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This work deals with the resolution of the optimal transport problem between 2D images in the fluid mechanics framework of Benamou and Brenier formulation [1], which numerical resolution is still challenging even for mediumsized images. We develop a method using the Helmholtz-Hodge decomposition [2] in order to enforce the divergencefree constraint throughout the iterations. We then show how to use a first order primal-dual algorithm for convex problems of Chambolle and Pock [3] to solve the obtained problem, leading to a new algorithm easy to implement. Besides, numerical experiments demonstrate that this algorithm is faster than state of the art methods and efficient with real-sized images.

INTRODUCTION

Optimal transport is a domain with an increasing number of applications in economy [START_REF] Chiappori | Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness[END_REF], machine learning [START_REF] Rubner | A metric for distributions with applications to image databases[END_REF] or partial differential equations [START_REF] Moll | Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphismss[END_REF][START_REF] Jordan | The variational formulation of the fokker-planck equation[END_REF]. The optimal transport problem defines a metric between densities [START_REF] Villani | Topics in optimal transportation[END_REF], which appears to be relevant in image processing [START_REF] Rabin | Adaptive color transfer with relaxed optimal transport[END_REF][START_REF] Papadakis | Optimal transport with proximal splitting[END_REF]. The development of efficient new algorithms for the calculus of the optimal transport between two densities is still a challenge, especially for real-sized images. In this paper we are interested in the Benamou and Brenier formulation [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF], who placed the problem in a context of fluid mechanics by adding a time dimension. They developed an algorithm based on the minimization of a functional which preserves the mass, using an augmented Lagrangian. Existing algorithms [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF][START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF], require a projection onto the divergence-free constraint at each iteration of the algorithm. This corresponds to solve a 3D Poisson equation at each time step for a 2D image. To reduce the computational cost, we decided to work directly in the space of constraints for the functional to minimize. Indeed, this will get This work is supported by the French Agence Nationale de la Recherche (ANR, Project TOMMI) under reference ANR-11-BS01-014-01. rid of solving the Poisson equation, and speeding up the algorithm. The preservation of the constraint will be given by the Helmholtz-Hodge decomposition [START_REF] Girault | Finite element methods for navier-stokes equations: theory and algorithms[END_REF] of divergence-free velocities, applied to the vector formed by the time-dependent densities and momentum. This allows to rewrite the functional of Benamou-Bernier in terms of a stream function, and we show that the first order primal-dual algorithm for convex problems of Chambolle Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imag-ing[END_REF] can be easily adapted for finding the minimum of the new functional. The Chambolle-Pock method is nowadays widely used [START_REF] Pesquet | A forward-backward view of some primal-dual optimization methods in image recovery[END_REF][START_REF] He | Convergence analysis of primaldual algorithms for a saddle-point problem: From contraction perspective[END_REF], leading to fast implementations, since it can be easily speed up on parallel architectures. Therefore our method leads to a fast algorithm, simple to implement on imaging problems. In the following, we begin by introducing the optimal transport framework in the first section. Then, we develop the decomposition we use to stay in the set of constraints. Afterward, we apply a primal-dual algorithm dedicated to our functional. We finish by numerical experiments, comparing our algorithm to state of the art on several test cases.

THE L 2 MONGE-KANTOROVICH PROBLEM

Let Ω = (0, 1) 2 and (ρ 0 , ρ 1 ) ∈ L 2 (Ω), be two positive, bounded densities with

� Ω ρ 0 = � Ω ρ 1 = 1. Let | • | be the Euclidean norm in R 2 ,
the L 2 -Wasserstein distance (see for example [START_REF] Villani | Topics in optimal transportation[END_REF]) between ρ 0 and ρ 1 is defined by

d 2 (ρ 0 , ρ 1 ) 2 = inf M � |M (x) -x| 2 ρ 0 (x)dx,
where the infimum is taken among the maps M transferring ρ 0 to ρ 1 , which means that ∀A ⊂ Ω,

� x∈A ρ 1 = � M (x)∈A ρ 0 .
The Monge-Kantorovich problem (MKP) amounts to determine an application M which realizes this infimum. Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF] rephrased the problem in a continuum mechanics framework. Let consider a time interval (0, 1), we set Q = (0, 1) × Ω and V (Q) = {f ∈ (L 2 (Q)) 1+2 , div t,x f = 0}. We consider the densities ρ(t, x) ≥ 0 and vector fields v(t, x) ∈ R 2 verifying the continuity equation

div t,x (ρ, ρv) = ∂ t ρ + div x (ρv) = 0 (1) 
for t ∈ (0, 1) and x ∈ Ω, equipped with the initial, final and boundary conditions

ρ(0, x) = ρ 0 (x), ρ(1, x) = ρ 1 (x), ∀x ∈ Ω, (2) ρv(t, x) • ν Ω = 0, ∀t ∈ (0, 1), x ∈ ∂Ω,
where ν Ω is the outward normal of Ω. As proven in [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF] (see also [START_REF] Villani | Topics in optimal transportation[END_REF]), the square of the L 2 -Wassertein distance between ρ 0 and ρ 1 verifies

d 2 (ρ 0 , ρ 1 ) 2 = inf � 1 0 � Ω ρ(t, x)|v(t, x)| 2 dxdt,
where the infimum is taken among all ρ, v satisfying ( 1) and (2). To obtain a convex problem with linear constraints, Benamou and Brenier introduced the momentum m = ρv and obtained the following formulation

min (ρ,m)∈C J(ρ, m) = min (ρ,m)∈C � 1 0 � Ω J(ρ(t, x), m(t, x))dxdt, where ∀(ρ, m) ∈ R × R 2 , J(ρ, m) =    |m| 2 2ρ , if ρ > 0, 0, if (ρ, m) = (0, 0), +∞, otherwise, (3) 
and the affine space of constraints reads

C := {(ρ, m), div t,x (ρ, m) = 0, m(•, x)•ν Ω = 0, ∀ x ∈ ∂Ω, ρ(0, •) = ρ 0 , ρ(1, •) = ρ 1 }.
We present below an algorithm working directly in the set of constraints C.

REFORMULATION OF THE PROBLEM USING HELMHOLTZ-HODGE DECOMPOSITION

To work in C, we use the orthogonal decomposition of L 2 (Q) 1+2 , detailed in [START_REF] Girault | Finite element methods for navier-stokes equations: theory and algorithms[END_REF]. The vector field v = (ρ, m) ∈ V (Q) has the following Helmholtz-Hodge decomposition:

(ρ, m) = ∇ × φ + ∇h,
where we will denote ∇ = ∇ t,x , in the following. Moreover φ ∈ (H 1 0 (Q)) 3 , and h ∈ H 1 (Q)/R and we have also divφ = 0. Because (ρ, m) is divergence-free we obtain

� Δh = 0 in Q, ∂h ∂νQ = (ρ, m) • ν Q on ∂Q, (4) 
where ν Q is the outward normal of Q. So we have first to solve the system (4) to obtain h, which is no more than a Poisson equation with known boundary conditions. Then, knowing h, we have to find the minimum of our new energy [START_REF] Rubner | A metric for distributions with applications to image databases[END_REF] where

J(∇ × φ) = � 1 0 � Ω F (∇ × φ(t, x) + ∇h(t, x))dxdt,
F : (X, Y ) � → |Y | 2 2X .

FIRST ORDER PRIMAL-DUAL ALGORITHM

The method described by Chambolle and Pock in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imag-ing[END_REF], allowing to minimize energies of the form (5), uses a primal-dual formulation (see [START_REF] Rockafellar | Convex analysis[END_REF]) of the form:

min φ max z �Kφ, z� + ι C0 (φ) -J * (z). (6) 
We consider K = ∇×, the curl operator, which is a linear continuous operator from (H 1 (Q)) 3 to (L 2 (Q)) 3 , the Legendre transform of J (see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF])

J * : (L 2 (Q)) 3 → [0, +∞) and ι C0 : (H 1 (Q)) 3 → [0, +∞), the indicator function of the set C 0 := {(ρ, m), m(•, x) • ν Ω = 0, ∀ x ∈ ∂Ω, ρ(0, •) = ρ 0 , ρ(1, •) = ρ 1 }
, which are proper, convex, lower semicontinuous functions . It has been shown in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] that for θ = 1 and στ ||K|| 2 < 1, φ k computed with the following algorithm, converges to the solution of ( 6):

Algorithm 1.

Initialization: τ, σ > 0, θ ∈ [0, 1], (φ 0 , z 0 = Kφ 0 , φ0 = φ 0 ).
Iterations:

z k+1 = prox J * (z k + σ(K φk )) φ k+1 = prox ιC 0 (φ k -τ K * z k+1 ) φk+1 = φ k+1 + θ(φ k+1 -φ k ).
Detailing the steps of the algorithm. The discrete objective functional J reads for (ρ, m) defined on the centered grid G c (defined in section 5):

J(ρ, m) = � k∈G c J(ρ k , m k ), (7) 
where the functional J is defined in (3), and then,

prox γJ (x) = (prox γJ (x k )) k∈G c .
As proved in [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF], the Legendre transform of J is the indicator function of a convex set, J * = i P J where

� P J = {(z 1 , z 2 ); ∀k ∈ G c , (z 1 , z 2 ) k ∈ P J } P J = {(t, x) ∈ R × R 2 , t + |x| 2 2 ≤ 0}.
This implies that prox γJ * is the projection onto the paraboloid P J , which we will denote by P PJ . As we work on the constraint set C, (ρ, m) = ∇ × φ + ∇h, we now define a new functional, for (a, b) = ∇ × φ:

J h (a, b) = J(a + ∂ t h, b + ∇ x h) = � k∈G c J h (a, b) = � k∈G c J(a + ∂ t h, b + ∇ x h). ( 8 
)
This enables us to deduce from J * the form of J * h and the form of prox γJ * h from the one of prox γJ * . If we denote c = (a, b) we have the following proposition: Initialization: τ, σ > 0, θ ∈ [0, 1], (φ 0 , z 0 = Kφ 0 , φ0 = φ 0 ). Iterations:

z k+1 = P PJ (z k + σ(∇ × φk + ∇h)) φ k+1 = P C0 (φ k -τ ∇ * × z k+1 ) φk+1 = φ k+1 + θ(φ k+1 -φ k ).
The computation of P PJ amounts to solve a third order equation by grid point, while P C0 merely corresponds to set the boundary conditions to zero.

NUMERICAL APPLICATION TO IMAGE TRANSPORT

Discrete setting

We now describe the discrete grids used in the computations. Centered grid. The regular grid

G c = {t i , x j , y k } 1≤i≤M, 1≤j≤N, 1≤k≤P ,
with t i = i M , x j = j N , y k = k P the discrete locations in the domain Q, is used to evaluate ρ and m. Staggered grid. We introduce two staggered grids to evaluate the divergence and the curl operators. The grid G s1 provides a discretization coherent with the divergence of (ρ, m) and is defined by:

G s1 t = {t i-1/2 , x j , y k } 1≤i≤M +1, 1≤j≤N, 1≤k≤P , G s1 x = {t i , x j-1/2 , y k } 1≤i≤M, 1≤j≤N +1, 1≤k≤P , G s1 y = {t i , x j , y k-1/2 } 1≤i≤M, 1≤j≤N, 1≤k≤P +1 .
Our staggered grid G s2 for φ such that ∇ × φ is on the staggered grid G s1 :

G s2 t = {t i , x j-1/2 , y k-1/2 } 1≤i≤M, 1≤j≤N +1, 1≤k≤P +1 , G s2 x = {t i-1/2 , x j , y k-1/2 } 1≤i≤M +1, 1≤j≤N, 1≤k≤P +1 , G s2 y = {t i-1/2 , x j-1/2 , y k } 1≤i≤M +1, 1≤j≤N +1, 1≤k≤P
. Interpolation operator. To go to the centered grid from the grid G s1 we need an interpolation operator, which is:

ρ, m (G s1 ) → ρ, m (G c ) ρ i-1/2,j,k ρ i,j,k = (ρ i+1/2,j,k + ρ i-1/2,j,k )/2 m i,j-1/2,k → m 1 i,j,k = (m 1 i,j+1/2,k + m 1 i,j-1/2,k )/2 m i,j,k-1/2 m 2 i,j,k = (m 2 i,j,k+1/2 + m 2 i,j,k-1/2 )/2
and its adjoint operator to go from G c to G s1 . Curl, gradient and divergence operators. The discrete gradient is a vector of matrices ∇v = (∇ t v ∇ x1 v ∇ x2 v) . We use finite differences to compute the gradient, which has, for first component

∇ t v i,j,k = v i+1/2,j,k -v i-1/2,j,k , if i ≤ M,
and the adjoint divergence operator

∇ t .v i-1/2,j,k =    -v 1,j,k if i = 1 v i,j,k -v i-1,j,k if 2 ≤ i ≤ M v M,j,k if i = M + 1.
The curl operator we use is derived from the gradient operator.

In order to use the primal dual algorithm we need to define the discrete adjoint operator of the curl. Because the curl operator is given by the following matrix

  0 -∇ x2 ∇ x1 ∇ x2 0 -∇ t -∇ x1 ∇ t 0  
the appropriate adjoint curl operator has to be the opposite of the curl derived from the divergence operator.

Numerical applications

For the performance evaluation we compare our algorithm (PDHH) to the primal-dual algorithm developed in [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF] that we will denote PDPOP in the following. We computed it = 10 6 iterations in the case of the transport of two isotropic Gaussians with the same variance, and we plot the estimated density in Figure 1: the solution is displayed in black and grey, black being 0 and white being 1, and will be denoted (ρ s , m s ). We use a grid of N × P = 64 × 64 discretization points for ρ 0 and ρ 1 and M = 64 points for the time t. In the following we will use the parameters ||K|| 2 = 8, σ = 90, τ = 0.99/Lσ and θ = 1. We choosed σ such that the errors on m and ρ are minimal after it = 50 iterations. the decreasing of the functional in the constraint set has not the same behavior as in the PDPOP algorithm, where one has to project onto the divergence-free constraint space. Figure 2 also displays the computation time with respect to the number M = N = P of discretization points in one direction. It shows that the complexity of the two algorithms is linear of order O(M 3 ). But it depends also on the number of iterations. The bigger the grid is, the better our algorithm behaves in comparison with the PDPOP algorithm. Moreover, this behavior increases with the number of iterations we run, as shown in Table 1.

The explanation is that we don't have to solve a Poisson it = 100 it = 500 it = 1000 it = 5000 N = 16 Test on non convex densities. The next example of transport considers the case of irregular, non convex and non connected densities with compact support. Figure 3 shows the ability of our method to estimate the density ρ(t) for such initial and final densities. 

CONCLUSION

We introduced a new algorithm for the optimal transport problem between 2D images, which respects the divergence-free constraint throughout the iterations, and therefore gets rid of solving a 3D Poisson equation at each iteration. Besides, this algorithm is easy to implement, faster than state of the art methods, and efficient for real-sized images. Further improvements of the method will include other divergence-free decomposition, and other formulations of the primal-dual algorithm.

Proposition 1 .

 1 One has for all c ∈ R 1+n J * h (c) = J * (c) -�∇h, c�, andprox γJ * h (c) = prox γJ * (c -γ∇h).Finally, the primal-dual algorithm reads in our case Algorithm 2.

Fig. 1 .

 1 Fig. 1. Display of the density ρ(t) obtained after it = 10 6 iterations.

Figure 2 Fig. 2 .

 22 Figure2displays the L 2 error between ρ and ρ s and between m and m s , the functional J and the complexity, for 5000 iterations, for both algorithms PDPOP and PDHH in the example of Figure1. It shows that despite our algorithm has not the best convergence rate during the first iterations, it converges quickly until we obtain the O(1/i) convergence rate. Indeed,

Fig. 3 .Fig. 4 .

 34 Fig. 3. Display of the density ρ(t) obtained after it = 10 6 iterations of a non-convex, non connected density with compact support on a grid M × N × P = 64 × 64 × 64.

Table 1 .

 1 Ratios between cpu time per iteration for PDPOP algorithm and PDHH algorithm, for different numbers of iterations and different sizes.

		1.26	1.24	1.20	1.26
	N = 32	1.28	1.41	1.45	1.31
	N = 64	1.15	1.31	1.37	1.40
	N = 128 1.32	1.21	1.42	1.46
	equation at each iteration. But contrarily to PDPOP, we
	have to evaluate a curl operator in K, which is slightly time-
	consuming.