utility or
social welfare, this agent considers adding it. However, since this constraint is
not a structural constraint resulting from the above rules, it may be violated.
The chosen objective function and these potential guideline constraints depend
on each vehicle agent’s strategy. A configuration built in this manner may satisfy
different arguments than the other configurations, and this may be useful in the
negotiation to make it chosen.

4 Right-of-way negotiation model

Each vehicle builds configurations allowing it to cross the intersection, however
only one configuration will be applied at a given moment. A negotiation process
takes place to select it. The mechanism we propose relies on an argumentation-
based model [5]. Through the negotiation process, agents aim to reach a collective
agreement by making concessions. To perform a negotiation, the vehicle agent
relies on its own mental state, made of knowledge, goals and preferences. This



mental state evolves during the negotiation. The agents use arguments to make
the other agents change their mental states, in order to reach a better com-
promise. Each agent ai has the following bases: Ki is the knowledge base of ai
about its environment. Its beliefs are uncertain, so each belief kji ∈ Ki has a

certainty level ρji . KOi is the knowledge base of ai about other vehicles. Each

koji ∈ KOi is a base containing what ai’s believes the knowledge of aj are. Each

of these beliefs has a certainty level δji . Gi is the goal base of ai. These goals

have various priority, so each goal gji ∈ Gi has a priority level λji . GOi is ai’s

base of supposed goals for other vehicles. Each goji ∈ GOi is a base containing
what ai’s believes the goals of aj are. Each of these beliefs has a priority level

δji . Each vehicle has a weight given by the intersections, as detailed in the next
section. Two kinds of arguments may be used by the agents, favorable and un-
favorable arguments. An argument for (resp. against) a configuration decision
d is a quadruple A =< Supp,Cons, d, wA > where Supp is the support of the
argument A, Cons represents its consequences, wA is the weight of the argument
(fixed by the vehicle vi that produces this argument and has a weight wi), such
that:
- d ∈ D, D being the set of all possible decisions
- Supp ⊆ K∗ and Cons ⊆ G∗
- Supp ∪ {d} is consistent
- Supp ∪ {d} ` Cons (resp. ∀gi ∈ Cons, Supp ∪ {d} ` ¬gi)
- Supp is minimal and Cons is maximal (for set inclusion) among the sets sat-
isfying the above conditions.
- 0 ≤ wA ≤ wi

Example: A bus b1 proposes a configuration c1 allowing it to cross the inter-
section as quick as possible to catch up its lateness. A vehicle v1 precedes this
bus on the same lane. Giving a quick admission date to b1 (below a fixed thresh-
old tbquick) implies to give a quick admission date to v1(below a fixed threshold
tvquick), and one of the goals of v1 is to cross the intersection as quick as possible.
Thus:
Kv1 = {crossesQuickly(b1)→ crossesQuickly(v1)}
Gv1 = {crossesQuickly(v1)}
v1 may take advantage of this configuration, so it produces the following argu-
ment:
< {crossesQuickly(b1), crossesQuickly(b1)→ crossesQuickly(v1)},
{crossesQuickly(v1)}, c1 >.

For safety reasons, the intersection has a current configuration at any time.
The goal of an agent through the negotiation is to change this current configu-
ration ccur by another cbest that improves its individual utility. In a negotiation
the agents rely on a communication language to interact. The set of possible ne-
gotiation speech acts is the following: Acts = {Offer,Argue,Accept, Refuse}.

Offer(cnew, ccur): with this move, an agent proposes a configuration cnew to
replace ccur. An agent can only make each offer move once.

Argue(c, arg(c)): with this move, an agent gives an argument in favor of c
or against c.



Accept(cnew, ccur), Refuse(cnew, ccur): with these moves, an agent accepts
(resp. refuses) a configuration cnew to replace ccur.

cnew is accepted iff

∑
vi∈V (cnew)

wi∑
vi∈V neg wi

≥ thaccept, where:

thaccept is an acceptance threshold (thaccept > 0.5).
V (cnew) ⊆ V neg is the set of vehicles accepting the configuration cnew ∈ D to
replace ccur. wi is a weight given by the intersections to the vehicle vi. When a
configuration is adopted by the agents, this configuration becomes the current
configuration of the intersection.

4.1 Role of the intersection agent

In order to perform a right-of-way allocation that maximizes the social welfare
and encourages cooperative behaviors, the intersection agent takes part in the
negotiation process. Each vehicle first defends its own interests, and also defends
other interests that may guide the negotiation towards a favorable outcome for it.
A vehicle can represent the interests of other vehicles outside V neg (for example
the vehicles that follow it) or network scale interests (for example clearing some
lanes) if it can get advantage of it. However, it may happen that these arguments
do not directly concern the vehicles of V neg, that may ignore these arguments
despite their positive contribution to global social welfare. To avoid this effect,
the intersection agent is able to represent these external interests. Like the vehicle
agents, the intersection agent has its own mental states and is able to produce
arguments. However, it cannot accept or refuse proposals.

The weight the intersection agent gives to each of its arguments depends
on the importance of the external interests represented by these arguments. A
weight wi of a vehicle vi is given by the intersection agents to encourage the
vehicles to have cooperative behaviors. According to vi’s cooperation level in its
negotiation behavior, the intersection increases or decreases wi for the remainder
of vi’s journey. A vehicle refusing a proposal having numerous strong arguments
for it (or accepting a proposal having numerous strong arguments against it)
gets an important weight penalty. On the contrary, a vehicle accepting a proposal
having numerous strong arguments for it (or refusing a proposal having numerous
strong arguments against it) gets a weight reward. For a vehicle, these rewards
and penalties are significant in the middle and long term since it affects durably
its capacity to influence the choice of the configurations on the next intersections.
To perform this, the intersection uses arguments to assign a reward (or penalty)
value to each proposal, so that the vehicles may evaluate the benefits and risks
from each decision about configurations before making it.

4.2 Continuous negotiation mechanism

Since the flow of vehicles is continuous, the mechanism has to manage this dy-
namic aspect by defining the agents that take part in each negotiation step, the
vehicles for which this configuration provides an admission date, and the condi-
tions under which this configuration could be revised once chosen. In order to



manage technical failures, the intersection has a current configuration ccur at any
time. According to the chosen continuity policy, the negotiation mechanism may
allow the vehicles to collectively change this configuration. However, the mecha-
nism has to consider safety measures before allowing this change. Changing the
configuration at the last moment is risky because of the slowness of the reaction
of the drivers. To avoid this, we define a safety time threshold thsafe. The admis-
sion date of a vehicle cannot be revised (removed or granted) in a too short term.
Let tcuri be the admission date of vehicle vi in the current configuration and tnexti

be its admission date in a configuration c. c is an eligible proposal iff c is valid
and: ∀vi ∈ V neg, (tcuri = tnexti )∨ ((tcuri ≥ tcur + thsafe)∧ (tnexti ≥ tcur + thsafe))

We propose several policies to manage the continuity problem. First, we
distinguish two areas on the approaches of the intersection: the inner area, where
all the vehicles are about to reach the conflict zone in a short term, and the
external area, where the agents will reach the conflict zone in a slightly longer
term (cf. Figure 1). The size of each area depends on the intersection. At each
time step ti, the set Vi of the incoming vehicles is divided in two subsets: V inn

i

the vehicles of the inner area and V ext
i the vehicles of the external area. Vi =

V inn
i ∪ V ext

i , V inn
i ∩ V ext

i = ∅
Let T be the period allowed for the negotiation. Let ∆ref be the threshold

which is the maximum number of Refuse that an agent can send and δrefi the

number of Refuse an agent vi has sent during T . If δrefi = ∆ref , vi cannot do
any Offer or Refuse move. Let ∆arg be the threshold which is the maximum
number of Argue that an agent can send and δargi the number of Argue an agent
vi has sent during T . If δargi = ∆ref , vi cannot do any Argue until the end of
T . An agent can only make each offer once during a negotiation. Once an agent
has made the move Offer(cx, cy) during T , it cannot make it again during the
negotiation. We get the following set of rules.

– NR1: ∀vi ∈ V neg, the move Offer(cx, cy) can be made at any time by vi if

this move has not been made yet by vi during T and if δrefi < ∆ref .
– NR2: ∀vi ∈ V neg, the move Accept(cx, cy) can be made at any time by vi.

Furthermore, the move Offer(cx, cy) was made at time t0 ∈ T , t0 < t.
– NR3: ∀vi ∈ V neg, the move Refuse(cx, cy) can be made at any time t ∈ T

by vi if δrefi < ∆ref . Furthermore, the move Offer(cx, cy) was made at time
t0 ∈ T , t0 < t.

– NR4: ∀vi ∈ V neg, the move Argue(cx, arg(cx)) can be made at any time
t ∈ T by vi if δargi < ∆arg. Furthermore, the move
Offer(cx, cy) was made at time t0 ∈ T , t0 < t, for any cy ∈ D.

Iterated Policy (IP) With this policy, the vehicle agents join the negotiation
by waves, and perform iterated decisions that cannot be revised. At a given
instant ti−1, V inn is empty. At the next time step ti, since the vehicles have
moved, V inn and V ext change. The set of negotiating vehicles V neg

i becomes
equal to V inn

i . Then the vehicles of V neg
i perform a collective decision about the

configuration for all the vehicles of V neg
i . A negotiation process starts, with a



limited duration dneg in addition to the above set of rules. T = [tneg0 , tneg0 +dneg],
where tneg0 is the starting date of the negotiation. With this limited duration,
the agents have interest to quickly make reasonable proposals for every vehicle.
At the end of this negotiation step, a configuration ci is chosen, awarding an
admission date to each vehicle of V neg

i .

At ti+1, a new iteration begins, and V neg
i+1 = V inn

i+1 \ V
neg
i . The vehicles of

V neg
i+1 start a new negotiation, but the vehicles that already have taken part in

a previous negotiation step do not take part in this one. The agents of V neg
i+1

are not allowed to revise ci, the agents only negotiate the admission dates of
the vehicles of V neg

i+1 since the other vehicles of V inn
i already have an admission

date defined in ci or in previous configurations. A new configuration ci+1 is
chosen, similar to ci except it adds admission dates for the vehicles of V neg

i+1 .
ci \ couti ⊆ ci+1 where couti is the set of the vehicles admitted in the conflict zone:
∀tj ∈ ci, tj < ti ⇔ tj ∈ couti .

The policy continues to iterate and to produce new admission dates for the
next vehicles in the inner area without revising those of the vehicles that already
were in it.

Continuous Policy (CP) When this policy is applied the vehicles dynami-
cally join the current negotiation while entering the inner area, V neg = V inn

at any time. When a vehicle vnew joins V inn, all the useful information about
the current state of the negotiation (configurations and arguments) are commu-
nicated to vnew so that it can join the negotiation. The current configuration
of the intersection can be totally revised by a collective decision, except for the
vehicles that are concerned by the security threshold.

Whenever new vehicles join V inn, the current configuration of the intersection
and the configurations under negotiation do not provide admission dates for
these vehicles, since the configurations were emitted before these vehicles joined
V inn. However, the intersection provides an ordering on these vehicles. With this
ordering, it is possible for any vehicle in the negotiation to extend any of the
vehicles’ configuration proposal. Extending a configuration consists in adding an
admission date for each new vehicle with the FCFS strategy, using the ordering
on these vehicles. The agents consider that any proposal in the negotiation that
do not provide an admission date to each vehicle of V inn will be extended with
FCFS. It guarantees that the intersection always has an admission date for each
vehicle of V inn. Thus, even if the negotiation always fails, the FCFS policy is
applied.

A possible perspective is to extend CP with a new policy CPA (Continuous
Policy with Anticipation). In CP, when a vehicle builds a configuration, this
configuration only incorporates vehicles of V inn. In CPA, each vehicle v1 ∈
V neg can take into account any other vehicle from v2 ∈ V ext while building
configurations, in order to take advantage of it. Then, whenever v2 joins V inn,
some proposals (including the current configuration of the intersection) may
already include an admission date for it. According to the result of the previous



negotiations these configurations may be better than the one produced by the
FCFS strategy.

5 Experimentation and discussion

This work has been implemented in Java with the Choco library for CSP [8], on
an intersection with 12 approaches (cf. Figure 1). The length of the inner area
is 6 cells on each approach. Agents are implemented as threads: each agent has
its own solver and its own negotiation strategy. The agents communicate with
other agents with direct messages. On a personal computer (RAM 2Gb, 1.9
GHz mono-core processor), 2 seconds are enough to run the solver and compute
several good configurations for about 30 vehicles, and the negotiation time is
low enough to enable to run the mechanism in real time. In this section, we
present the results of the comparison between FCFS and the CP policy. We
simulated a continuous incoming flow of vehicles (1.2 vehicle/step in average).
Vehicles appear on a randomly chosen lane. We chosed to apply tsafe = 2.
These simulations were performed on a more computer with RAM 32Gb, 64-
core processor. Results are shown on Figures 2 and 3. These figures respectively
represent the number of vehicles in the intersection area and the average number
of vehicles waiting for the right of way on each approach, relatively to the time.
For example in simulations of the CP policy, after 100 time steps the average
number of vehicles in the area were 37.9 (cf. Figure 2) and 0.64 vehicles were
waiting for the right of way on each approach of the intersection (cf. Figure 3).

Fig. 2. Number of vehicles in the area

The main improvements of our negotiation-based mechanism are expected
to appear on the network scale, and so far we only experimented it on a single



Fig. 3. Average length of the queues

intersection. The main goal of these early experiments, and our main result, is
to show the feasability of this mechanism. The slight performance improvements
shown on Figures 2 and 3 may also be explained by the use of the solver to op-
timise the right-of-way of the vehicles. Moreover, this improvement is accentued
with the use of the safety time lapse tsafe defined in the conflict rule (R3) that
gives more importance to the ordering of the vehicles.

6 Conclusion

In this paper, we have proposed a coordination mechanism which represents a
large step towards easing traffic, minimizing time losses while respecting safety
constraints. The contribution of this paper is threefold. Firstly, it defined the
problem of intelligent agent-based intersection management. Secondly, it pre-
sented a negotiation mechanism that deals with continuous negotiations and
applies a set of policies, and behavior rules that show how to exploit this frame-
work over intersection control methods. Finally this paper suggested that it is
both algorithmically feasible and reasonable in terms of delay and computational
cost to enable such sophisticated reasoning. Thus, this paper shows the possibil-
ity to make one step forward towards a system that can take action to manage
the decision of the vehicles cooperatively.

However, substantial work must still be done. For example, a possible direc-
tion concerns the intersection agent that can switch among several policies, for
instance by learning from the reservation history to find the best policy suited
to particular traffic conditions. In current work we are adapting the behavior of
the intersection to handle vehicle priorities.
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6. A. L. C. Bazzan and F. Klügl. A review on agent-based technology for traffic and
transportation. The Knowledge Engineering Review, 2013.

7. E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg. Optimizing
traffic lights in a cellular automaton model for city traffic. Physical Review E, 64,
2001.

8. T. choco team. choco: an open source java constraint programming library. 2010.
9. M. C. Choy, D. Srinivasan, and R. L. Cheu. Cooperative, hybrid agent architecture

for real-time traffic signal control. IEEE SMC, 33(5):597–607, 2003.
10. D. de Oliveira, A. Bazzan, and V. Lesser. In Proceedings of the fourth international

joint conference on Autonomous agents and multiagent systems, pages 463–470.
ACM, 2005.

11. K. Dresner and P. Stone. Sharing the road : autonomous vehicles meet human
drivers. In IJCAI, 2007.

12. K. Dresner and P. Stone. A multi-agent approach to autonomous intersection
management. Journal of artificial intelligence research, 2008.

13. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine,
13(1):32, 1992.

14. S. Maerivoet and B. De Moor. Cellular automata models of road traffic. Physics
Reports, 419, 2005.

15. J. Monteil, R. Billot, and N.-E. El Faouzi. Towards cooperative traffic management:
methodological issues and perspectives. In Proceedings of Australasian transport
research forum 2011 proceedings, Adelaide, Australia, 2011.

16. D. Roozemond. Using intelligent agents for proactive, realtime urban intersection
control. European Journal of Operational Research, 2001.


