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Abstract—Software evaluation of elementary functions usually
requires three steps: a range reduction, a polynomial evaluation,
and a reconstruction step. These evaluation schemes are designed
to give the best performance for a given accuracy, which requires
a fine control of errors. One of the main issues is to minimize
the number of sources of error and/or their influence on the
final result. The work presented in this article addresses this
problem as it removes one source of error for the evaluation of
trigonometric functions. We propose a method that eliminates
rounding errors from tabulated values used in the second range
reduction for the sine and cosine evaluation. When targeting
correct rounding, we show that such tables are smaller, and
make the reconstruction step cheaper than existing method. This
approach relies on Pythagorean triples generators. Finally, we
show how to generate tables indexed by up to 10 bits in a
reasonable time and with little memory consumption.

I. INTRODUCTION

The representation formats (binary16, binary32, and binary64)
and the behavior of floating-point arithmetics available in
computers are defined by the IEEE 754-2008 standard [1].
For the five basic operations (+, −, ×, /, and √ ), this
standard requires the system to return the rounding of the
exact result, according to one of the four rounding modes (to
nearest, toward −∞, toward +∞, and toward 0). This property
is called correct rounding, and it warranties the quality of
the result. However, due to the Table Maker’s Dilemma [2]
and the difficulties to develop accurate and efficient evaluation
schemes, correct rounding is only recommended for elemen-
tary functions in the IEEE 754-2008 standard.

The algorithms used for the evaluation of elementary
functions, like sine, cosine, logarithm, and exponential, can
be classified into at least two categories. The first category
concerns algorithms based on small and custom operators
combined with tabulated values that target small accuracy,
less than 30 bits [3], [4], [5]. The second category concerns
algorithms that usually target single or double precision (24
or 53 bits) with an implementation on general processors that
rely on the available hardware units [6], [7].

Implementations of those functions that target correct
rounding [8] are usually divided into two or more phases. A
quick phase based on a fast approximation which ensures a few
extra bits than the targeted format. With this phase, rounding is
possible most of the time at a reasonable cost. When rounding
is not possible, a much slower but more accurate phase is
used. The quick phase uses operations with a precision similar

to the input and output precision, while the accurate phase
is based on extended precision. For example, in the correctly
rounded library CR-Libm, the quick phase for the sine and
cosine function in double precision targets 66 bits while the
accurate phase corresponds to 200 bits [6, § 7]. The accuracy
used for the accurate phase is linked with the search for worst
cases for the Table Makers Dilemma [9]. This corresponds to
142 bits for trigonometric functions in rounding to nearest in
double precision over the range [2−25, (1 + 25317/216)29].

Given a floating-point number x, the internal design of each
phase is based on the following 4-step process:

1) A first range reduction, based on mathematical properties,
narrows the domain of the function to a smaller one.
For the sine function, this consists in using the following
property:

sin(x+ k · π/2) = fk(x
∗)

with

fk(x
∗) = ± sin(x∗) or fk(x

∗) = ± cos(x∗)

depending on k mod 4. This step results in a reduced
argument x∗ in the range [0, π4 ].

2) A second range reduction, based on tabulated values,
reduces further the range [0, π4 ]. The argument x∗ is split
into two parts, x∗h and x∗l , such that:

x∗ = x∗h + x∗l with |x∗l | < 2−p. (1)

The term x∗h corresponds to the p leading bits of x∗,
which are used to address a table of dπ/4 × 2pe entries
with precomputed values of sinh = sin(x∗h) and cosh =
cos(x∗h). In the case of sine, we have

sin(x∗) = sinh · cos(x∗l ) + cosh · sin(x∗l ).

3) Then, a polynomial evaluation is used to approximate the
remaining terms over the restricted range. In the case of
sine function, this corresponds to the evaluation of two
polynomials of small degree that approximate sin(x∗l ) and
cos(x∗l ) over the range [0, 2−p].

4) Finally, all terms computed during steps 2 and 3 are
merged together during the reconstruction step.

Satisfactory solutions exist to address the first range reduction,
the generation and evaluation of precise and efficient poly-
nomial evaluation schemes, and the reconstruction step. The
interested reader can find more details in [8].



In this article, we address the second range reduction based
on tabulated values and more specifically for the sine and
cosine functions. The proposed method relies on precomputed
sine and cosine values with remarkable properties that simplify
and accelerate the evaluation of these functions. These proper-
ties are threefold: (1) First, each value has to represent exactly
both the sine and cosine of a given number, that is, without any
rounding error. For this purpose, we use points that are rational
numbers. (2) Second, each numerator of rational values should
be exactly representable in a representation format available in
hardware, that is, as an integer or a floating-point number. (3)
Third, each of them has to share the same denominator. These
three properties put all together lead to tabulated values for
sine and cosine that are exact and exactly representable with
rational values sharing a common denominator. Rational num-
bers that fulfill these three properties are linked to Pythagorean
triples.

This article is organized as follows: Section II gives some
background on the second range reduction step for the sine and
cosine functions. Section III details properties of the proposed
tables and shows how they remove two sources of error
involved in this step. Section IV presents our approach to build
tables of exact points for sine and cosine using Pythagorean
triples. Then, Section V presents some experimental results
which show that we can compute tables up to 10 bits of index
in a reasonable execution time and memory consumption. Fi-
nally, some comparison results with other classical approaches
are given in Section VI, before concluding in Section VII.

II. PRELIMINARIES

The second range reduction is usually implemented using table
lookup methods. This section presents three solutions that
address this step. Note that in the sequel of this article, without
loss of generality, we will consider the sine function evaluation,
while cosine evaluation can be easily derived.

Here and hereafter we denote by x̂ the rounded value of x
to a given precision and according to a given rounding mode.
To characterize rounding error we use ε−p that corresponds to
a number y such that |y| ≤ 2−p. For example, in the case of
rounding to the nearest in double precision, we have

x̂ ≤ x(1 + ε−54).

A. Tang’s Tables

Tang proposed a general method used to implement elementary
functions that relies on hardware-tabulated values [10]. Given
the reduced argument x∗ as in (1), Tang’s method uses the
upper part x∗h to address a table. It retrieves two values
sinh and cosh which are good approximations of sin(x∗h)
and cos(x∗h), respectively, rounded to the destination format.
Hence, we have:

sinh = sin(x∗h) · (1 + ε−54n)

and
cosh = cos(x∗h) · (1 + ε−54n),

where n is the number of floating-point numbers used to
represent those quantities.

Then, these values are combined with the results of the
evaluation of the two polynomials S(x) and C(x), defined as:

S(x) = sin(x)− x and C(x) = cos(x)− 1.

Finally, the value sin(x∗) is reconstructed as follows:

sin(x∗) = sinh · cos(x∗l ) + cosh · sin(x∗l )
= sinh ·

(
1 + C(x∗l )

)
+ cosh ·

(
x∗l + S(x∗l )

)
.

In order to reach a given accuracy, this method requires the
use of a higher precision than the targeted one. This extra
precision usually involves the use of error-free algorithms such
as Fast2Sum or exact multiplication [11].

Tang’s method is well suited for hardware implementations
on modern architectures. It takes advantage of the capability on
these architectures to access tabulated values in memory and
to perform floating-point computations concurrently. Once the
argument x∗ is split into two parts x∗h and x∗l , the memory units
can provide the two tabulated values sinh and cosh, while
floating-point units (FPUs) evaluate the polynomials C(x∗l )
and S(x∗l ). As the degree of the polynomials decreases when
the table size increases, the objective is to find parameters
such that the polynomial evaluations take as long as memory
accesses, in average [12].

B. Gal’s Accurate Tables

In Tang’s method, sinh and cosh are approximations of
sin(x∗h) and cos(x∗h), respectively. They are rounded according
to the format used in the table and the targeted accuracy for
the final result.

To increase the accuracy of these tabulated values, Gal
proposed a method to transfer some of the errors due to
rounding over the reduced argument [13]. This consists in
introducing a small “corrective” term on the values x∗h, denoted
by corr here and hereafter. For each input entry x∗h of the table,
this term is carefully chosen to ensure that both sin(x∗h+corr)
and cos(x∗h + corr) are very close to a floating-point number.
In [14], Gal and Bachelis were able to find corr such that

sinh = sin(x∗h + corr) · (1 + ε−(10+53n))

and
cosh = cos(x∗h + corr) · (1 + ε−(10+53n)).

This corresponds to 10 extra bits of accuracy for both tabulated
values of sine and cosine compared to Tang’s tabulated values,
thanks to a small perturbation corr on the input number x∗.
However, this imposes to store the corrective term corr along
with the values sinh and cosh as the unevaluated sum of
n floating-point numbers such that 10 + 53n is larger than
the targeted accuracy. The value sin(x∗) is thus reconstructed
as follows:

sin(x∗) = sinh · cos(x∗l − corr) + cosh · sin(x∗l − corr).

Gal’s solution requires an exhaustive search in order to
determine a “good” corrective term for each entry x∗h. The
search space grows exponentially with the number of extra
bits for sinh and cosh. Stehlé and Zimmermann proposed an
improvement based on LLL algorithm [15] to speed up the
search. They were able to increase the accuracy of Gal’s table
by 11 extra bits.



C. Brisebarre et al.’s (M,p, k)-Friendly Points

In 2012, Brisebarre, Ercegovac, and Muller proposed a new
method for sine and cosine evaluation with a few table lookups
and additions in hardware [16], [17]. Their approach consists
in tabulating four values a, b, z, and x̂, defined as:

z = 1/
√
a2 + b2 and x̂ = arctan(b/a),

where a and b are small particular integers. The reconstruction
then corresponds to:

sin(x∗) =
(
b · cos(x∗ − x̂) + a · sin(x∗ − x̂)

)
· z.

The values (a, b, z, x̂) are chosen among specific points
with integer coordinates (a, b) called (M,p, k)-friendly points.
These points are recoded using canonical recoding which
minimizes the number of non-zero digits in table entries.
More precisely, a and b must be positive integers lower
than M , such that the number z = 1/

√
a2 + b2 has less than

k non-zero bits in the first p bits of its canonical recoding.
These conditions make hardware multiplications by a, b, and
z cheaper. Compared to other hardware evaluation schemes,
this solution reduces by 50% the area on FPGAs for 24-bit
accuracy.

III. A TABLE OF EXACT POINTS

Tang’s tables store tabulated value of equally spaced dis-
tinguished points rounded to the destination format. This
rounding error is problematic when seeking an accurate eval-
uation scheme since at least three double precision floating-
point numbers are required. We have seen in Section II how
Gal, Stehlé, and Brisebarre improved the accuracy of those
tabulated values. This consists in finding input numbers whose
images by the function are close to machine representable
numbers. This artificially increases the accuracy of stored
values by a few extra bits, but those values still embed some
errors.

The proposed improvement is based on the following fact:
After the first range reduction, the reduced number x∗ has to
be considered as an irrational number, and therefore it has to
be rounded to a given precision. We look for almost regularly
spaced points whose images by the considered function will
be exactly representable. The table will store exact values for
sinh and cosh in a machine friendly format, plus a truncated
corrective term to apply to the reduced argument as in Gal’s
method. This way, the error will be concentrated in the reduced
number used in the polynomial evaluation x∗l .

We will now describe what good points for this method
are and how the evaluation scheme can benefit of such points.
For this purpose, let x be the input floating-point number and
x∗ the reduced argument after the first range reduction such
that

x∗ = x− k · π
2
, with k ∈ N∗.

As π/2 is an irrational number, x∗ is irrational as well, and it
has to be rounded to some precision j such that

x̂∗ = x∗ · (1 + ε−j).

We should mention that x̂∗ is generally represented as the
unevaluated sum of two or more floating-point numbers to

reach an accuracy of j bits. As seen in Section I, the second
range reduction splits x̂∗ into two parts, x∗h and x∗l , such that

x̂∗ = x∗h + x∗l and |x∗l | < 2−p.

The first p bits of x∗h are used to address the table T made
of dπ/4× 2pe entries. This table has to store values such that
sinh and cosh can be recovered without any rounding error.
This means that the following properties hold:

1) The value sinh and cosh have to be rational numbers
such that

sinh =
sn
sd

and cosh =
cn
cd
, with sn, sd, cn, cd ∈ N∗.

2) In order to make the reconstruction step easier, the
denominators sd and cd have to be equal, that is, sd = cd.

3) In order to avoid unnecessary division during reconstruc-
tion, the common denominator has to be equal to the same
k for every input number x∗h. This value k can be seen as
the lowest common multiple (LCM) of the denominator
of all entries.

4) In order to minimize the table size, stored values sn and
cn have to be representable as a machine word.

With numbers satisfying those properties, the reconstruction
step corresponds to:

sin(x∗) = sn · Pcos(x∗l − corr) + cn · Psin(x∗l − corr),

where

• Pcos(x) and Psin(x) are polynomial approximations, de-
fined as follows for x ∈ [0, 2−p]:

Pcos =
cos(x)

k
and Psin =

sin(x)

k
,

• The tabulated values sn, cn, and ĉorr are such that

x∗h = arcsin
(sn
k

)
− corr = arccos

(cn
k

)
− corr

with ĉorr = corr·(1+ε−53n) corresponding to an approx-
imation of the corrective term stored as the unevaluated
sum of n floating-point numbers,

• And sn and cn are stored exactly in a machine word (i.e
double precision floating-point number).

As we can observe, we impose sinh and cosh to be rational
numbers. This should requires to store both numerator and de-
nominator, and to perform two divisions in the reconstruction
step. However, we avoid the need to store the denominator
and perform the associated division by integrating it in the
polynomial approximation. This eliminates the cost of the
division, and the error coming from this operation.

IV. BUILDING THE TABLE OF EXACT POINTS

The proposed table used to perform the second range reduction
brings several benefits over existing solutions. However, build-
ing such a table of exact points is not trivial and it involves
results from Pythagorean triples. These objects are described
in the first part of this section. Then, we present a method to
efficiently build tables of exact points for the sine and cosine
functions.
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Figure 1. Primitive Pythagorean triples whose hypotenuse c is less than 212.

A. Pythagorean Triples

Pythagorean triples are mathematical objects that have been
widely studied in number theory. By definition a triple (a, b, c)
of integers is a Pythagorean triple if and only if:

a2 + b2 = c2, with a, b, c ∈ N∗.

It follows from the Pythagorean theorem that such a triple
corresponds to the lengths of a right triangle edges. Sine
and cosine of right triangle are defined as quotients of these
lengths. Hence, given any Pythagorean triple (a, b, c), there
exists an angle θ ∈]0, π/2[ such that:

sin(θ) =
a

c
and cos(θ) =

b

c
.

A Pythagorean triple for which the fractions a/c and b/c
are irreducible is called a primitive Pythagorean triple (PPT).
This notion is essential since a PPT and its multiples refer to
similar triangles, and thus are associated with the same angle θ.
For example, the well known PPT (3, 4, 5) and all its multiples
are associated to the angle θ = arcsin(3/5) ≈ 0.6435 rad.
Recall that we are looking for rational numbers which approxi-
mate the sine and cosine for various angles between 0 and π/4.
Therefore we will focus only on primitive Pythagorean triples.

B. Construction of Subsets of Primitive Pythagorean Triples

The set of primitive Pythagorean triples is unbounded. Figure 1
shows all PPTs whose hypotenuse c is such that c ≤ 212.
We can observe that they cover a wide range of angles over
]0, π/2[, and that this set is finite.

In this article, we use the Barning-Hall tree [18] to build
sets of PPTs that exploit its ternary-tree structure [19]. From
a given PPT (a, b, c), represented as a column vector, three
new PPTs are computed by multiplying the former with the

following three constants matrices:1 −2 2

2 −1 2

2 −2 3

 ,

−1 2 2

2 −1 2

−2 2 3

 , and

1 2 2

2 1 2

2 2 3

 .

It is proven that all PPTs can be generated from the root
(3, 4, 5) with increasing hypotenuse lengths. For every gener-
ated PPT (a, b, c), we also consider its symmetric PPT (b, a, c),
as it corresponds to a different angle in ]0, π/2[. For instance,
the three children of the triple (3, 4, 5) using the Barning-Hall
tree are:

(5, 12, 13), (15, 8, 17), and (21, 20, 29),

and their symmetric counterparts are

(12, 5, 13), (8, 15, 17), and (20, 21, 29).

C. Selection of Primitive Pythagorean Triples

Recall that the table is addressed by x∗h, the p leading bits of
the reduced argument x∗. Then for each entry i of the table,
we want to select only one primitive Pythagorean triple such
that its corresponding angle θ is as close as possible to x∗h,
where:

θ = arcsin(a/c) and x∗h = i · 2−p.

This means that for each table entry, we have to select the
triple that minimizes the corrective term corr defined by:

corr = x∗h − arcsin(a/c).

Then, once the terms a, b, c, and corr are computed,
a naive solution would consist in storing exactly a, b, c in
double precision, and an approximation of corr on as many
bits as x∗l and computed in multiple precision. As presented
in Section III, instead of doing this, the solution we propose
consists in storing two integers A and B of the form

A =
a

c
· k and B =

b

c
· k

where k ∈ N∗ is the same for all table entries. In this article,
in order to minimize the error coming from the multiplication,
we are looking for table entries such that A and B are the
smallest. This consists in looking for a value k that is small
or even better the smallest.

Depending on the number of bits p for x∗h, recall that we
have a table with dπ/4× 2pe entries. This corresponds to 101
entries for p = 7. For each considered entry, we need to have
at least one PPT in order to find a set of A’s and B’s. We have
reported in Figure 2(a) the number of PPTs per entry for p = 7,
such that the generated hypotenuses were less than 218. This
corresponds to the minimum number of bits for the hypotenuse
so that we have at least one PPT per entry. On this figure, we
observe that we have a mean number of 413 PPTs per entry,
and a standard deviation of 33. We are looking for the lowest
common multiple (LCM) k of one PPT hypotenuse per table
entry. This means that we have to compute the LCM for the
set made of 101 elements which can take 413 different values.
This corresponds to approximately 413101 combinations. This
number is definitely too large to be tested.

We can observe on Figure 2(a) that the number of PPTs
for the table entry 0, that is, near the angle 0, is equal



to 106 whereas the mean is around 413. We have reported in
Figure 2(b), the number of PPTs per entry for p = 7, such that
the generated hypotenuses were less than 214. This corresponds
to the minimum number of bits for the hypotenuse so that we
have at least one PPT per entry, but when the first entry from
the table is excluded from the search space. On this figure, we
observe that we have a mean number of 26 PPTs per entry
and a standard deviation of 4.6. Therefore, if the first entry is
excluded, the search space is reduced to 26100 combinations
to test. There are still too many combinations to compute an
LCM in a reasonable time. To further reduce the space search,
the LCM will not be computed but rather be looked for among
generated hypotenuses.

Nevertheless, it is still possible to exclude the first entry by
selecting the degenerated PPT (0, 1, 1) for this entry. This PPT
corresponds to the angle θ = 0◦ exactly with a corrective term
corr = 0. The advantage of selecting this PPT is twofold: (1)
First, the search space is reduced. (2) Second, its hypotenuse
is equal to 1 which will not impact the search of LCM and
the corrective term is exact.

V. IMPLEMENTATION AND NUMERIC RESULTS

In this section we present how we implemented the proposed
method to generate tables of exact points that fulfill the
properties listed in Section III. We have designed two solutions
to look for a small common multiple k. The first solution
is based on an exhaustive approach and allows us to build
tables indexed by up to 7 bits in a reasonable amount of time.
The second solution uses a heuristic approach which reduces
memory consumption during the execution and the search time.

A. Exhaustive Search

1) Algorithm: As seen in Section IV-C, we need to look
for a small common multiple k of a combination of one PPT
per table entry. We designed a C++ program that takes as input
the number p of bits used to index the table and look for the
minimal number n of bits used to represent the hypotenuse
that corresponds to k · c. The search is exhaustive amongst
the generated hypotenuses, which warranties that if a common
multiple is found, it is the lowest. We initialize n to 4 and we
build the program around the following three steps:

1) Generate all PPTs (a, b, c) such that c ≤ 2n.
2) Search for the LCM k among all generated hypotenuses c.
3) If such a k is found, build tabulated values (A,B, corr)

for every entry. Otherwise, set n = n+1 and go back to
step 1.

Values (A,B, corr) are computed using the PPTs (a, b, c) such
that k is a multiple of c. In case several PPTs per entry fulfill
this property, the one for which arcsin(a/c) is the closest to
x∗h is selected as this minimizes the error on x∗l .

2) Numeric Results: Table I shows the results we ob-
tained on an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.6 GHz
(32 cores) with 125 GB of RAM running on GNU/Linux. It
describes for the number p of bits that is targeted, the value of
kmin that was found followed by the number n of bits used
to represent kmin, the time necessary to find this value, and
the numbers of considered PPTs and hypotenuses.

Table I. EXHAUSTIVE SEARCH RESULTS.

p kmin n time (s) Triples Hypotenuses
3 425 9 � 1 86 66

4 5525 13 � 1 1404 889

5 160225 18 0.2 42328 24228

6 1698385 21 7 335344 179632

7 6569225 23 31 1347953 686701

8 > 227 > 27 > 6700? > 21407992 > 10144723

Table II. VALUES (A,B, corr) COMPUTED FOR p = 5.

Input index A B corr

0 0 160225 +0x0.0000000000000p+0
1 5772 160121 +0x1.3966f27bfc9f0p-8
2 11385 159820 +0x1.1a56677e409a8p-7
3 15225 159500 +0x1.73400355ad200p-10
4 19775 159000 -0x1.4b6e4ab5496c0p-10
5 24505 158340 -0x1.62b596fa18d80p-9
6 30044 157383 +0x1.27ac440de0a80p-10
7 33820 156615 -0x1.8df1bd239dc40p-8
8 39440 155295 -0x1.522b2a9e84900p-10
9 44863 153816 +0x1.4d7623b1c6e80p-9

10 50375 152100 +0x1.e0220454e0100p-8
11 56257 150024 +0x1.ebd078b04dc80p-7
12 58305 149240 -0x1.4eccbaa9e7000p-9
13 63504 147103 +0x1.4f7dfcae44600p-10
14 67860 145145 -0x1.53f734851f800p-13
15 73593 142324 +0x1.158024b185460p-7
16 75400 141375 -0x1.49140da6fe460p-7
17 81345 138040 +0x1.48c11cc509200p-10
18 85255 135660 -0x1.75ed3145ed600p-10
19 90596 132153 +0x1.d824b6b5b8300p-8
20 93247 130296 -0x1.f7e24ff929500p-9
21 97760 126945 -0x1.5696f82020000p-17
22 101500 123975 -0x1.7caa112f28800p-10
23 105465 120620 -0x1.29d074350d800p-12
24 110500 116025 +0x1.68ddad9df7000p-7
25 111969 114608 -0x1.eb6d097519180p-8

We observe that it is possible to find kmin and to build
tables indexed by up to p = 7 bits in a reasonable amount
of time. However, during our test we noticed that the heap
memory was heavily solicited and that it was not possible to
go beyond 8 bits.

Table II describes the table of exact points for p = 5, where
k = 160 225 and the absolute value of the corrective term is
at most 135188896813938 × 2−53, that is, ≈ 0.0150090 for
input index i = 11.

B. Heuristic Search

To build tables indexed by a larger number of bits, it is
therefore mandatory to use another solution. In order to
reduce the search space, we have developed a heuristic that
selects “good“ hypotenuses and rejects others during the PPT
generation phase.

We collected information related to the decomposition
in prime factors of each kmin found using the exhaustive
search. Such a decomposition is given in Table III. These
factorizations show that every k in the table is a composite
number divisible by relatively small primes. Furthermore all
those small primes are of the form 4n + 1, better known as
Pythagorean primes [20].

Therefore, the heuristic we propose follows a simple rule:
only store primitive Pythagorean triples whose hypotenuse is
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Figure 2. Minimum number of PPTs per entry for p = 7.

Table III. PRIME FACTORIZATION OF FOUND COMMON MULTIPLES.

k Prime factorization
425 52 · 17

5525 52 · 13 · 17
160225 52 · 13 · 17 · 29

1698385 5 · 13 · 17 · 29 · 53
6569225 52 · 13 · 17 · 29 · 41

of the form:

c =
∏
i

prii with pi ∈ P and
{
ri ∈ {0, 1} if pi 6= 5

ri ∈ N∗ else
, (2)

where P is the set of Pythagorean primes lower than or equal
to 73:

P =
{
5, 13, 17, 29, 37, 41, 53, 61, 73

}
.

Results, timings, and numbers of considered triples and
hypotenuses for this heuristic are given in Table IV. We can
observe that this algorithm considers a number of hypotenuses
several order of magnitude lower than the exhaustive search
solution. This reduces the amount of necessary memory and
execution time. For instance, for p = 7, only 3308 triples are
stored, compared to the 1 347 953 triples for the exhaustive
algorithm. In this case, the execution time was reduced from
31 seconds to 0.4 seconds.

Table IV. HEURISTIC SEARCH RESULTS.

p n kmin time (s) Triples Hypotenuses
3 9 425 � 1 41 8

4 13 5525 � 1 210 17

5 18 160225 � 1 995 40

6 21 1698385 0.1 2171 66

7 23 6569225 0.4 3452 69

8 29 314201225 9.5 10467 100

9 34 12882250225 294 20311 109

10 39 279827610985 9393 33056 110

With this heuristic, the bottleneck is no longer memory but
the selection of PPTs during their generation. Indeed, checking
if a given hypotenuse satisfies (2) requires checking if it is
multiple of Pythagorean prime numbers, which is an expensive
test.

VI. COMPARISONS WITH OTHER METHODS

We have presented a range reduction based on exact points and
how to efficiently build those points. In order to compare this
solution with the other solutions presented in Section II, we
consider a two-phase evaluation scheme of the sine function
that targets correct rounding in double precision. The quick
and the accurate phases target a relative error less than 2−66

and 2−150, respectively. We choose p = 10 which corresponds
to dπ/4× 210e = 805 entries in each considered table.

In order to ease comparisons, we are only considering the
number of memory accesses required by the second range
reduction and the number of floating-point operations involved
in the reconstruction step. We will consider that expansion
algorithms are used whenever high accuracy is required as
it is the case in the correctly rounded library CR-Libm [6].
An expansion of size n consists in storing a given number as
the unevaluated sum of n floating-point numbers [21]. We will
use Table V extracted from [22] as the reference cost for those
algorithms when no fma (fused multiply-add) is available. The
notation En stands for expansion of size n, such that, with this
notation, E1 represents a regular floating-point number.

Table V. COST OF ADDITION AND MULTIPLICATION OF EXPANSIONS.

Operation Number of operation
E2 = E2 + E2 12
E3 = E3 + E3 27
E2 = E1 × E2 20
E3 = E1 × E3 47
E2 = E1 × E1 17
E2 = E2 × E2 26
E3 = E3 × E3 107

A. Tang’s Solution

In order to reach an accuracy of 66 bits, Tang’s solution
requires accessing to tabulated values sinh and cosh that
are stored as expansions of size 2. These values need to be
multiplied by the two results of the polynomial evaluations,
which can be considered stored as expansion of size 2 as
well. The total cost of the quick phase becomes: 4 double
precision memory accesses (MA), 2 multiplications E2 ×E2,



and 1 addition E2 + E2, that is, 64 floating-point operations
(FLOP).

In case the quick phase failed to return correct round-
ing, the accurate phase is launched. This requires accessing
to 2 extra tabulated values to represent sinh and cosh as
expansions of size 3. Those values need to be multiplied
by the two results of the polynomial evaluations, which can
be considered stored as expansion of size 3 as well. The
total cost of the accurate phase becomes: 2 extra memory
accesses, 2 multiplications E3 ×E3, and 1 addition E3 +E3.
This corresponds to 6 memory accesses: 241 floating-point
operations, and a computed table of 38 640 bytes.

B. Gal’s Solution

Using Gal’s method, the corrective term allows to achieve
around 66 bits of accuracy, and Stehlé’s improvement allows to
reach 74 bits. In both cases, only one double precision number
is required for sinh, cosh, and the corrective term. Again,
these values need to be multiplied by the two results of the
polynomial evaluations that can be considered stored as ex-
pansions of size 2. Thus the quick phase requires 2+1 double
precision memory accesses, 1 addition for the corrective term,
2 multiplications E1 × E2 and 1 addition E2 + E2. The cost
of the quick phase with this table becomes 3 memory accesses
and 53 floating-point operations.

To reach the 150-bit accuracy required by the accurate
phase, it is necessary to get 2 extra floating-point numbers for
each tabulated values. The corrective term is then integrated
in the final result using addition between expansions of size 3.
The rest of the operations need to be done using size-3
expansions. The total cost for the accurate phase becomes
6 extra memory accesses, 2 multiplications E3 × E3 and
2 additions E3+E3, that is, 9 memory accesses, 268 floating-
point operations, for a 57 960-byte computed table.

C. The Exact Points Solution

With our solution, as shown in Table IV, at most 39 bits are
required to store A and B, that is, only one floating-point
number per entry. Hence, the cost of the quick phase is the
same as Gal’s approach in Section VI-B.

However, for the accurate phase, values sinh and cosh
that were accessed during the quick phase are exact, and do
not require any extra memory access. The corrective term is
stored as an expansion of size 3 and it requires 2 extra floating-
point numbers to reach the 150 bits of accuracy. The corrective
term is integrated in the final result using an addition with
expansion of size 3. Multiplications correspond to E3 = E1×
E3 as the results of the polynomial evaluations are stored as
expansions of size 3. The final addition is done using E3 =
E3+E3 operation. That is, the total cost of this step becomes
3 memory accesses and 148 floating-point operations, for a
computed table of 32 200 bytes.

D. Comparison Results

Table VI synthesizes the estimated costs for those three range
reduction algorithms based on tabulated values. This table
reports the number of floating-point operations for the quick

Table VI. COMPARISONS BETWEEN THREE TABLE-BASED RANGE
REDUCTIONS, FOR p = 10. THE NUMBER OF MEMORY ACCESSES (MA)

AND THE NUMBER OF FLOATING POINT OPERATIONS (FLOP) ARE
REPORTED.

Solution Quick phase Accurate phase Table size (bytes)
Tang 4 MA + 64 FLOP 6 MA + 241 FLOP 38640
Gal 3 MA + 53 FLOP 9 MA + 268 FLOP 57960

Proposed 3 MA + 53 FLOP 5 MA + 148 FLOP 32200

and accurate phases, together with the size in bytes of the
computed table.

First, we notice from this table that the proposed table-
based range reduction requires less memory per table entry
than others tested solutions. Tang’s method needs 48 bytes per
entry and Gal’s method, 72 bytes per entry, while 40 bytes are
enough for the table with exact points. This is an improvement
in memory usage of ≈ 17% and ≈ 45% over Tang’s and Gal’s
methods, respectively.

Second, regarding the number of operations for both the
quick and accurate phases, we observe that our solution
provides similar performance to Gal’s solution for the quick
phase. For the accurate phase, we observe an improvement in
favor of our approach of ≈ 39% and 45% over Tang and Gal,
respectively.

Third, we notice that the proposed solution reduces the
number of memory accesses. The quick phase requires 3
accesses, while Tang’s approach uses 4 accesses, that is, an
improvement of 25%. The benefit is even more significant for
the accurate phase, as the number of accesses is reduced from
9 to 4 compared to Gal’s approach. This is an improvement
of ≈ 45%.

VII. CONCLUSIONS AND PERSPECTIVES

In this article, we have presented a new approach to address the
second range reduction of the evaluation process of elementary
functions based on tabulated values. It relies on Pythagorean
triples, which allow to simplify and accelerate the evaluation
of these functions. Compared to other solutions, the table of
Exact Points eliminates the rounding error on certain tabulated
values, and transfers this error in the remaining reduced
argument. We have focused the method on sine and cosine
functions as it is the most difficult. However, the concept
remains valid for other functions. For those functions and
thanks to the proposed method, it is possible to reduce up
to 45% the table sizes of, the number of memory accesses
and the number of floating-point operations involved in the
reconstruction process.

Our further research direction is threefold: First, it would
be interesting to plug the computed table into a full sine
and cosine implementation to observe its actual impact. This
could be done within the CR-Libm project. Second, as we
have seen in Section V-B, relevant hypotenuses are factors
of small Pythagorean primes. Following this, it would be
interesting to characterize “good” hypotenuses, so that, instead
of generating a huge set of triples and then choosing the
relevant ones, they could be computed directly possibly using
Bresenham’s algorithm. Doing this way, it would speed up
the table computation process. Third, we have focused on
looking for the lowest common multiple so that tabulated



values would be stored on the minimal number of bits. This
property is essential for hardware implementations where each
bit is important. For software solution, it would be more
interesting to look for tabulated values that could fit in a
given format (i.e double precision floating-point number) but
that would minimize the corrective terms. This may result in
corrective terms that could be representable as expansions of
size strictly less than n, and thus save some extra memory
accesses and associated floating-point operations.
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