N
N

N

HAL

open science

Asynchronous OpenCL/MPI numerical simulations of

conservation laws
Philippe Helluy, Thomas Strub, Michel Massaro, Malcolm Roberts

» To cite this version:

Philippe Helluy, Thomas Strub, Michel Massaro, Malcolm Roberts. Asynchronous OpenCL/MPI

numerical simulations of conservation laws.

Bungartz, Hans-Joachim and Neumann, Philipp and

Nagel, Wolfgang E. Software for Exascale Computing - SPPEXA 2013-2015, Springer International
Publishing, pp.547-565, 2016, 978-3-319-40528-5. 10.1007/978-3-319-40528-5_ 25 . hal-01134222v2

HAL Id: hal-01134222
https://hal.science/hal-01134222v2
Submitted on 16 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01134222v2
https://hal.archives-ouvertes.fr

Asynchronous OpenCL/MPI numerical simulations of
conservation laws

Philippe Helluy
IRMA, Université de
Strasbourg
and Inria TONUS
7 rue Descartes
Strasbourg, France

philippe.helluy@unistra.fr

Thomas Strub
AxesSim
rue Jean Sapidus
lllkirch, France
thomas.strub@axessim.fr

Michel Massaro
IRMA, Université de
Strasbourg
7 rue Descartes
Strasbourg, France

michel.massaro@unistra.fr

Malcolm Roberts
IRMA, Université de
Strasbourg
7 rue Descartes
Strasbourg, France

malcolm.roberts@unistra.fr

ABSTRACT

Hyperbolic conservation laws are important mathematical
models for describing many phenomena in physics or engi-
neering. The Finite Volume (FV) method and the Discon-
tinuous Galerkin (DG) methods are two popular methods for
solving conservation laws on computers. Those two methods
are good candidates for parallel computing:

e they require a large amount of uniform and simple
computations,

e they rely on explicit time-integration,
e they present regular and local data access pattern.

In this paper, we present several FV and DG numerical sim-
ulations that we have realized with the OpenCL and MPI
paradigms. First, we compare two optimized implementa-
tions of the FV method on a regular grid: an OpenCL im-
plementation and a more traditional OpenMP implementa-
tion. We compare the efficiency of the approach on several
CPU and GPU architectures of different brands. Then we
give a short presentation of the DG method. Finally, we
present how we have implemented this DG method in the
OpenCL/MPI framework in order to achieve high efficiency.
The implementation relies on a splitting of the DG mesh
into sub-domains and sub-zones. Different kernels are com-
piled according to the zones properties. In addition, we rely
on the OpenCL asynchronous task graph in order to overlap
OpenCL computations, memory transfers and MPI commu-
nications.

This work has benefited from several supports: from the French Defense
Agency DGA, from the Labex ANR-11-LABX-0055-IRMIA and from the
AxesSim company.

Keywords

OpenCL, MPI, task graph, conservation laws, discontinuous
Galerkin approximation

1. INTRODUCTION

Hyperbolic conservation laws are a particular class of Par-
tial Differential Equations (PDE) models. They are present
in many fields of physics or engineering. It is thus very
important to have efficient software tools for solving such
systems. The unknown of a system of conservation laws is
a vector W(x,t) € R™ that depends on a space variable
z = (z'...z%) and time t. The vector W is called the vec-
tor of conservative variables. In this work we shall consider
a space dimension d = 2 or d = 3. Generally, the space vari-
able x belongs to a bounded domain Q C R%. The system
of conservation reads

HW + 0, F* (W) = 0. (1)
In this formula, we use the following notations:

e The partial derivative operators are denoted by

0 0

8t:5t, k:@

e We adopt the sum-on-repeated-indices convention

d
O F" (W) =Y 0 F*(W).
k=1

e The functions F*(W) € R™, k = 1...d, characterize
the physical model that we wish to represent. It is
classic to consider a space vector n = (ny...ng) € R?
and to also define the flux of the system

F(W,n) = F*(W)n,.

System is supplemented by an initial condition
W({E, 0) = WO(x)v (2)

at time ¢ = 0, and conditions on the boundary OS2 of Q2. For
example, one can prescribe the value of W on the boundary

Wz, t) = Wy(z,t), z € IN. 3)

Generally, the system , , admits a unique solution if
it satisfies the hyperbolicity condition: the Jacobian matrix
of the flux

Vw F(W,n)

is diagonalizable with real eigenvalues for all values of W
and n.

The above mathematical framework is very general. It
can be applied to electromagnetism, fluid mechanics, multi-
phase flows, magneto-hydro-dynamics (MHD), Vlasov plas-
mas, etc. Let us just give two examples:

e The Maxwell equations describe the evolution of the
electric field E(x,t) € R® and the magnetic field H (x, t)
R3. The conservative variables are the superimposition
of these two vectors W = (ET, HT)T (thus m = 6) and
the Maxwell flux is given by

0 —nx

F(W,n) = { nx 0

} w.
In Section 3 we present numerical results obtained with
the Maxwell equations.

e In fluid mechanics, the Euler equations describe the
evolution of a compressible gas of density p, velocity
w = (u',u?, u®) and pressure p. The conservative vari-

ables are given here by
W = (p,pu”,p/(y = 1) + 1/2pu - u)”
and the flux by
F(W,n) = (pu-n, pu-nu’+

pn” {p/(vy = 1) +1/2pu-utu-n)",

where v > 1 is the polytropic exponent of the gas.
The MHD equations are a generalization of the Euler
equations for taking into account magnetic effects in
conductive compressible gas. The MHD system is a
complicated system of conservation laws, with m = 9.
It is not the objective of this work to detail the MHD
equations. For this we refer for instance to [11]. In
Section 2, we present numerical results obtained with
the MHD equations.

Because of their numerous fields of application, many nu-
merical methods have been developed for the resolution of
hyperbolic conservation laws. For instance the finite vol-
ume (FV) and discontinuous Galerkin (DG) method are very
popular. They are easy to program on a standard parallel
computer thanks to subdomain decomposition. However,
on new hybrid architectures, the efficient implementation of
those methods is more complex. It appears that there is
possibility of optimizations. In this paper, we explore sev-
eral numerical experiments that we have made for solving
conservation laws with the FV and DG methods on hybrid
computers. OpenCL and MPI libraries are today available
on a wide range of platform, making them a good choice for
our optimizations. It is classic to rely on OpenCL for lo-
cal computations and on MPI for communications between
accelerators. In addition, in our work we will see that it is

interesting to also use the OpenCL asynchronous task graph
in order to overlap OpenCL computations, memory transfers
and MPI communications.

In the first part of this paper, we compare a classic OpenMP
optimization of a FV solver to an OpenCL implementation.
We show that on a standard multicore CPU, we obtain com-
parable speedups between the OpenMP and the OpenCL
implementation. In addition, using several GPU accelera-
tors and MPI communications between them, we were able
to make computations that would be unattainable with more
classic architectures.

Our FV implementation is limited to regular grids. In the
second part of the paper, we thus describe an efficient imple-
mentation of the DG algorithm on unstructured grids. Our
implementation relies on several standard optimizations: lo-
cal memory prefetching, exploitation of the sparse nature of
the tensor basis, and MPI subdomain decomposition. Other
optimizations are less common: idling work-item for min-
imizing cache prefetching and asynchronous MPI/OpenCL
communication.

2. COMPARISON OF AN OPENCL AND AN
OPENMP SOLVER ON A REGULAR GRID

2.1 FYV approximation of conservation laws

The FV and DG method construct a discontinuous ap-
proximation of the conservative variables W. In the case of
the FV method, the approximation is piecewise constant. In
the case of the DG method, the approximation is piecewise
polynomial. It is therefore necessary to extend the defini-
tion of the flux F(W,n) at a discontinuity of the solution.
We consider thus a spatial discontinuity > of W. The dis-
continuity is oriented by a normal vector nrr. We use the
following convention: the “left” (L) of X is on the side of
—nrr = nrr and the “right” (R) is on the side of npr. We
denote by Wi, and Wg the values of W on the two sides of
3. The numerical flux is then a function

F(Wr,Wgr,nLR).

A common choice is to take

F(Wg,n)+ F(Wg,n)
2

F(Wr,Wr,n) = - %(WR—WLL
where s is called the numerical viscosity. It is a supremum
of all the wave speeds of the system. For more simplicity,
in this section we consider the two-dimensional case d = 2
and a square domain x = (z',2%) € Q =)0, L[x]0, L|. The
space step of the grid is Az = L/N where N is a positive
integer. The grid cells are squares of size h X h. The cell
centers are defined by z;; = ((i + 2)Az, (j + 3)Az). We
also consider a time step At and the times t" = nAt. We
look for an approximation W;"; of W at the cell centers z;,;
and at time t"

ij ~ W(:Ij@j,tn), (4)

Let v* and ©? be normal vectors pointing in the z' and z?
direction, respectively, so that
v =1,07, v =(0,1)".

We adopt a Strang splitting strategy: for advancing the nu-
merical solution from time step " to time step t"*!, we first

solve the finite volume approximation in direction !

230 A

At Az ’

Wiy — W{j]-JrF(Wi” Fgavt) = FOWy Wi, vh)

and then in direction z2

n+1 * n n
Wi _Wi,j+F(Wi Wi, v?) =

I

At Az

FOW, 0, Wi, v?)

©,79

(6)
On the boundary cells, we simply replace, in the previous
formulas, the missing values of W by the boundary val-

ues (3).
2.2 OpenMP implementation of the FV scheme

The chosen numerical scheme is very simple. We have first
written a sequential C implementation of the algorithm. We
only consider results with single precision. We have also de-
cided to apply the FV scheme to the ideal MHD system
with divergence correction. The MHD system models the
coupling of a compressible fluid with a magnetic field. It con-
tains m = 9 conservative variables and the numerical flux
can be a rather complex function. The numerical simula-
tions thus require heavy computations and are well adapted
to GPU hardware. For more details and bibliography on the
MHD equations, we refer to |11].

In this first version we simply loop on all the rows ¢ of
the grid and then on all the columns j for scanning the grid
points and applying the z'-step . We compile the code
with a recent version of gcc without optimizations. If we
activate optimizations (-O3 compilation option of gec), we
obtain an easy speedup of 5. In order to observe cache ac-
cess effects, we consider only large grids with sizes bigger
than 1024 x 1024. It is clear that our first scanning strategy
is not optimal, because it induces many cache misses. We
have thus also implemented a tiling strategy, which consists
in scanning smaller subgrids of the large grid. The subgrid
size is chosen in such a way that cache misses are reduced.
With this additional optimization we obtain a speedup of 8
compared to the initial naive implementation. The next op-
timization step is then to parallelize the numerical scheme.
We have thus also implemented an OpenMP version of the
FV algorithm. It consists simply in adding parallel OpenMP
directives before the most external loop when scanning each
subgrid. With the tiling+OpenMP version of our code we
are able to reach a speedup of 116 on a two-CPU SMP com-
puter compared to the naive sequential code.

We use the optimized tiled OpenMP implementation as
our reference for comparisons with OpenCL implementa-
tions (see Table |1| where the different implementations are
compared).

2.3 OpenCL implementation of the FV scheme
2.3.1 OpenCL

It is necessary to adapt our code to new SIMD accelera-
tors, such as GPUs, in order to decrease computation cost.
For this, we have chosen OpenCL, which is a recent pro-
gramming framework for driving such accelerators. A nice
feature of OpenCL is that multicore CPUs are also consid-
ered as accelerators. The same program can thus be run
without modification on a CPU or a GPU.

OpenCL means “Open Computing Language”. It consists
in a library of C functions, called from the host, for driv-

=0.

ing one or several accelerators (GPU or multicore CPU). It
contains also a C-like programming language for writing the
programs (the “kernels”) that will run on the accelerators. In
the OpenCL paradigm, the accelerators are called “devices”.
Each device possesses its own memory (“global memory”).
Each device is made of compute units of several processors
(“processing elements”) that share a small fast-access cache
memory (“local memory”).

For practical reasons, OpenCL allows one to program the
accelerator as if it had an arbitrary number of compute units
and processing elements. The “virtual” compute units and
processing elements are respectively called “work-groups”
and “work-items” in the OpenCL terminology. The kernels
are launched on the actual devices, compute units and pro-
cessing elements through a mechanism of “command queues”.
Some rules have to be respected for efficient OpenCL pro-
gramming;:

e The work-items can all access the global memory of the
device but can only access the scarce local memory of
their work-group.

e If two or more work-items try to write at the same
memory location, only one succeeds.

e The access to the local memory is much faster than the
access to the global memory. If access to the global
memory is mandatory, it is advised for faster access
that neighboring work-items read/write at neighbor-
ing memory locations. Such optimal access is called
“coalescent access”. When an algorithm requires non
regular memory access, a classic strategy is thus to
prefetch in a coalescent way the data from the global
memory into the local memory, then work on the data
in local memory. When the work is finished, the data
are copied back into the global memory in a coalescent
fashion.

e Finally, on a GPU, data transfers between the host
and the global memory are very slow, because they
are generally transported through the PCle bus. Con-
sequently, they should be avoided.

As explained above OpenCL exposes useful abstractions
for driving generic SIMD architectures. In this section, we
exploit these features. However OpenCL contains other use-
ful abstractions:

e [t offers the possibility to launch different kernels or
memory transfer tasks on command queues attached
to different devices. Another level of parallelism is
thus available. The tasks among different command
queues can be launched asynchronously. A mechanism
of events allows one to describe the task dependencies.

e The kernel sources are compiled at runtime. It is thus
possible to customize the kernels depending on the ac-
celerators detected by OpenCL during execution.

These more advanced features are exploited in Section 3.

2.3.2 Implementation

For the OpenCL version of our F'V algorithm, we organize
the data in a (x1,x2) grid: each conservative variable is
stored in a two-dimensional (4, j) array. For advancing from
time step " to time step t"T1:

e In principle, we associate a work-item to each cell of
the grid and a work-group to each row. But OpenCL
drivers generally impose a maximal work-group size.
Thus when the row is too long it is also necessary to
split the row and distribute it on several work-groups.

e We compute the flux balance in the x;-direction for
each cell of each row of the grid (see formula ().

e We then transpose the grid, which amounts to ex-
changing the 1 and x2 coordinates. The (4,7) — (4,1)
transposition is performed on the two-dimensional ar-
ray of each conservative variable. For ensuring coales-
cent memory access we adopt an optimized memory
transfer algorithm [13] (see also [12]).

e We can then compute the fluxes balance in the x2-
direction @ for each row of the transposed grid. Thanks
to the previous transposition, memory access is coales-
cent.

e We again transpose the grid.

Let us mention that other strategies are possible. For
instance in [12] the authors describe GPU computations of
scalar (m = 1) elastic waves. The algorithm is based on
two-dimensional tiling of the mesh into cache memory and
registers in order to ensure fast memory access. However
the tile size is limited by the cache size and the number of
unknowns m in each grid cell. In our case for the MHD
system we have m = 9 and the adaptation of the algorithm
given in [12] would probably be inefficient.

We have tested this OpenCL implementation in several
configurations and we can make the following comments:

e We can run the OpenCL code on a two-CPU SMP
computer or GPUs of different brands, without modifi-
cation. In addition, we obtain interesting speedups on
SMP architectures. The OpenCL speedup for CPU ac-
celerator is approximately 70% of the OpenMP speedup.
It remains very good considering that the transposition
algorithm probably deteriorates the memory access ef-
ficiency on CPU architectures. The fact that OpenCL
is a possible alternative to OpenMP on multicore CPU
has already been discussed in [14].

e On AMD or NVIDIA GPUs, the same version of our
code achieves excellent performance.

e If we replace the optimized transposition by a naive
unoptimized transposition algorithm the code runs ap-
proximately 10 times slower on GPUs. The coalescent
memory access is thus an essential ingredient of the
efficiency.

2.4 OpenCL/MPI FV solver

We now modify the OpenCL implementation in order to
address several GPU accelerators at the same time. This
could theoretically be achieved by creating several command
queues, one for each GPU device. However, as of today,
when GPUs are plugged into different nodes of a supercom-
puter, the current OpenCL drivers are not able to drive at
the same time GPUs of different nodes. Therefore, we have
decided to rely on the MPI framework for managing the com-
munications between different GPUs. This strategy is very
common (see for instance [1} |4} |7] and included references).

We split the computational domain 2 into several sub-
domains in the z' direction. An example of splitting with
four subdomains is presented on Figure [Il Then, each sub-
domain is associated to one MPI node and each MPI node
drives one GPU. For applying the finite volume algorithm
on a subdomain, it is necessary to exchange two layers of
cells between the neighboring subdomains at the beginning
of each time step. The layers are shaded in grey in Figure
[l On each MPI node, an exchange thus requires a GPU to
CPU memory transfer of the cell layers, a MPI send/recv
communication and a CPU to GPU transfer for retrieving
the neighbor layers. The exchanged cells represent a small
amount of the total grid cells, however, the transfer and
communication time represent a non-negligible amount of
the computation cost.

In our first OpenCL/MPI implementation, the exchange
task is performed in a synchronous way: we wait for the ex-
change to be finished before computing the fluxes balance in
the subdomains. This explains why the speedup between the
OpenCL code and the OpenCL/MPI code with four GPUs
is approximately 3.5 (the ideal speedup would be 4). See
Table .

Despite the synchronous approach, the OpenCL/MPI FV
solver on structured grid is rather efficient. It has permitted
us to perform computations on very fine grids that would
be unreachable with standard parallel computers. For in-
stance, we have performed two-fluid computations of shock-
bubble interaction with grid size up to 40,000 x 20,000 in
[6]. An animation (on a coarser grid) of this test case can be
seen at www.youtube.com/watch?v=c8hcqihJzbw. This an-
imation uses the possibility to share GPU buffers between
OpenGL and OpenCL drivers (OpenGL/OpenCL interops).
We have also performed magneto-hydro-dynamics (MHD)
simulation on very fine grids in |11].

Now we would like to address the following drawbacks of
the F'V solver:

e The FV method is limited to first or second order ap-
proximation. In some applications, it is important to
have access to higher order schemes.

e MPI and host/GPU communications take time, so it
is important to provide asynchronous implementations
for scalability with more MPI nodes.

e The previously described approach is limited to struc-
tured grids. We wish also to extend the method to
arbitrary geometries.

In the next section we describe our implementation of a
Discontinuous Galerkin (DG) solver that allows to achieving
higher order, addressing general geometries, and overlapping
computations and communications.

3. ASYNCHRONOUS OPENCL/MPI DISCON-
TINUOUS GALERKIN SOLVER

We now present the Discontinuous Galerkin Method and
explain our software design for keeping high performance in
the GPU implementation.

3.1 The DG method

3.1.1 Interpolation on unstructured hexahedral meshes

https://www.youtube.com/watch?v=c8hcqihJzbw
www.youtube.com/watch?v=c8hcqihJzbw

GPU 0| |GPU 1| [GPU 2| |GPU 3
MPI MPI MPI LI\IPI
ode 0 ode 1 ode 2 ode 3

Figure 1: Subdomain MPI decomposition

| Implementation | Time | Speedup |
OpenMP (Intel CPU 12 cores) 717 s 1
OpenCL (Intel CPU 12 cores) 996 s 0.7
OpenCL (NVIDIA K20) 45 s 16
OpenCL (AMD HD7970) 38s 19
OpenCL + MPI (4 x NVIDIA K20) | 12's 58

Table 1: Comparison of the different implemen-
tations of the FV scheme on a structured grid.
Hardware : 2x Intel(R) Xeon(R) E5-2630 (6 cores,
2.3GHz), AMD Radeon HD 7970, NVidia K20m.
On Intel CPUs hyperthreading was deactivated.

The DG method is a generalization of the FV method.
We suppose that dimension d = 3. We consider a mesh of
the computational domain €2 made of cells L;, i = 1... N..
In a cell L of the mesh, the field is approximated by a linear
combination of basis functions 1/)JL

W(z,t) = Wik (@), @€ L. (7)

Each cell L of the mesh is obtained by a geometrical map-
ping 77, that transforms a reference element L into L. In
theory the shape of the reference element L may be arbi-
trary. A classic choice is to consider tetrahedra @ﬂ In this
work we prefer hexahedra, as in . Building a tetrahe-
dral mesh of €2 is generally easier. The basis functions of
hexahedral cell are constructed from tensor products of one-
dimensional functions. The tensor nature of the basis allows
many optimizations of the algorithm that are not possible
with tetrahedra.

We now give some details on the construction of the basis
function. Let D be the interpolation degree. We consider
the (D + 1) Gauss-Legendre points in the interval 0, 1[, &p,
p=0...D.

To these points, we can associate Lagrange polynomials
of order D, £,() satisfying £,(£q) = dp,q, where ¢ is the
Kronecker symbol (6,4 = 1 if p = g and §,,4 = 0 otherwise).

We can also associate to each Gauss point the integration

1
wp = / 0,(€)de

The (D + 1)? three-dimensional Gauss-Legendre points on
the reference cube are obtained by tensor product. More

precisely, for an integer s € {0...(D + 1)® — 1} there is a
unique triplet (p*,p*,p®) in {0...D}? such that i = p' +
(D +1)p* 4 (D +1)?p®. The corresponding Gauss-Legendre
point and weight are then

T; = (§p1,§p2§p3), Wi = Wpl - Wp2 * Wp3.

We use the same kind of definition for the Gauss-Legendre
points on the faces of the reference cube. In Figure[2] we have
represented the Gauss-Legendre points for an order D = 2.
The volume Gauss points are blue and the face Gauss points
are green.

(0,1,0)

Figure 2: Volume and face Gauss-Legendre points
in the reference cube.

Let (&) be a function defined on the reference cell L. We
can then approximate the integral of this function by the
integration rule

/Lh(fc) ~ > " @xh(iy). (8)

A similar formula holds for the integration on the faces of
the reference cube.

To each Gauss point &; we associate a reference basis
function that we define thanks to a tensor product of one-
dimensional Lagrange polynomials

Gi(@) = Lo (&1)L,2 (27)0,5 (27).
With this choice, we have the interpolation property
by(#i) = 8-
For defining the transformation 7, that maps the reference

cell L to the current cell L we first define the eight nodes
N* of the reference element

(N, N2 N N, N® N® N7, N®) =

01 01 01 1
0 01100 1
0 00011 1

a == o

As in the finite element method, we define the shape func-

OLNOR

Figure 3: Mesh: notation conventions.

tions
¢1(2) (1—2)(1 -1 -a%,
$2(8) = & (1-2")(1 -2,
Ba() = (1-2)2(1-2),
(@) = a'a’(1-a")
¢s(2) = (1-3")(1-a")a",
¢o(2) = @'(1-a")a",
pr(2) = (1-2)3"2,
b5 (&) '@,

The shape functions also satisfy a nodal property

$i(N7) = 6i;.

We now denote by NF the nodes of the current cell I and
the mapping is defined by

TL(J:") = (]ﬁk(i’)]\ﬂLC

The basis function of cell L are then defined by transporting
the reference basis functions:

V5 (2) = i (2)) & &5 (T (&) = 95 ()

Let h(x) be a function defined on the cell L. For comput-
ing the integral of h on L, we apply the formula

/L h(z) = /L h(rs(&))detr (z)

and the quadrature rule .
Let us remark that from the above definitions, we have
simply
W (Tr(&:), 1) = Wi (1),
or in other words, the coefficients in the linear combination
are the values of the conservative variables W at the

Gauss points of cell L. For this reason the chosen basis is
often called a nodal basis [§].

3.1.2 DG formulation

The numerical solution satisfies the DG approximation
scheme

VL. Vi / aWpE — / F(W, W, VL)
L L

+ F(Wr, Wgr,nLr)¢f = 0. (9)
oL

In this formula,

e R denotes the neighbor cells along L.

e nrr is the unit normal vector on 9L oriented from L
to R. See Figure[3]

o F(Wr,Wg,n) is the numerical flux, which satisfies
F(W,W,n) = F*(W)ny.

Inserting expansion into @D we obtain a system of
differential equations satisfied by the W7 (¢). This system
of differential equations can be solved numerically with a
standard Runge-Kutta method.

The choice of interpolation we have described in the pre-
vious section is well adapted to the DG formulation.

e For instance, the nodal basis property ensures that we
have direct access to the values of W at the Gauss
points. Consequently the mass matrix is diagonal.

e In the computation of the volume term [, F(W, W, Vo F)
it is not necessary to loop on all the volume Gauss
points. Indeed, the gradient of 1; is nonzero only at
the points that are aligned with point 4 (see Figure [4]).

e Finally, for computing the face integrals

F(WL7 WRanR)wiL
oL

we have to extrapolate the values of W, which are
known on the volume Gauss points, to the interfacial
Gauss points. On tetrahedra, all the volume Gauss
points would be involved in the interpolation. With
our nodal hexahedral basis, only the volume Gauss
points aligned with the considered interfacial Gauss
point are needed (see Figure for computing W at
a green point, we only need to know W at the blue
points aligned with this green point).

In the end, exploiting the tensor basis properties, the DG
formulation (9) in a cell L requires computations of com-
plexity ~ D* instead of ~ D®. For high orders, this is a
huge improvement.

(0,0,1)

(0,1,0)
(1,0,

Figure 4: Non-zero values of the basis functions.
The gradient of the basis function associated to the
red point is nonzero only on the blue points

Beyond these useful optimizations that are also applied in
sequential implementations, The DG method presents many
advantages:

e It is possible to have different orders on different cells.
No conformity is required between the cell and mesh
refinement is thus simplified.

e The computations inside a cell only depend on the
neighboring cells. The stencil is more compact than
for high order FV methods. Memory accesses are thus
adapted to GPU computations.

e High order inside a cell implies a high amount of local
computations. This property is well adapted to GPU
computations.

e Two level of parallelism can be easily exploited: a
coarse grain parallelism, at the subdomain level, well
adapted to MPI algorithms; and a fine grain paral-
lelism, at the level of a single cell, well adapted to
OpenCL or OpenMP.

But there are also possible issues that could make an im-
plementation inefficient:

e We have first to take care of memory bandwidth, be-
cause unstructured meshes may imply non coalescent
mMemory access.

e In addition, a general DG solver has to manage many
different physical models, boundary conditions, inter-
polation basis, etc. If the implementation is not real-
ized with care it is possible to end up with poorly coded

kernels with many barely used variables or branch tests.

Such wastage may remain unseen on standard CPUs
with many registers and large cache memory, but is
often catastrophic on GPUs.

e Finally, as we have already seen, MPI communications
imply very slow GPU to Host and Host to GPU mem-
ory transfers. If possible, it is advised to hide commu-
nication latency by an overlapping with computations.

3.2 OpenCL kernel for a single GPU

We first wrote optimized OpenCL kernels for computing,
on a single cell L, the terms appearing in the DG formula-
tion @ After several experiments, we have found that an
efficient strategy is to write a single kernel for computing
the L and L integration steps.

More precisely we construct a kernel with two steps.

In the first step (“flux step”), we compute the fluxes at
the faces Gauss points and store those fluxes in the cache
memory of the work-group. The work-items are distributed
on the faces Gauss points. In this stage, 6(D + 1) work-
items are activated.

After a sync barrier, in the second stage (“collecting step”),
we associate a work-item to each volume Gauss point ¢ and
we collect the contributions of the other volume Gauss points
k coming from the numerical integration. We also collect the
contribution from the faces fluxes stored in the first step. In
this stage, (D + 1)® work-items are activated.

We observe that when the order D < 5, which is always
the case in our computations, (D+1)%® < 6(D+1)? and then
some work-items are idling in the collecting step.

We have also tried to split the computation into two ker-
nels, one for the flux step and one for the collecting step, but
it requires saving the fluxes into global memory, and in the
end it appears that the idling work-items method is more
efficient.

3.3 Asynchronous MPI/OpenCL implementa-
tion for several GPUs

3.3.1 Subdomains and zones

We have written a generic C++ DG solver called CLAC
(“Conservation Laws Approximation on many Cores”) for
solving large problems on general hexahedral meshes. Prac-
tical industrial applications require a lot of memory and
computations. It is thus necessary to address several ac-
celerators in an efficient way.

We describe some features of the CLAC implementation.

First, the physical models are localized in the code: in
practice, the user has to provide the numerical flux plus
a few functions for applying boundary conditions, source
terms, etc. With this approach it is possible to apply CLAC
to very different physics: Maxwell equations, compressible
fluids, MHD, etc. This approach is similar to the approach
of A. Kléckner in [10].

We also adopt a domain decomposition strategy. The
mesh is split into several domains, each of which is associ-
ated to a single MPI node, and each MPI node is associated
to an OpenCL device (CPU or GPU).

In addition to the domain decomposition, in each domain
we split the mesh into zones. We consider volume zones
made of hexahedral cells and also interface zones made of
cells faces. The role of a volume zone is to apply the source
terms and the fluxes balance between cells inside the zone.
The interface zones are devoted to computing the fluxes bal-
ance between cells of different volume zones. When an inter-
face zone is at the boundary of the computational domain,
it is used for applying boundary conditions. When it is situ-
ated at an interface between two domains, it is also in charge
of the MPI communications between the domains. Interface
zones also serves to manage mesh refinements between two
volume zones. A simple example of mesh with two subdo-
mains, three volume zones and five interface zones is given
in Figure [5| and a schematic view of the same mesh is rep-
resented in Figure @ We observe in this figure that simple
non-conformities are allowed between volume zones (for in-
stance neighboring volume zones 2 and 3 do not have the
same refinement).

Finally, a zone possesses identical elements (same order,
same geometry, same physical model). Thus, different com-
putation kernels are compiled for each zone, in order to save
registers and branch tests. We have observed that this as-
pect is very important for achieving high efficiency. For
example, it is possible to simplify the kernel that compute
the fluxes balance at an interface zone between two volume
zones with conforming meshes. At an interface between vol-
ume zones with different refinements, the kernel is more com-
plex, because the Gauss integration points are not aligned
(see Interface zone 3 on Figure |§[) The specialized kernels
take advantage of the Gauss points alignment and store in-
terpolation and geometrical data in constant arrays or pre-
processor macros. The speedup obtained using the special-
ized kernels as opposed to the generic kernels is reported in
Table [2| for different interpolation orders.

Order 0 1 2 3 4
Speedup || 1.6 | 1.8 | 2.8 | 3.6 | 5.5

Table 2: Speedup obtained with the specialized ker-
nels

Figure 5: A simple non conforming mesh.

Subdomain 1

Volume
zone 1
Interface Interface
zone 1 zone 2

Interface Interface
zone 1’ zone 2/
Volume Volume
zone 2 zone 3

Interface

Subdomain 2
zone 3

Figure 6: Schematic view of the simple mesh.

3.3.2 Task graph

The zone approach is very useful to express the depen-
dency between the different tasks of the DG algorithm.

We have identified tasks attached to volume or interface
zones that have to be executed for performing a Runge-
Kutta substep with the DG formulation. Those tasks are
detailed in Table Bl

We express the dependencies between the tasks in a graph,
and construct a task graph per subdomain. For instance, we
have represented the graphs associated to the simple mesh
of Figure [f] on Figure [/] For a better readability, we have
also represented the task graph associated to subdomain 2
on Figure |8 The volume tasks are represented in blue rect-
angles, the interface tasks in red ellipses. The interface tasks
that require MPI communication are in red rhombuses.

We observe in these figures that it is possible to perform
the exchange tasks and the internal computations at the
same time. It is thus possible to overlap communications
and GPU/Host transfers by computations.

OpenCL contains events objects for describing task depen-
dencies between the operations sent to command queues. It
is also possible to create user events for describing interac-
tions between the OpenCL command queues and tasks that
are executed outside of a call to the OpenCL library. We

| Name | Attached to | Description

Copy or extrapolate the val-
ues of W from a neighboring
volume zone

Extraction Interface

GPU/Host transfers and
MPI communication with
an interface of another
domain

Exchange Interface

Compute the fluxes at the

Interface Gauss points of the interface

Fluxes

Compute the internal fluxes
and source terms inside a
volume zone

Sources Volume

Apply the fluxes of an inter-

Interface
face to a volume zone

Boundaries

Apply a step of the Runge-
Kutta time integration to a
volume zone

Time Volume

Fictitious task: beginning of

Start Volume the Runge-Kutta substep

Fictitious task: end of the

End Volume Runge-Kutta substep

Table 3: Tasks description

have decided to rely only on the OpenCL event management
for constructing the task dependencies.

Using asynchronous MPI communication requires calling
MPI_Wait before launching tasks that depend on the com-
pletion of communication. We thus face a practical prob-
lem, which is to express the dependency between MPI and
OpenCL operations in a non-blocking way. A possibility
would have been to use an OpenCL “Native Kernel” con-
taining MPT calls. A native kernel is a standard function
compiled and executed on the host side, but that can be
inserted into the OpenCL task graph. As of today, the na-
tive kernel feature is not implemented properly in all the
OpenCL drivers. We thus had to adopt another approach
in order to circumvent this difficulty.

Our solution uses the C++ standard thread class. It
is also necessary to use an MPI implementation that pro-
vides the MPI_THREAD_MULTIPLE option. For programming
the “Exchange” task, we first create an OpenCL user event.
Then we launch a thread and return from the task. The
main program flow is not interrupted and other operations
can be enqueued. Meanwhile, in the thread, we start a block-
ing send/recv MPI operation for exchanging data between
the boundary interface zones. Because the communication
is launched in a thread, its blocking or non-blocking na-
ture is not very important. When the communication is
finished, we mark the OpenCL event as completed and exit
the thread. The completion of the user event triggers the be-
ginning of the enqueued tasks that depend on the exchange.

As we will see in the next section, this simple solution
offers very good efficiency.

3.4 Efficiency analysis

In this section we measure the efficiency of the CLAC
implementation. Recently the so-called roofline model has
been introduced for analyzing the efficiency of algorithm
implementation on a single accelerator . This model is
based on several hardware parameters:

n1
Start of half-time

Subdomain 1
Interface zone 2
Extraction from volume 1

Subdomain 1
Interface zone 1
Extraction from volume 1

Subdomain 1
Interface zone 2
Exchange surface 2

Subdomain 1
Interface zone 1
Exchange surface 1'

Subdomain 1
Internal computations
Subdomain 1

Interface zone 1
Fluxes computation

Subdomain 1
Interface zone 2
Fluxes computation

Subdomain 1
rface zone 2
Contribution to volume 1

Subdomain 1

Contribution to volume 1

Subdomain 1
Volume zone 1
Time Progression

Subdomain 1
End

Subdomain 2
Interface zone 1'
Extraction from volume 2

Subdomain 2
Interface zone 1'
Exchange interface 1

Subdomain 1

Subdomaln 2

Subdomain 2
Interface zone 1'
Exchange surface 1

Subdomain 2
Interface zone 1'
Fluxes computation

o ¢ o o o £

Figure 7: Task graphs for the simple mesh. One task graph for each MPI node.

Subdomain 2
Interface zone 1
Extraction from volume 2

Subdomain 1
Interface zone 1'
Contribution to volume 2

Subdomain 2

Internal computations.

Subdomain 2
Volume zone 2
Time Progression

-
-~ P
Y N i

Subdomain 2
Start

Subdomain 2
Interface zone 3
Extraction from volume 2

Subdomain 2

Subdomain 2
Interface zone 3
Extraction from volume 3

Subdomain 2
Interface zone 3
Extraction from volume 2

Subdomain 2
rface zone 3
Contribution to volume 2

Interface zone 3
Fluxes computation

Subdomain 2

Start of half-time

step

Subdomain 2
Interface zone 3 Interf:
Extraction from volume 3

Subdomain 2
Subdomain 2

Internal computations

Subdomain 2
Interface zone 3
Contribution to volume 3 /¢

’

-’ Subdomaln 2
Volume zone 3
A Time Progression

Subdomain 2
End

Subdomain 2
Interface zone 2'
Extraction from volume 3

Subdomain 2
Interface zone 2'
Exchange Interface 2

Subdomain 2
ace zone 2'
Extraction from volume 3

Subdomain 2
Volume zone 2
Internal Computations

Interface zone 3
Fluxes computation

Subdomain 2
Volume zone 3
Internal computations

Subdomain 2
Interface zone 1'
Flux computation

Subdomain 1
Interface zone 1'
Contribution to volume 2

Subdomain 2
Interface zone 3
Contribution to volume 2

Subdomain 2
Interface zone 3
Contribution to volume 3

Sub domain 2
Surfacic zone 2'
Flux computation

Subdomain 2
Interface zone 2'
Contribution to volume 3

Subdomain 2
Volume zone 2
Time Progression

Subdomain 2
End

Subdomain 2
Volume zone 3
Time Progression

Figure 8: Task graph for subdomain 2

Subdomain 2
Interface zone 2
Exchange surface 2

Subdomain 2
Interface zone 2
Fluxes computation

Subdomain 2
rface zone 2
Contribution to volume 3

e First, we need to know the peak computation perfor-
mances of the accelerator. This peak is measured with
an algorithm with high computational intensity and
very little memory access. It can be measured with
a program that only requires register access. For in-
stance, for a NVIDIA K20 accelerator, the peak per-
formance is P = 3.5TFLOP/s.

e Another parameter is the memory bandwidth B that
measures the transfer speed of the global memory. For
a NVIDIA K20 B = 208GB/s.

Not all algorithms are well adapted to GPU computing.
Consider an algorithm (A) in which we count Nops opera-
tions (add, multiply, etc.) and Nmem global memory oper-
ations (read or write). In , the computational intensity
of the algorithm is defined by
[= Nops

Nmem

The maximal attainable performance of one GPU for this
algorithm is then given by the roofline formula:

P4 =max(P,B x I).

We have counted the computational and memory opera-
tions of our DG implementation. The results are plotted in
Figure 0] We observe that for order 1, the DG method is
limited by the memory bandwidth. For higher orders, the
method is limited by the peak performance of the GPU. The
figure confirms that the DG method is well adapted to GPU
architectures. We have also performed this analysis for the
FV method described in Section 2. For large grids, the effi-
ciency of the FV scheme is approximately 20 FLOP/B. The
FV algorithm is thus also limited by the peak performance
of the GPU. Our implementation of the FV scheme reaches
approximately 800 GFLOP/s on a single K20 GPU.

3.5
3.0
25 4
2.0

1.5

=8 Roofline

#=4 |ntensity GD RK2 -
v=¥ |ntensity GD RK2 -
m=@ Intensity GD RK2 -
9 ¢=¢ Intensity GD RK2 -

0 20 40 60 80
Operational intensity (FLOP / byte)

1.0

Theoretical power (TFlops)

0.5 L 3

O O0OO0O0

o onon
A WN P

0.0

—
o
S

Figure 9: Roofline model and DG method. Abscissa:
computational intensity / (FLOP/B). Ordinate: Al-
gorithm performance (TFLOP/s).

In Table |5 we present the results that we have measured
with the asynchronous MPI/OpenCL implementation with
1, 2, 4 and 8 GPUs. For comparison, we also give in Ta-
ble [4] the results of the synchronous execution (we wait that
each task is completed before launching the next one). The
computational domain €2 is a cube. The chosen model is
the Maxwell system (m = 6). The mesh is made of sev-
eral subdomains of 90% cells. We perform single precision

computations. The interpolation is of order D = 3. The
algorithm requires storing three time steps of the numerical
solution. With these parameters the memory of each K20
board is almost entirely filled. Indeed the storage of the elec-
tromagnetic field on one subdomain requires approximately
3.4 GB.

| [1GPU [2 GPUs | 4 GPUs [8 GPUs |

TFLOP/s 1.01 1.84 3.53 5.07
Speedup 1 1.83 3.53 5.01
Table 4: Weak scaling of the synchronous

MPI/OpenCL implementation

[[1GPU [2 GPUs [4 GPUs | 8 GPUs |

TFLOP/s 1.01 1.96 3.78 7.34
Speedup 1 1.94 3.74 7.26
Table 5: Weak scaling of the asynchronous

MPI/OpenCL implementation

We observe in Table [f] that the asynchronous implemen-
tation is rather efficient and that the communications are
well overlapped by the GPU computations. In addition, we
observe that with CLAC we attain approximately 30% of
the roofline limit. This result is not too bad, because CLAC
handles unstructured meshes and some non-coalescent mem-
ory access are unavoidable.

3.5 Numerical results

For finishing this paper, we would like to present numer-
ical results that we have obtained from a real-world appli-
cation. The objective is to compute the reflection of an
electromagnetic plane wave with Gaussian profile over an
entire aircraft. The aircraft geometry is displayed in Figure
The mesh is made of 3,337,875 hexahedrons. We used
an order D = 2 approximation and 8 GPUs (NVIDIA K20).
The interior and the exterior of the aircraft are meshed.
In order to approximate the infinite exterior model, we use
a Perfectly Matched Layers (PML) model [3|. The PML
model is an extension of the Maxwell model. The possibil-
ity to use different models in different zones is here exploited
for applying the PML model. In a PML zone, the Maxwell
equations are coupled with a system of six ordinary differ-
ential equations. This coupling induces an additional cost
reported in Table [f]

Order 0 1 2 3 4
5 Tayers (%) || 7.14 | 4.29 | 15.9 | 165 | 15.0
10 layers (%) || 7.95 | 6.49 | 19.0 | 20.6 | 18.1

Table 6: Additional cost for 5 and 10 PML expressed
in percentage of the total computation time.

The current density on the aircraft is given in Figure
at a chosen time.

4. CONCLUSIONS

In this work we have reviewed several methods for solving
hyperbolic conservation laws. Such models are very useful in

Figure 10: Aircraft. Only the mesh skin is repre-
sented.

Current (A)
0.00 0.853 1.71 2.56 341

Figure 11: Current density on the aircraft skin.

many fields of physics or engineering. We have presented a
finite volume OpenCL/MPI implementation. We have seen
that coalescent memory access is essential for obtaining good
efficiency. The synchronous MPI communication does not
allow an optimal scaling with several GPUs. However the
MPI extension allows addressing computations that would
not fit into a single accelerator.

We have then presented a more sophisticated approach:
the Discontinuous Galerkin method on unstructured hexa-
hedral meshes. We have also written an OpenCL/MPI im-
plementation of the method. Despite the unstructured mesh
and some non-coalescent memory accesses, we reach 30% of
the peak performance.

In future works we intend to change the description of the
mesh geometry in order to minimize the memory access: we
can for instance share a higher order geometrical transfor-
mation 7 between several cells. We also plan to implement a
local-time stepping algorithm in order to be able to deal with
locally refined meshes. Finally, we would like to describe the
task graph in a more abstract manner in order to distribute
the computation more effectively on the available resources.
An interesting tool for performing such distribution could
be for instance the StarPU environment .

5. ACKNOWLEDGMENTS

This work has benefited from several supports: from the

French Defense Agency DGA, from the Labex ANR-11-LABX-

0055-IRMIA and from the AxesSim company. We also thank
Vincent Loechner for his helpful advice regarding the opti-
mization of the OpenMP code.

6. REFERENCES

[1] D. Aubert. Numerical cosmology powered by gpus.
Proceedings of the International Astronomical Union,
6(5270):397-400, 2010.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. Starpu: a unified platform for task
scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and
Ezxperience, 23(2):187-198, 2011.

[3] J.-P. Berenger. A perfectly matched layer for the
absorption of electromagnetic waves. Journal of
computational physics, 114(2):185-200, 1994.

[4] T. Cabel, J. Charles, and S. Lanteri. Multi-gpu
acceleration of a dgtd method for modeling human
exposure to electromagnetic waves, 2011.

[5] G. Cohen, X. Ferrieres, and S. Pernet. A spatial

high-order hexahedral discontinuous galerkin method

to solve maxwell’s equations in time domain. Journal

of Computational Physics, 217(2):340-363, 2006.

P. Helluy and J. Jung. Interpolated pressure laws in

two-fluid simulations and hyperbolicity. In Finite

Volumes for Complex Applications VII-Methods and

Theoretical Aspects, pages 37-53. Springer

International Publishing, 2014.

P. Helluy and J. Jung. Two-fluid compressible

simulations on gpu cluster. ESAIM: Proceedings and

Surveys, 45:349-358, 2014.

J. S. Hesthaven and T. Warburton. Nodal

discontinuous Galerkin methods: algorithms, analysis,

and applications, volume 54. Springer Science &

Business Media, 2007.

[9] A. Kléckner, T. Warburton, J. Bridge, and J. S.
Hesthaven. Nodal discontinuous Galerkin methods on
graphics processors. J. Comput. Phys.,
228(21):7863-7882, 2009.

[10] A. Kloeckner. Hedge: Hybrid and easy discontinuous
galerkin environment
http://mathema.tician.de/software/hedge/, 2010.

[11] M. Massaro, P. Helluy, and V. Loechner. Numerical
simulation for the mhd system in 2d using opencl.
ESAIM: Proceedings and Surveys, 45:485-492, 2014.

[12] D. Michéa and D. Komatitsch. Accelerating a
three-dimensional finite-difference wave propagation
code using gpu graphics cards. Geophysical Journal
International, 182(1):389-402, 2010.

[13] G. Ruetsch and P. Micikevicius. Optimizing matrix
transpose in cuda. Nvidia CUDA SDK Application
Note, 2009.

[14] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu.
Performance gaps between openmp and opencl for
multi-core cpus. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on,
pages 116-125. IEEE, 2012.

[15] S. Williams, A. Waterman, and D. Patterson.
Roofline: an insightful visual performance model for
multicore architectures. Communications of the ACM,
52(4):65-76, 2009.

6

7

8

	Introduction
	Comparison of an OpenCL and an OpenMP solver on a regular grid
	FV approximation of conservation laws
	OpenMP implementation of the FV scheme
	OpenCL implementation of the FV scheme
	OpenCL
	Implementation

	OpenCL/MPI FV solver

	Asynchronous OpenCL/MPI Discontinuous Galerkin solver
	The DG method
	Interpolation on unstructured hexahedral meshes
	DG formulation

	OpenCL kernel for a single GPU
	Asynchronous MPI/OpenCL implementation for several GPUs
	Subdomains and zones
	Task graph

	Efficiency analysis
	Numerical results

	Conclusions
	Acknowledgments
	References

