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ABSTRACT

This work addresses the computation of acoustics immittances of axisymmetric waveguides, the shape of which is
C1-regular (i.e. continuous and with a continuous derivative with respect to the space variable).

With this intention, a refined version of the "Webster" horn equation is considered, namely, the "Webster-Lokshin
equation with curvilinear abscissa", as well as simplified models of mouthpieces and well-suited radiation impedances.
The geometric assumptions used to derive this uni-dimensional model (quasi-sphericity of isobars near the wall) are
weaker than the usual ones (plane waves, spherical waves or fixed wavefronts). Moreover, visco-thermal losses at the
wall are taken into account. For this model, exact solutions of the acoustic waves can be derived in the Laplace or the
Fourier’s domains for a family of parametrized shapes. An overall C1-regular bore can be described by connecting such
pieces of shapes under the constrain that junctions are C1-regular. Inthis case and if the length of the bore is fixed, a
description with N pieces precisely has 2N+1 degrees of freedom. An algorithm which optimizes those parameters to
obtain a target shape has been built. It yields accurate C1-regular descriptions of the target even with a few number of
pieces. A standard formalism based on acoustic transfer matrices (deduced from the exact acoustic solutions) and their
products make the computation of the input impedance, the transmittance (and other immittances) possible. This yields
accurate analytic acoustic representations described with a few parameters.

The paper is organized as follows. First, some recalls on the history of the"Webster" horn equation and of the modeling
of visco-thermal losses at the wall are given. The "Webster-Lokshinmodel" under consideration is established. Second,
the family of parametrized shapes is detailed and the associated acoustic transfer matrices are given. Third, the algorithm
which estimates the optimal parameters of the C1-regular model of targetshapes is presented. Finally, input impedances
obtained using this algorithm (and the Webster-Lokshin model) are compared to measured impedances (e.g. that of a
trombone) and to results of other methods based on the concatenation of straight or conical pipes.

This paper is the French to English translation and corrected version of [Hélie, Hézard, and Mignot2010].

1. ON THE WAVE EQUATION IN HORNS

1.1. History summary and context

Uni-dimensional models and geometry The first uni-
dimensional model of the acoustic propagation in axisymmet-
ric pipes is due to [Lagrange1760-1761] and [Bernoulli1764].
This equation, usually called “horn equation” or “Webster equa-
tion” [Webster1919] has been extensively investigated [Eisner
1967] and is based on hypotheses which have been periodically
revised.

So, to preserve the orthogonality of the rigid motionless wall
and wavefronts, [Lambert1954] and [Weibel 1955] contest
derivations based planar waves and postulate spherical ones.
The quasi-sphericity was experimentally confirmed for a horn
profile in the low frequency range by Benade and Janson [Be-
nade and Jansson1974]. Later, Putland [Putland1993] pointed
out that every one-parameter acoustic fields obey a Webster
equation for particular coordinates and that only planar, cylin-
drical and spherical waves could correspond to such coordi-
nates.

Though this limitation, some refined uni-dimensional models
have still been looked for because of their simplicity: they make
the computation of impedances easy and the frequency range
that is not perturbed by transverse modes [Pagneux, Amir, and
Kergomard1996] is large for many wind musical instruments.
Thus, [Agulló, Barjau, and Keefe1999] assumes ellipsoidal
wavefronts.

In [Hélie 2003], an exact model is derived for coordinates that
rectify isobars and a Webster equation is deduced under the
assumption that isobars are quasi-spherical (at order 2) near
the wall (assumption that is considered in this paper). Gener-
alizations based upon Webster’s horn equation have been also
studied in [Martin2004].

Visco-thermal losses A second model refinement concerns
the modeling of visco-thermal losses at the wall. First, Kirch-
hoff has introduced thermal conduction effects, extended the
Stoke’s theory and derived some basic solutions in the free
space and in a pipe. Moreover, he gave the exact general dis-
persion relation for a cylinder if/whether the problem is ax-
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isymmetric [Kirchhoff 1868] (a generalized formula for non
symmetric versions is given in [Bruneau et al.1989, eq. (56)]).

Some simplified modelings have also been proposed. Zwikker
and Kosten (cf. e.g. [Chaigne and Kergomard2008, p210])
have introduced models in which effects due the viscous and
the thermal boundary layers were separated. The validity con-
ditions for this theory can be found in [Kergomard1981; Ker-
gomard1985] which exhibit more immediate links between
this model and the Kirchhoff dispersion relation. Cremer has
derived the equivalent admittance for plane waves which are
reflected on a plane baffle w.r.t. their incidence angle [Cremer
1948]. This result coincides with that of Kirchhoff for rectan-
gular waveguides which are large enough, that is, for which
the boundary layer thickness is much lower than the rectangle
characteristic lengths.

For these simplified models, the wave equations include a damp-
ing term that involves a fractional time derivative (see the Lok-
shin equation [Lokshin1978; Lokshin and Rok1978] and also
[Polack1991]). Exact solutions of the Lokshin equation have
been derived in [Matignon1994; Matignon and Novel1995]
which exhibit long memory effect. A Webster equation which
includes such a damping term has been established in [Hélie
2003].

Context and approach In this paper, the acoustic model is
derived assuming that isobars are quasi-spherical near the wall
and describing the visco-thermal losses by the Cremer wall ad-
mittance. The main steps of its derivation are recalled below.

1.2. Wave equation and isobars

Consider the cylindrical coordinate system(r,θ ,z) and sup-
pose the problem to be axisymmetric with respect to axis (Oz).
Isobars can be locally described byr = f (s,u, t), z=g(s,u, t),
θ ∈ [0,2π[, wheres indexes isobars andu is a (non-collinear)
free coordinate. Since the pressure depends ons but notu, the
time-varying maps described by( f ,g) are such that

∃p
∣

∣

∣
P(z= f (s,u, t), r = g(s,u, t), t) = p(s, t).

Using this property and the change of coordinates(z, r, t)→
(s,u, t), the wave equation

(

∂ 2
z + 1

r ∂r +∂ 2
r − 1

c2 ∂ 2
t

)

P(z, r, t) =

0 rewrites
(

α(s,u, t)∂ 2
s +β (s,u, t)∂s+ γ(s,u, t)∂s∂t+

1
c2 ∂ 2

t

)

p(s, t)=0, (1)

whereα , β , γ are functions off , g and of their derivatives with
respect tos, u, t until order 2 (see [Hélie2002; Hélie2003] for
the detailed formula).

Applying operators∂ k
u for k= 1,2,3 to the latter equation yields,

for all s,u, t,





∂uα ∂uβ ∂uγ
∂ 2

u α ∂ 2
u β ∂ 2

u γ
∂ 3

u α ∂ 3
u β ∂ 3

u γ









∂ 2
s p

∂sp
∂s∂t p



 =





0
0
0



 .

Hence, the determinant of the 3×3 matrix is zero. This gives a
(purely geometric) necessary condition that every isobar map
associated to an acoustic propagation must satisfy.

In the time invariant case (∂t f =∂tg=0), a similar study shows
that the only admissible maps corresponds to the well-known
cases, namely, plane waves, cylindrical waves, spherical waves
and modes associated to a wavenumber that is either real (in-
finite oscillation) or complex imaginary (non oscillating expo-

nential wave). In the modal case, the following geometric in-
variant identity is deduced from the isobar wave equation

∂s ln

(

g2 (∂s f )2 +(∂sg)2

(∂u f )2 +(∂ug)2

)

+2
(

(∂s f )2 +(∂sg)2
)

sk2
0 = 0,

if s is chosen as the level of the eigenfunction associated to the
mode (see [Hélie2003] for more details). As a consequence,
no fixed map can describe a non modal 1D propagation if the
pipe is neither straight, neither conical.

1.3. Ideal wall and 1D approximation

An ideally rigid lossless and motionless wall coincides with a
“pressure field line/tube” (see [Hélie2002, p33] for degener-
ated cases). Choosingu orthogonal tos, there exists then( f ,g)
andw such thatf (s,u=w, t)=F(s), g(s,u=w, t)=R(s) where
F,R is profile description of the pipe. Atu = w, coefficients in
(1) are given byα(s,w, t) = 1/

(

F ′(s)2+R′(s)2
)

, β (s,w, t) = 0
and

γ(s,w, t)
α(s,w, t)

=
d
ds

(

ln
∣

∣

∣

R(s)
F ′(s)

∣

∣

∣

)

+∂s ln
∣

∣∂ug(s,u=w, t)
∣

∣. (2)

The only missing geometric information that is necessary to
obtain a 1D model from (1) is in the second term of (2) which
involves a first order partial derivative with respect tou (first
order variation of the pressure field lines when moving away
from the wall).

To be compatible with the fact that isobars must be (i) planes
in straight pipes, (ii) spherical in cones, (iii) orthogonal to the
wall, (iv) quasi-spherical in horns [Benade and Jansson1974],
(v) dependent on the time, the following assumption is con-
sidered: near the wall, isobars slowly deviate from its tangent
spherical approximation. More precisely, the relative deviation
(denotedζ (s,u, t)) (see [Hélie2002]) satisfies∂ k

uζ (s,u=w, t) = 0
for k= 0 (contact) andk= 1 (tangency). Assuming the avail-
ability for k=2 (deviation slower than a parabola), it follows

that γ(s,w,t)
α(s,w,t) = 2R′(s)

R(s) . This leads to the Webster equation

(

∂ 2
ℓ +2

R′(ℓ)
R(ℓ)

∂ℓ−
1
c2 ∂ 2

t

)

p(ℓ, t) = 0, (3)

if s= ℓ is chosen as the curvilinear abscissa which measures
the length of the wall profile (α(s,u=w, t) = 1).

1.4. Cremer wall admittance

When visco-thermal boundary layers appear at the wall (/// are
present), isobars are no more orthogonal to the wall. If the
thickness of the boundary layers is lower thanR(ℓ) and the
curvature radius of the profile, this perturbation can be approx-
imated through the Cremer wall admittance [Cremer1948]. As-
suming that isobars and their tangent spherical approximations
still locally coincide at order 2, a perturbed version of (3) is
obtained [Hélie2002; Hélie2003]. It is given by

(

∂ 2
ℓ +2

R′(ℓ)
R(ℓ)

∂ℓ−
1
c2 ∂ 2

t −
2ε(ℓ)

c
3
2

∂
3
2

t

)

p(ℓ, t) = 0, (4)

where∂
3
2

t is a fractional time derivative [Matignon1994] and

ε(ℓ)= κ0

√
1−R′(ℓ)2

R(ℓ)
quantifies the visco-thermal effects (κ0 =

√

l ′v+(γ−1)
√

lh≈3×10−4m1/2 in the air). This equation is
sometimes called the “Webster (caseε = 0)-Lokshin (caseR′=
0)” equation.
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1.5. Model under consideration, properties, validity

In the sequel, we consider the propagation in the space of recti-
fied isobars, assuming their quasi-sphericity at order 2 near the
wall, including the damping effect due to visco-thermal losses
at the wall, that is governed by the following equations

(

∂ 2
ℓ −

[ 1
c2 ∂ 2

t +
2ε(ℓ)

c
3
2

∂
3
2

t +ϒ(ℓ)
])

[

R(ℓ) p(ℓ, t)
]

= 0 (5)

ρ ∂tv(ℓ, t)+∂ℓp(ℓ, t) = 0 (6)

whereϒ = R′′/R. If R is twice differentiable, then (5) is equiv-
alent to (4). Outside the boundary layers, the particle velocity
is collinear to the pressure gradient and it satisfies the Euler
equation from which (6) is deduced after projection.

Properties of the change of coordinates zzz→→→ℓℓℓ Let
z 7→ r(z) describe a pipe profile. The profile length that is mea-
sured from 0 toz is L(z) =

∫ z
0

√

1+ r ′(z)2dz so thatR(ℓ) =

r
(

L−1(ℓ)
)

. Then, differentiatingR(L(z)) = r(z) leads to

R′(L(z)) = r ′(z)/
√

1+ r ′(z)2.

Hence, the following two properties hold

(i) |R′(ℓ)| ≤ 1;
(ii) R′(ℓ) = 1 corresponds to a vertical slope.

These geometric properties are quite unusual for the Webster
model.

Moreover, notice that (3-6) lead to the equations governing
plane waves for a straight pipe (R′/R = 0, ℓ = z), and spher-
ical waves for cones (2R′/R= 2/ℓ), as expected.

If a profile z 7→ r(z) has a vertical slope at one extremity, the
propagation model operates a natural connection with spheri-
cal waves.

Validity The lossless model (3) is exact ifϒ=0. It provides
accurate approximations if|ϒ| corresponds to a sufficiently
small perturbation or if the frequency range is sufficiently low
(see [Rienstra2005] for a detailed analysis). Basically, the 1D
assumption requires that there are no transverse modes in the
pipes, that can be characterized by

f < K+ (Rmax)
−1 with K+ =

1.84c
2π

≈ 631.8m.s−1.

The losses model is accurate if the thickness of the boundary
layers is lower than the radiusR and the curvature radiusRc

given by (1+R′(z)2)
3
2

R′′(z) if s= z and by1
√

1−R′(ℓ)2

R′′(ℓ) if s= ℓ. The
most constraining condition is due to the viscous boundary
layer. It is given by (see e.g. [Chaigne and Kergomard2008,
p212])

f > K− (Rmin)
−2 withK−=

µ
2πρ

≈ 2.39×10−6m2.s−1.

2. EXACT SOLUTIONS FOR PARAMETRIZED GE-
OMETRIES

2.1. Propagation model with constant coefficients

Admissible profiles and regularity property In the La-
place domain (variables) and for zero initial conditions, equa-

1Remark: it can be checked thatε(ℓ) = κ0 Rc(ℓ)ϒ(ℓ) (if ϒ 6= 0).

tions (5-6) become
[(

( s
c

)2
+2ε(ℓ)

( s
c

)3
2
+ϒ(ℓ)

)

−∂ 2
ℓ

]

{

R(ℓ)P(ℓ,s)
}

= 0, (7)

ρ s
U(ℓ,s)

S(ℓ)
+∂ℓP(ℓ,s) = 0, (8)

whereU(ℓ,s)=S(ℓ)V(ℓ) with S(ℓ)=πR(ℓ)2. Closed-form an-
alytical solutions can be derived ifε andϒ are constant.

SinceR′′(ℓ)−ϒ(ℓ)R(ℓ)=0, profiles associated with constantϒ
are such that ((A,B) ∈ R

2)

R(ℓ) = Acos(
√
−ϒℓ)+Bsin(

√
−ϒℓ), if ϒ < 0,

R(ℓ) = A+Bℓ, si ϒ = 0,

R(ℓ) = Acosh(
√

ϒℓ)+Bsinh(
√

ϒℓ), if ϒ > 0.

These three families can be described by the unified formula

R(ℓ) = ACϒ(ℓ)+BSϒ(ℓ) , (9)

where(ϒ, ℓ) 7→Cϒ(ℓ)=φ1
(

ϒℓ2
)

and(ϒ, ℓ) 7→Sϒ(ℓ)=ℓφ2
(

ϒℓ2
)

are infinite differentiable function which are built from the fol-
lowing analytic functions (overC)

φ1 : z 7→
+∞

∑
k=0

zk

(2k)!

(

= cosh
√

z
)

,

φ2 : z 7→
+∞

∑
k=0

zk

(2k+1)!

(

=
sinh
√

z√
z

for z 6= 0
)

.

Except the case whereR is constant, these profiles do not cor-
respond to constantε. Then, for a sufficiently short interval
[0,L], we chose to approximateε by its mean valueε(ℓ) ≈
1
L

∫ L
0 ε(ℓ)dℓ. This defines what we call “piece of pipe” whose

geometry is described by 4 parameters{A,B,ϒ,L} and inside
which the propagation is characterized by the 3 constantsϒ, ε
andc.

Acoustic transfer matrix of a piece of pipe Denoting
Xℓ(s)=

[

P(ℓ,s) , U(ℓ,s)
]T, solving (7-8) for coefficientsϒ and

ε that are constant on[a,b] leads to

Xb(s) = Tb,a(s)Xa(s),

whereTb,a(s)=diag
( L

R(b)
,

πR(b)
ρs

)

Mb,a(s)diag
(R(a)

L , ρs
πR(a)

)

is
a matrix with a unitary determinant, which is given by
[

Mb,a(s)
]

11 = [1 , σa] ∆
(

LΓ(s)
)

,
[

Mb,a(s)
]

12 = [0 , −1] ∆
(

LΓ(s)
)

,
[

Mb,a(s)
]

21 =
[

σb−σa , σaσb− (LΓ(s))2
]

∆
(

LΓ(s)
)

,
[

Mb,a(s)
]

22 = [1 , −σb]∆
(

LΓ(s)
)

,

where∆(z) = [coshz, (sinhz)/z]T, whereΓ(s) is a square-root

of
( s

c

)2
+ 2ε

( s
c

) 3
2 + ϒ, and the dimensionless quantityσℓ =

R′(ℓ)
R(ℓ)/L can be interpreted as a ratio of slopes.

2.2. C 1-regular junctions of pieces of pipes

Cascade of pieces of pipes and geometric regularity
constraints Consider the junction ofN pieces of pipes with
lengthLn (this parameter is chosen to be let free). The complete
profile depends on 4N parameters{An,Bn,ϒn,Ln}n∈[1,N] and is
described by

R(ℓ) =
N

∑
n=1

Rn(ℓ)1[ℓn−1,ℓn[(ℓ) , ∀ℓ ∈ [ℓ0, ℓN] (10)
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whereRn(ℓ)=AnCϒn(ℓ)+BnSϒn(ℓ), {ℓn=∑n
k=1Ln}0≤n≤N and

ℓ1 , . . . ℓN−1 are the abscissa of the junction points.

Writing theC 1-regular constraint at theN−1 junctions leads
to the following 2(N−1) equality constraints:

∀n∈ [1,N−1] ,

{

Rn(ℓn) = Rn+1(ℓn),
R′n(ℓn) = R′n+1(ℓn).

(11)

Notice thatR is linear with respect to parametersAn andBn.
The equation set is a linear system of dimension 2(N−1) and
2N parameters{An, Bn}1≤n≤N. Choosing{A1, B1} as the 2 de-
grees of freedom (DOF), solving the system leads to solutions
given by (see. [Hézard2009])

[An,Bn]
T = Qn[A1,B1]

T , for 2≤ n≤ N.

The number of DOF for such a profile described byN pieces of
pipes is then 4N−2(N−1)=2N+2. According to the choices
made above, the free parameters areA1, B1 and{ϒn,Ln}1≤n≤N.

Global acoustic transfer matrix from the acoustic point
of view, connecting two pieces of pipes is achieved by impos-
ing the continuity of the acoustic stateXℓ at junctions. This
continuity makes sense at least when2 the junctions of profiles
areC 1-regular. Iterating this process to connect a sequence of
pieces of pipes yields

XℓN
(s) = TℓN,ℓ0(s)Xℓ0(s), (12)

TℓN,ℓ0 = TℓN,ℓN−1 TℓN−1,ℓN−2 . . . Tℓ1,ℓ0. (13)

Notice that if the profile is (at least)C 0-regular, (13) also takes
the simple form

TℓN,ℓ0 = diag
( LN

R(ℓN)
,

πR(ℓN)
ρs

)

MℓN,ℓ0(s) diag
(R(ℓ0)

L1
, ρs

πR(ℓ0)

)

,

MℓN,ℓ0 = MℓN,ℓN−1 MℓN−1,ℓN−2 . . . Mℓ1,ℓ0.

The standard algebraic formalism involving products of trans-
fer matrices (representing bi-port systems) is recovered as in
the case of junctions of straight pipes (plane wave assump-
tion) (cf. e.g. [Chaigne and Kergomard2008, p.293] and [Cook
1991]).

3. GEOMETRY ESTIMATION

Consider aC 1-regular profileℓ 7→ R(ℓ) on [0,L] such that va-
rations of functionℓ 7→ ϒ(ℓ) cannot be neglected.

3.1. Target profile and objective

In practice, the bore of a wind instrument (that is its interior
chamber) is often described by a set ofM+1 measured points
(

zm, r(zm)
)

or
(

ℓm,R(ℓm)
)

. Usually, the mesh is not equable:
the instrument makers adjust the discretization step so that its
piecewise continuous affine interpolation provides an accurate
description of the bore. For this interpolation, an exact conver-
sion z↔ ℓ is available which preserves the interpolation type.
However, theC 1-regularity is lost.

Here, we consider that such a piecewise continuous affine in-
terpolationℓ 7→R(ℓ) of an originalC 1-regular profile is given.
The objective is to represent the profile using (10-11) with a
numberN of pieces of pipes much lower thanM in order to

1. regenerate aC 1-regular approximation of the profile,
2. obtain a reliable geometrical description of the profile

with only a few parameters,
3. obtain an analytic description of the resonator acoustics

with the same (few) parameters,
4. benefit from formalism (13) with the accuracy stemming

from the Webster-Lokshin model,
2See [Hélie2002, p.66] for a discussion on the compatibility of this hypothe-

sis with that of the quasi-sphericity of isobars.

3.2. Distance and free parameters

Contrarily to splines whose parameters are only controlled by
junction points (of piecewise polynomials), we wish to make
the (piecewise affine) targetRand the modelRas close as pos-
sible onℓ ∈ [0,L]. This proximity on[0,L] is chosen to be mea-
sured by the standard mean square deviation

dL(R,R) =
1
L

∫ L

0

(

R(ℓ)−R(ℓ)
)2 dℓ.

SinceR is piecewise affine andR is the piecewise-defined func-
tion given in (9), computing the integral yields a closed-form
analytic functions depending on

(

ℓm,R(ℓm)
)

0≤m≤M and on the
parameters of the modelR (10-11) defined forN pieces of
pipes. This closed-form solution is used to avoid numerical
computation of the integral that significantly accelerates the
optimization algorithm (see. [Hézard2009] for details).

Among the 2N+2 free parameter of modelR, one part can be
used minimizedL(R,R) while the complementary part can be
dedicated to guarantee new constraints such that

1 preserving the total length of the bore:
N

∑
n=1

Ln = L.

k (0≤k≤ 4) geometrical boundary conditions such asF(ℓc)=
F(ℓc) with F =Ror R′ andℓc=0 orL.

Then, the number of DOF ofR becomes 2N+1−k.

A simple way to constraint the total length consists of replac-
ing LN by L−∑N−1

n=1 Ln in R. A simple way to constrain two
boundary conditions (k=2) consists of solving them with re-
spect to the two parameters{A1,B1} so that the system to solve
is linear. In this case, the 2N−1 remaining DOF are given by
the vector

θ = [ϒ1, . . .ϒN,L1, . . .LN−1]
T ,

whose the profile modelR is depending on (it is then denoted
Rθ ). The objective function to minimize is then

CL(θ) = dL(R,Rθ ).

In the sequel, the considered case includes the constraint on the
total length preservation and on the two following boundary
conditionsR(0) = R(0) andR′(0) = R′(0).

3.3. Algorithm

Minimizing CL is a nonlinear non-convex problem. To obtain
a satisfying solution by using standard numerical optimization
algorithms3, the following practical solution is proposed.

Initialization:

• Initializeθ with ϒ1= · · ·=ϒN=0 andL1= · · ·=LN = L
N

so thatℓn =nL/N (or values given by the user, see per-
spectives),

• Minimize Cℓ1(θ) w.r.t. ϒ1; updateθ
(

[θ ]1←ϒ⋆
1

)

.

Iterations for n starting from 2 to N: Minimization of
Cℓn

(θ) with respect to

1. variableϒn (updateθ ),
2. then, variablesϒ1, . . .ϒn (idem),
3. then, variablesϒ1, . . .ϒn,L1, . . .Ln−1 (idem)

(with Ln = ℓn−∑n−1
k=1 Lk)

3Here, Matlab optimization functions have been used:fminbnd for cases
with one variable andfminsearch for the case with multiple variables.
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In practice, these steps usually lead to solutions close to the
global optimum. When constraints on boundary conditions at
ℓ = L (F(L)=F(L)) are required, a last step is added. Since the
model is linear w.r.t. no remaining parameters[θ ]k, solving the
associated Lagrangian would be awkward. Instead of this ap-
proach, the penalized version of the objective function is used,
where the type of the added penalty functions isε

(

F(L)−
F(L)

)2: parameterε > 0 is progressively increased until the
constraint deviation becomes lower than a fixed threshold.

4. APPLICATIONS AND COMPARISONS

The following three target profiles are considered:R1(ℓ)=0.3ℓ3−
0.45ℓ2+0.194ℓ+0.0075 andR2(ℓ)=0.0025+ℓ4 are polynomi-
als from which piecewise affine interpolationsR1 andR2 are
built (discretization step: 1mm), andR3 accounts for the de-
scription of a trombone4. These profiles are plotted in figure1.
They all satisfy the condition|R′k|< 1.
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Figure 1: Test profilesRk (-). For R1 andR2: examples of op-
timal approximation withN = 2, N = 4 andN = 6 pieces of
pipes (- -+ and- -o). Original borer3(z) (- · -), R3(ℓ) (-) and
approximation withN=11 pieces of pipes (- -o).

Profile R111 Figure1 exhibits the results of the algorithm with
the four constraints (k = 4) at boundaries forN=2 andN=6
pieces of pipes (junctions are marked with symbols + or o).

Algorithm performances are illustrated in figure2 which plots
the normalized mean errors (-o) Emean

2 =
√

dL(R1,R1)/‖R1‖2
and the normalized maximal errors (- · -o) Emax

2 = maxℓ∈[0,L]

∣

∣R1(ℓ)−
R(ℓ)

∣

∣/‖R1‖2 for N ∈ {3,4,5,6}, with constraints onR(ℓ) and
R′(ℓ).
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Figure 2: ProfileR1: errorsEmean
2 andEmax

2 .

To estimate the the accuracy obtained at each step, errorsEmean
2 (-

) and Emax
2 (- · -) are plotted for several versions of the algo-

rithm. If the step 3 is removed (version 1, curves+), errors

4The authors thank R. Caussé who has furnished the data.

are significantly increased, that confirms that optimizing the
lengthsLn is of great interest. If the step 3 is kept but only at
the very last iteration, i.e.n=N (version 2,x), results are im-
proved compared to those of version 2 but the quality of the
original algorithm is not recovered: the optimizer reaches a lo-
cal minimum that is worse than the original one, in which it is
trapped.

Works on initialization could improve these results and make
it possible to recover a quality with version 2 similar to that
of original algorithm. The interest is to significantly reduce the
computation cost.

Profile R222 This flared bore is approximated by connecting
128 straight pipes (Ra

2, Ln = L/128), or 64 cones (Rb
2, Ln =

L/64), or 2 or 4 pieces of flared pipes (Rc
2 andRd

2) with op-
timized parameters (see figure1).

In each case, the global acoustic transfer matrix has been com-
puted as well as the input impedance obtained for an ideally
zero load impedance atℓ = L. These impedances are compared
to the reference5 in figure3. Two pieces of pipes (Rc

2) are not
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Figure 3: Input impedance Magnitude (in dB) computed for
profilesRa

2 (- · -), Rb
2 (- · -), Rc

2 (- · -) andRd
2 (- · -), compared to

the reference (-).

enough to yield accurate results but four pieces (Rc
2), that is 16

parameters{An,Bn,ϒ,Ln}1≤n≤4), still yield accurate results for
both the geometry and the acoustic impedance.

Profile R333 The input impedance measured on a trombone in-
cluding a mouthpiece is plotted in figure4. This impedance is
computed using (13), the transfer matrix of a simplified mouth-
piece model (acoustic mass, compliance and resistance, see
e.g. [Fletcher and Rossing1998]) and the radiation impedance
of a pulsating portion of a sphere inscribed in the cone which is
tangent at the horn boundaryℓ=L (see [Hélie and Rodet2003,
Model (M2)]).

5. CONCLUSION AND PERSPECTIVES

The computation of transfer matrices of flared acoustic bores
built by connecting pieces of pipes with constant parameters
R′′/R and based on the “curvilinear Webster-Lokshin model”
has been recalled. An algorithm which estimates the geometric
parameters of the pieces of pipes, optimized to approximate

5The reference is computed by solving (7-8) with the Matlab functionode23.
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Figure 4: Comparison between Input impedances com-
puted for N = 11, N = 5 and that measured on a trom-
bone (see [Mignot2009] for more details).

C 1-regular target profiles has been proposed. Using this algo-
rithm, accurate representations of profiles can be obtained even
with a few parameters. Then, from these parameters, accurate
acoustic transfer matrices and immittances are derived so that
the complete tool could be integrated into a computer-aided
design system (especially for designing horns) dedicated to in-
strument makers. Furthermore, real-time simulations based on
digital waveguide synthesis are available for these bore repre-
sentations (see [Mignot2009]).

Futures works could take into account discontinuities for non-
regular profiles as well as holes, keys, ring keys, etc. To con-
nect severalC 1-regular optimized profiles with such objects,
one way consists of using formalism based on zero-volume
junctions and adding some equivalent acoustic masses accord-
ing to results given in [Chaigne and Kergomard2008, p.302-
332]. Another perspective is to improve the algorithm initial-
ization (even using simple heuristics) in order to accelerate
the computation of optimal parameters without damaging their
quality. Finally, rather than optimizing geometric parameters
on target geometries, the optimization could be done on tar-
get impedances or on special descriptors (harmonicity of peak
frequencies, resonance qualities, etc): such optimizations on
acoustic features is more complex than on the target geometries
but the fact to use only a few parameters to describe even com-
plex geometries and acoustics should be worthwhile to reach
this goal.
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