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Laboratoire Jean Kuntzmann

St Martin d’Hères, France

ABSTRACT

This work deals with the resolution of the optimal trans-

port problem between 2D images in the fluid mechanics

framework of Benamou and Brenier formulation [1], which

numerical resolution is still challenging even for medium-

sized images. We develop a method using the Helmholtz-

Hodge decomposition [2] in order to enforce the divergence-

free constraint throughout the iterations. We then show how

to use a first order primal-dual algorithm for convex problems

of Chambolle and Pock [3] to solve the obtained problem,

leading to a new algorithm easy to implement. Besides, nu-

merical experiments demonstrate that this algorithm is faster

than state of the art methods and efficient with real-sized

images.

Index Terms— Convex optimization, optimal transport,

proximal splitting, image processing, Helmholtz-Hodge de-

composition

1. INTRODUCTION

Optimal transport is a domain with an increasing number of

applications in economy [4], machine learning [5] or partial

differential equations [6, 7]. The optimal transport problem

defines a metric between densities [8], which appears to be

relevant in image processing [9, 10]. The development of ef-

ficient new algorithms for the calculus of the optimal trans-

port between two densities is still a challenge, especially for

real-sized images. In this paper we are interested in the Be-

namou and Brenier formulation [1], who placed the problem

in a context of fluid mechanics by adding a time dimension.

They developed an algorithm based on the minimization of

a functional which preserves the mass, using an augmented

Lagrangian. Existing algorithms [10, 1], require a projection

onto the divergence-free constraint at each iteration of the al-

gorithm. This corresponds to solve a 3D Poisson equation

at each time step for a 2D image. To reduce the computa-

tional cost, we decided to work directly in the space of con-

straints for the functional to minimize. Indeed, this will get
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rid of solving the Poisson equation, and speeding up the algo-

rithm. The preservation of the constraint will be given by the

Helmholtz-Hodge decomposition [2] of divergence-free ve-

locities, applied to the vector formed by the time-dependent

densities and momentum. This allows to rewrite the func-

tional of Benamou-Bernier in terms of a stream function, and

we show that the first order primal-dual algorithm for convex

problems of Chambolle Pock [3] can be easily adapted for

finding the minimum of the new functional. The Chambolle-

Pock method is nowadays widely used [11, 12], leading to fast

implementations, since it can be easily speed up on parallel

architectures. Therefore our method leads to a fast algorithm,

simple to implement on imaging problems.

In the following, we begin by introducing the optimal trans-

port framework in the first section. Then, we develop the

decomposition we use to stay in the set of constraints. Af-

terward, we apply a primal-dual algorithm dedicated to our

functional. We finish by numerical experiments, comparing

our algorithm to state of the art on several test cases.

2. THE L2 MONGE-KANTOROVICH PROBLEM

Let Ω = (0, 1)2 and (ρ0, ρ1) ∈ L2(Ω), be two positive,

bounded densities with
�

Ω
ρ0 =

�

Ω
ρ1 = 1. Let | · | be the

Euclidean norm in R
2, the L2-Wasserstein distance (see for

example [8]) between ρ0 and ρ1 is defined by

d2(ρ0, ρ1)
2 = inf

M

�

|M(x)− x|2ρ0(x)dx,

where the infimum is taken among the maps M transferring

ρ0 to ρ1, which means that ∀A ⊂ Ω,
�

x∈A
ρ1 =

�

M(x)∈A
ρ0.

The Monge-Kantorovich problem (MKP) amounts to deter-

mine an application M which realizes this infimum. Be-

namou and Brenier [1] rephrased the problem in a con-

tinuum mechanics framework. Let consider a time inter-

val (0, 1), we set Q = (0, 1) × Ω and V (Q) = {f ∈
(L2(Q))1+2, divt,x f = 0}. We consider the densities

ρ(t, x) ≥ 0 and vector fields v(t, x) ∈ R
2 verifying the

continuity equation

divt,x(ρ, ρv) = ∂tρ+ divx(ρv) = 0 (1)



for t ∈ (0, 1) and x ∈ Ω, equipped with the initial, final and

boundary conditions

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), ∀x ∈ Ω, (2)

ρv(t, x) · νΩ = 0, ∀t ∈ (0, 1), x ∈ ∂Ω,

where νΩ is the outward normal of Ω. As proven in [1] (see

also [8]), the square of the L2-Wassertein distance between

ρ0 and ρ1 verifies

d2(ρ0, ρ1)
2 = inf

� 1

0

�

Ω

ρ(t, x)|v(t, x)|2dxdt,

where the infimum is taken among all ρ, v satisfying (1) and

(2). To obtain a convex problem with linear constraints, Be-

namou and Brenier introduced the momentum m = ρv and

obtained the following formulation

min
(ρ,m)∈C

J(ρ,m) = min
(ρ,m)∈C

� 1

0

�

Ω

J(ρ(t, x),m(t, x))dxdt,

where

∀(ρ,m) ∈ R× R
2, J(ρ,m) =







|m|2

2ρ , if ρ > 0,

0, if (ρ,m) = (0, 0),
+∞, otherwise,

(3)

and the affine space of constraints reads

C := {(ρ,m), divt,x(ρ,m) = 0, m(·, x)·νΩ = 0, ∀ x ∈ ∂Ω,

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1}.

We present below an algorithm working directly in the set of

constraints C.

3. REFORMULATION OF THE PROBLEM USING

HELMHOLTZ-HODGE DECOMPOSITION

To work in C, we use the orthogonal decomposition of

L2(Q)1+2, detailed in [2]. The vector field v = (ρ,m) ∈
V (Q) has the following Helmholtz-Hodge decomposition:

(ρ,m) = ∇× φ+∇h,

where we will denote ∇ = ∇t,x, in the following. Moreover

φ ∈ (H1
0 (Q))3, and h ∈ H1(Q)/R and we have also divφ =

0. Because (ρ,m) is divergence-free we obtain
�

Δh = 0 in Q,
∂h
∂νQ

= (ρ,m) · νQ on ∂Q,
(4)

where νQ is the outward normal of Q. So we have first to

solve the system (4) to obtain h, which is no more than a Pois-

son equation with known boundary conditions. Then, know-

ing h, we have to find the minimum of our new energy

J(∇× φ) =

� 1

0

�

Ω

F (∇× φ(t, x) +∇h(t, x))dxdt, (5)

where F : (X,Y ) �→ |Y |2

2X .

4. FIRST ORDER PRIMAL-DUAL ALGORITHM

The method described by Chambolle and Pock in [3], allow-

ing to minimize energies of the form (5), uses a primal-dual

formulation (see [13]) of the form:

min
φ

max
z

�Kφ, z�+ ιC0
(φ)− J∗(z). (6)

We consider K = ∇×, the curl operator, which is a linear

continuous operator from (H1(Q))3 to (L2(Q))3, the Legen-

dre transform of J (see [14]) J∗ : (L2(Q))3 → [0,+∞) and

ιC0
: (H1(Q))3 → [0,+∞), the indicator function of the

set C0 := {(ρ,m), m(·, x) · νΩ = 0, ∀ x ∈ ∂Ω, ρ(0, ·) =
ρ0, ρ(1, ·) = ρ1}, which are proper, convex, lower semicon-

tinuous functions . It has been shown in [15] that for θ = 1
and στ ||K||2 < 1, φk computed with the following algo-

rithm, converges to the solution of (6):

Algorithm 1.

Initialization: τ,σ > 0, θ ∈ [0, 1], (φ0, z0 = Kφ0, φ̃0 =
φ0).

Iterations:

zk+1 = proxJ∗(zk + σ(Kφ̃k))

φk+1 = proxιC0

(φk − τK∗zk+1)

φ̃k+1 = φk+1 + θ(φk+1 − φk).

Detailing the steps of the algorithm. The discrete objec-

tive functional J reads for (ρ,m) defined on the centered grid

Gc (defined in section 5):

J(ρ,m) =
�

k∈Gc

J(ρk,mk), (7)

where the functional J is defined in (3), and then,

proxγJ(x) = (proxγJ (xk))k∈Gc .

As proved in [1], the Legendre transform of J is the indicator

function of a convex set, J∗ = iPJ
where

�

PJ = {(z1, z2); ∀k ∈ Gc, (z1, z2)k ∈ PJ}

PJ = {(t, x) ∈ R× R
2, t+ |x|2

2 ≤ 0}.

This implies that proxγJ∗ is the projection onto the paraboloid

PJ , which we will denote by PPJ
. As we work on the con-

straint set C, (ρ,m) = ∇ × φ + ∇h, we now define a new

functional, for (a, b) = ∇× φ:

Jh(a, b) = J(a+ ∂th, b+∇xh)

=
�

k∈Gc

Jh(a, b) =
�

k∈Gc

J(a+ ∂th, b+∇xh). (8)

This enables us to deduce from J∗ the form of J∗
h and the

form of proxγJ∗

h
from the one of proxγJ∗ . If we denote c =

(a, b) we have the following proposition:



Proposition 1. One has for all c ∈ R
1+n

J∗
h(c) = J∗(c)− �∇h, c�,

and

proxγJ∗

h
(c) = proxγJ∗(c− γ∇h).

Finally, the primal-dual algorithm reads in our case

Algorithm 2.

Initialization: τ,σ > 0, θ ∈ [0, 1], (φ0, z0 = Kφ0, φ̃0 =
φ0).

Iterations:

zk+1 = PPJ
(zk + σ(∇× φ̃k +∇h))

φk+1 = PC0
(φk − τ∇∗ × zk+1)

φ̃k+1 = φk+1 + θ(φk+1 − φk).

The computation of PPJ
amounts to solve a third order

equation by grid point, while PC0
merely corresponds to set

the boundary conditions to zero.

5. NUMERICAL APPLICATION TO IMAGE

TRANSPORT

5.1. Discrete setting

We now describe the discrete grids used in the computations.

Centered grid. The regular grid

Gc = {ti, xj , yk}1≤i≤M, 1≤j≤N, 1≤k≤P ,

with ti =
i
M , xj = j

N , yk = k
P the discrete locations in the

domain Q, is used to evaluate ρ and m.

Staggered grid. We introduce two staggered grids to evaluate

the divergence and the curl operators. The grid Gs1 provides

a discretization coherent with the divergence of (ρ,m) and is

defined by:

Gs1
t = {ti−1/2, xj , yk}1≤i≤M+1, 1≤j≤N, 1≤k≤P ,

Gs1
x = {ti, xj−1/2, yk}1≤i≤M, 1≤j≤N+1, 1≤k≤P ,

Gs1
y = {ti, xj , yk−1/2}1≤i≤M, 1≤j≤N, 1≤k≤P+1.

Our staggered grid Gs2 for φ such that ∇ × φ is on the stag-

gered grid Gs1 :

Gs2
t = {ti, xj−1/2, yk−1/2}1≤i≤M, 1≤j≤N+1, 1≤k≤P+1,

Gs2
x = {ti−1/2, xj , yk−1/2}1≤i≤M+1, 1≤j≤N, 1≤k≤P+1,

Gs2
y = {ti−1/2, xj−1/2, yk}1≤i≤M+1, 1≤j≤N+1, 1≤k≤P .

Interpolation operator. To go to the centered grid from the

grid Gs1 we need an interpolation operator, which is:

ρ,m (Gs1) → ρ,m (Gc)
ρi−1/2,j,k ρi,j,k = (ρi+1/2,j,k + ρi−1/2,j,k)/2
mi,j−1/2,k → m1

i,j,k = (m1
i,j+1/2,k +m1

i,j−1/2,k)/2

mi,j,k−1/2 m2
i,j,k = (m2

i,j,k+1/2 +m2
i,j,k−1/2)/2

and its adjoint operator to go from Gc to Gs1.

Curl, gradient and divergence operators. The discrete gra-

dient is a vector of matrices ∇v = (∇tv ∇x1
v ∇x2

v) . We

use finite differences to compute the gradient, which has, for

first component

∇tvi,j,k = vi+1/2,j,k − vi−1/2,j,k, if i ≤ M,

and the adjoint divergence operator

∇t.vi−1/2,j,k =







−v1,j,k if i = 1
vi,j,k − vi−1,j,k if 2 ≤ i ≤ M
vM,j,k if i = M + 1.

The curl operator we use is derived from the gradient operator.

In order to use the primal dual algorithm we need to define the

discrete adjoint operator of the curl. Because the curl operator

is given by the following matrix





0 −∇x2
∇x1

∇x2
0 −∇t

−∇x1
∇t 0





the appropriate adjoint curl operator has to be the opposite of

the curl derived from the divergence operator.

5.2. Numerical applications

For the performance evaluation we compare our algorithm

(PDHH) to the primal-dual algorithm developed in [10] that

we will denote PDPOP in the following. We computed

it = 106 iterations in the case of the transport of two isotropic

Gaussians with the same variance, and we plot the estimated

density in Figure 1: the solution is displayed in black and

grey, black being 0 and white being 1, and will be denoted

(ρs,ms). We use a grid of N × P = 64 × 64 discretization

points for ρ0 and ρ1 and M = 64 points for the time t. In

the following we will use the parameters ||K||2 = 8, σ = 90,

τ = 0.99/Lσ and θ = 1. We choosed σ such that the errors

on m and ρ are minimal after it = 50 iterations.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Fig. 1. Display of the density ρ(t) obtained after it = 106

iterations.

Figure 2 displays the L2 error between ρ and ρs and between

m and ms, the functional J and the complexity, for 5000 iter-

ations, for both algorithms PDPOP and PDHH in the example

of Figure 1. It shows that despite our algorithm has not the

best convergence rate during the first iterations, it converges

quickly until we obtain the O(1/i) convergence rate. Indeed,



Fig. 2. Comparison at each iteration of the L2 error between ρ

and ρs and between m and ms, the functional J and the com-

plexity, for 5000 iterations, for PDPOP algorithm and PDHH

algorithm in the case of figure 1.

the decreasing of the functional in the constraint set has not

the same behavior as in the PDPOP algorithm, where one has

to project onto the divergence-free constraint space. Figure 2

also displays the computation time with respect to the num-

ber M = N = P of discretization points in one direction.

It shows that the complexity of the two algorithms is linear

of order O(M3). But it depends also on the number of itera-

tions. The bigger the grid is, the better our algorithm behaves

in comparison with the PDPOP algorithm. Moreover, this

behavior increases with the number of iterations we run, as

shown in Table 1.

The explanation is that we don’t have to solve a Poisson

it = 100 it = 500 it = 1000 it = 5000

N = 16 1.26 1.24 1.20 1.26

N = 32 1.28 1.41 1.45 1.31

N = 64 1.15 1.31 1.37 1.40

N = 128 1.32 1.21 1.42 1.46

Table 1. Ratios between cpu time per iteration for PDPOP

algorithm and PDHH algorithm, for different numbers of it-

erations and different sizes.

equation at each iteration. But contrarily to PDPOP, we

have to evaluate a curl operator in K, which is slightly time-

consuming.

Test on non convex densities. The next example of transport

considers the case of irregular, non convex and non connected

densities with compact support. Figure 3 shows the ability of

our method to estimate the density ρ(t) for such initial and

final densities.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Fig. 3. Display of the density ρ(t) obtained after it = 106

iterations of a non-convex, non connected density with com-

pact support on a grid M ×N × P = 64× 64× 64.

Test on real images. As last example we compute the

density ρ(t) for images representing clouds in different po-

sitions. The results presented in Figure 4 are obtained for

images discretized on a grid M = 30 for the time dimension

and N × P = 100× 68 for the space dimension.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Fig. 4. Display of the density ρ(t) of an image of clouds.

The first line represents ρ(t) obtained after it = 1.106 itera-

tions of PDHH algorithm while the second line represents the

L2interpolation.

6. CONCLUSION

We introduced a new algorithm for the optimal transport prob-

lem between 2D images, which respects the divergence-free

constraint throughout the iterations, and therefore gets rid of

solving a 3D Poisson equation at each iteration. Besides,

this algorithm is easy to implement, faster than state of the

art methods, and efficient for real-sized images. Further im-

provements of the method will include other divergence-free

decomposition, and other formulations of the primal-dual al-

gorithm.
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