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ABSTRACT

This work addresses the computation of acoustics immittances of axidyimwaveguides, the shape of which is
Cl-regular (i.e. continuous and with a continuous derivative with i@dpehe space variable).

With this intention, a refined version of the "Webster" horn equation is censit] namely, the "Webster-Lokshin
equation with curvilinear abscissa", as well as simplified models of mowégiand well-suited radiation impedances.
The geometric assumptions used to derive this uni-dimensional maasi¢gphericity of isobars near the wall) are
weaker than the usual ones (plane waves, spherical waves or fasggfrants). Moreover, visco-thermal losses at the
wall are taken into account. For this model, exact solutions of the acouatiesrican be derived in the Laplace or the
Fourier's domains for a family of parametrized shapes. An overaltéglar bore can be described by connecting such
pieces of shapes under the constrain that junctions are C1-reguthis lcase and if the length of the bore is fixed, a
description with N pieces precisely has 2N+1 degrees of freedom. Amitidgn which optimizes those parameters to
obtain a target shape has been built. It yields accurate C1-regulaipdiesss of the target even with a few number of
pieces. A standard formalism based on acoustic transfer matricaso@érom the exact acoustic solutions) and their
products make the computation of the input impedance, the transmittaretetfeer immittances) possible. This yields
accurate analytic acoustic representations described with a few paramete

The paper is organized as follows. First, some recalls on the history 8i\lester” horn equation and of the modeling
of visco-thermal losses at the wall are given. The "Webster-Loksludel" under consideration is established. Second,
the family of parametrized shapes is detailed and the associated acoustiertraatrices are given. Third, the algorithm
which estimates the optimal parameters of the C1-regular model of t&rgpes is presented. Finally, input impedances
obtained using this algorithm (and the Webster-Lokshin model) are caupameasured impedances (e.g. that of a
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trombone) and to results of other methods based on the concatenattosigtitsor conical pipes.

This paper is the French to English translation and corrected version éfigiiHézard, and Migna2010.

1. ON THE WAVE EQUATION IN HORNS

1.1. History summary and context

Uni-dimensional models and geometry The first uni-
dimensional model of the acoustic propagation in axisymmet-
ric pipes is due to [LagrangE760-176] and [Bernoulli1764.

This equation, usually called “horn equation” or “Webster equa-
tion” [Webster1919 has been extensively investigated [Eisner
1967 and is based on hypotheses which have been periodically
revised.

So, to preserve the orthogonality of the rigid motionless wall
and wavefronts, [Lambert954 and [Weibel 1955 contest

derivations based planar waves and postulate spherical ones.

The quasi-sphericity was experimentally confirmed for a horn
profile in the low frequency range by Benade and Janson [Be-
nade and Janssd®74. Later, Putland [Putlan@993 pointed

out that every one-parameter acoustic fields obey a Webster
equation for particular coordinates and that only planar, cylin-
drical and spherical waves could correspond to such coordi-
nates.
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Though this limitation, some refined uni-dimensional models
have still been looked for because of their simplicity: they make
the computation of impedances easy and the frequency range
that is not perturbed by transverse modes [Pagneux, Amir, and
Kergomardl1994 is large for many wind musical instruments.
Thus, [Agullo, Barjau, and Keefé999 assumes ellipsoidal
wavefronts.

In [Hélie 2003, an exact model is derived for coordinates that
rectify isobars and a Webster equation is deduced under the
assumption that isobars are quasi-spherical (at order 2) near
the wall (assumption that is considered in this paper). Gener-
alizations based upon Webster’s horn equation have been also
studied in [Martin2004.

Visco-thermal losses A second model refinement concerns
the modeling of visco-thermal losses at the wall. First, Kirch-
hoff has introduced thermal conduction effects, extended the
Stoke’s theory and derived some basic solutions in the free
space and in a pipe. Moreover, he gave the exact general dis-
persion relation for a cylinder if/whether the problem is ax-
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isymmetric [Kirchhoff 1868 (a generalized formula for non
symmetric versions is given in [Bruneau et 8989 eq. (56)]).

Some simplified modelings have also been proposed. Zwikker
and Kosten (cf. e.g. [Chaigne and Kergoma&@D8 p210])
have introduced models in which effects due the viscous and
the thermal boundary layers were separated. The validity con-
ditions for this theory can be found in [Kergomat881; Ker-
gomard1985 which exhibit more immediate links between
this model and the Kirchhoff dispersion relation. Cremer has
derived the equivalent admittance for plane waves which are
reflected on a plane baffle w.r.t. their incidence angle [Cremer
1948. This result coincides with that of Kirchhoff for rectan-
gular waveguides which are large enough, that is, for which
the boundary layer thickness is much lower than the rectangle
characteristic lengths.

For these simplified models, the wave equations include a damp-
ing term that involves a fractional time derivative (see the Lok-
shin equation [Lokshini978 Lokshin and RokL97§ and also
[Polack1991]). Exact solutions of the Lokshin equation have
been derived in [Matignoi994 Matignon and Novell995

which exhibit long memory effect. A Webster equation which
includes such a damping term has been established in [Hélie
2003.

Context and approach  Inthis paper, the acoustic model is
derived assuming that isobars are quasi-spherical near the wall
and describing the visco-thermal losses by the Cremer wall ad-
mittance. The main steps of its derivation are recalled below.

1.2. Wave equation and isobars

Consider the cylindrical coordinate systgm6,z) and sup-

pose the problem to be axisymmetric with respect to axis (Oz).

Isobars can be locally described by f(s,u,t), z=g(s,u,t),

6 €[0,2m], wheres indexes isobars andlis a (non-collinear)

free coordinate. Since the pressure dependstart notu, the

time-varying maps described Iy, g) are such that
Ip|Pz=f(sut),r

= g(S, U,t), t) = p(svt)

Using this property and the change of coordinges,t) —
(s,u,t), the wave equatioﬁo"z2 +1o +07- C—120t2> P(zrt) =
0 rewrites

(a(s,u,t)a§+ﬁ(s,u,t>as+y(s,u.t)asat+clzat2)p(s.t):o, @)

wherea, 3, y are functions off, g and of their derivatives with
respect te, u, t until order 2 (see [HéliR002 Hélie 2003 for
the detailed formula).

Applying operators?l‘j for k= 1,2, 3to the latter equation yields,

forall s,u,t,
aua duB duy dszp O
0%a 2B 92y osp | = 0 |.
Ba 3B Ay 950 p 0

Hence, the determinant of thex3 matrix is zero. This gives a
(purely geometric) necessary condition that every isobar map
associated to an acoustic propagation must satisfy.

In the time invariant case)(f =d.g=0), a similar study shows
that the only admissible maps corresponds to the well-known
cases, namely, plane waves, cylindrical waves, spherical waves
and modes associated to a wavenumber that is either real (in-
finite oscillation) or complex imaginary (non oscillating expo-
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nential wave). In the modal case, the following geometric in-
variant identity is deduced from the isobar wave equation

dsIn (92

if sis chosen as the level of the eigenfunction associated to the
mode (see [HéliR003 for more details). As a consequence,
no fixed map can describe a non modal 1D propagation if the
pipe is neither straight, neither conical.

(5sf)2 + (039)2
<@W+M@J 2((0st)?

+ (0s9) )sl% 0,

1.3. Ideal wall and 1D approximation

An ideally rigid lossless and motionless wall coincides with a

“pressure field line/tube” (see [HélR2002 p33] for degener-

ated cases). Choosingprthogonal tcs, there exists thefif, g)

andw such thatf (s,u=w,t) =F(s), g(s,u=w,t) =R(s) where
F,Ris profile description of the pipe. At= w, coefficients in
(1) are given bya (s, wt) = 1/(F/(s)2+R(s)?), B(s,wt) =0

and

y(swt) d s) B
W) d—s<n Fis D +0sIn|dug(s,u=wt)|. (2)

The only missing geometric information that is necessary to
obtain a 1D model froml)) is in the second term of2J which
involves a first order partial derivative with respectudfirst
order variation of the pressure field lines when moving away
from the wall).

To be compatible with the fact that isobars must be (i) planes

in straight pipes, (ii) spherical in cones, (iii) orthogonal to the

wall, (iv) quasi-spherical in horns [Benade and Janskord,

(v) dependent on the time, the following assumption is con-

sidered: near the wall, isobars slowly deviate from its tangent

spherical approximation. More precisely, the relative deviation

(denoted? (s, u,t)) (see [Hélie2002) satisfiesd{ (s,u=wt)=0

for k=0 (contact) andk =1 (tangency). Assuming the avail-
ability for k=2 (deviation slower than a parabola), it follows

that Vg"v‘\’ltt)) = Z%. This leads to the Webster equation

RO g~ Za)ien =0

W 4 C2 (3)

(03+2

if s=/ is chosen as the curvilinear abscissa which measures
the length of the wall profilea(s u=wt) = 1).

1.4. Cremer wall admittance

When visco-thermal boundary layers appear at the wall (/// are
present), isobars are no more orthogonal to the wall. If the
thickness of the boundary layers is lower thaff) and the
curvature radius of the profile, this perturbation can be approx-
imated through the Cremer wall admittance [Cret@4g. As-
suming that isobars and their tangent spherical approximations
still locally coincide at order 2, a perturbed version 8j {s
obtained [Hélie2002 Hélie 2003. It is given by

RO, 1., 2¢0)
2 )y 52
(a7+2 R 2%

3t ot =0, (4

3
whered;? is a fractional time derivative [Matignoh994 and
1-R(0)?
e(0) = KOW
VI A(y—1)y/Ih~3x 10 *m%?2 in the air). This equation is
sometimes called the “Webster (case 0)-Lokshin (cas&® =
0)” equation.

guantifies the visco-thermal effectgy(=
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1.5. Model under consideration, properties, validity

In the sequel, we consider the propagation in the space of recti-
fied isobars, assuming their quasi-sphericity at order 2 near the
wall, including the damping effect due to visco-thermal losses
at the wall, that is governed by the following equations

0 (5

(o7 [ R+ i)auv( )]) [R© p(e0)]
pd[V( 7t)+5ép(£7t)

whereY = R’/R. If Ris twice differentiable, therf) is equiv-
alent to @). Outside the boundary layers, the patrticle velocity
is collinear to the pressure gradient and it satisfies the Euler
equation from which@®) is deduced after projection.

0 (6)

Properties of the change of coordinates z—¢ Let
z+— r(z) describe a pipe profile. The profile length that is mea-

sured from 0 taz is L(z) = [§/1+1/(2)2dz so thatR(¢) =
r(L- e )). Then, dlfferentlatlng?( (2)) =r(z) leads to

R(L(2)=r"(2)/1/1+T1'(2)2

Hence, the following two properties hold

0 ROI<1;
(i) R(¢) =1 corresponds to a vertical slope.

These geometric properties are quite unusual for the Webster
model.

Moreover, notice that3-6) lead to the equations governing
plane waves for a straight pip& (R = 0, ¢ = 2), and spher-
ical waves for cones @ /R= 2//), as expected.

If a profile z+— r(z) has a vertical slope at one extremity, the
propagation model operates a natural connection with spheri-
cal waves.

Validity The lossless modeB is exact ifY=0. It provides
accurate approximations ifY] corresponds to a sufficiently
small perturbation or if the frequency range is sufficiently low
(see [Rienstr2004 for a detailed analysis). Basically, the 1D
assumption requires that there are no transverse modes in the
pipes, that can be characterized by

1.84
TC ~6318m.sL.

f < KT (Rmay) L with K+ =
The losses model is accurate if the thickness of the boundary
layers is lower than the radilR and the curvature radiu’:

given by% if s=zand by 7V1Q if s=¢. The

most constraining condition is due to the viscous boundary
layer. It is given by (see e.g. [Chaigne and Kergonm2008
p212])

u

~239%x 10 % m?s 1.
2np

f > K™ (Rnin) "2 WithK =

2. EXACT SOLUTIONS FOR PARAMETRIZED GE-
OMETRIES

2.1. Propagation model with constant coefficients

Admissible profiles and regularity property Inthe La-
place domain (variablg) and for zero initial conditions, equa-

1Remark: it can be checked that’) = ko Re(¢)Y(¢) (if Y # 0).
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tions (6-6) become

K<§>2+2£()< +Y(€) } -0, (7

u(,s

whereU (¢,s) = S(£)V (¢) with S(¢) = riR(¢)?. Closed-form an-
alytical solutions can be derivedéfandY are constant.

SinceR’ (¢)—Y(£)R(¢) =0, profiles associated with constaft
are such that(@, B) € R?)
R({)=  Acogv—Y!)+Bsin(v-Yt), if Y<O,
R()= A+BL, siY=0,
R({)=  AcoshvVY?)+Bsinh(v'Yr),  if Y>O0.

These three families can be described by the unified formula
R(6) = AGy(0) + BS(0), ©)

where(Y, 0)—Cy(£) =@ (Y£2) and(Y, £)—Sy(()=( @, (Y?)
are infinite differentiable function which are built from the fol-
lowing analytic functions (ovet)

+00 Zk
@z kZO@ (zcosh\fz>,
R inh
@ z— kgom < = sw:/z\[z forz#O).

Except the case wheRis constant, these profiles do not cor-
respond to constarg. Then, for a sufficiently short interval
[0,L], we chose to approximate by its mean values(¢) ~
%ij £(¢)de. This defines what we callgiece of pip&whose
geometry is described by 4 parametéfsB,Y,L} and inside
which the propagation is characterized by the 3 consténgs
andc.

Acoustic transfer matrix of a piece of pipe Denoting
X(s)=[P(¢,5),U(¢, s)]T, solving (7-8) for coefficientsY and
¢ that are constant oja,b] leads to

Xo(S) = Th,a(s) Xa(s),

where Ty, 4(s) = diag( (L>, "'z(sb))Mb’a(s)diag(@, mgfa)) is

a matrix with a unitary determinant, which is given by

[Mpa(9)]y; = [1, 0a] A(LF(9)),
M b‘a(s)]m = [0, =1 A(LF(9),
Mba(®)]y = [0b—0a, 0a0— (LF(9)%| ALT(9),
[Mpa(s)],, = [1,—0p]A(LF(9),
whereA(z) = [coshe, (sinhz) /2", wherel (s) is a square-root
o;((a )%+ 2¢ (§)% +Y, and the dimensionless quantity =

R can be interpreted as a ratio of slopes.

2.2. ¥Y-regular junctions of pieces of pipes

Cascade of pieces of pipes and geometric regularity
constraints  Consider the junction dfl pieces of pipes with
lengthLp, (this parameter is chosen to be let free). The complete
profile depends onM parametersAn, By, Yn, Ln}nej1 n) @nd is
described by

N

> Ra(Oyg, 4,((0), VLE [lo,(N]
=1

R(t) = (10)
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WhereRn (g) :AnCYn (Z)-‘an S{n (Z), {en == ZE::L Ln}OSnSN and
l1,...0N_1 are the abscissa of the junction points.

Writing the ¢’1-regular constraint at thd — 1 junctions leads
to the following 2N — 1) equality constraints:

Rn(fn) = Rn+1(£n)7
R?](en) = Rprl(fn)

Notice thatR is linear with respect to parametetg and By,.
The equation set is a linear system of dimensi@N 2 1) and

2N parametergAn, Bn}1<n<n. Choosing{Aq, B} as the 2 de-
grees of freedom (DOF), solving the system leads to solutions
given by (see. [Hézarg009)

[An,Bn]" = Qn[A1,By]",

The number of DOF for such a profile described\bpieces of
pipes is then BI—2(N— 1) =2N+2. According to the choices
made above, the free parametersiyeB; and{ Yn,Ln}1<n<n-

Vne[l,Nfl],{ (11)

for2<n<N.

Global acoustic transfer matrix from the acoustic point

of view, connecting two pieces of pipes is achieved by impos-
ing the continuity of the acoustic sta¥ at junctions. This
continuity makes sense at least whéne junctions of profiles
are¢’1-regular. Iterating this process to connect a sequence of
pieces of pipes yields

XfN (S)
Tonto

Tin,00(8) Xy (9),
TZN:[N—l T[N—luéN—Z Tflfo'

(12)
(13)

Notice that if the profile is (at least/®-regular, (3) also takes
the simple form

: L TR(¢ . R(¢,
TfN-,fo = diag (R(lNN) ) %) MZN,fo (S) diag ( (Llo) ) nR")(?o) )7
Miy.to = MéNséN—l MﬂN—lyﬁN—Z e Mfl,fO'

The standard algebraic formalism involving products of trans-
fer matrices (representing bi-port systems) is recovered as in
the case of junctions of straight pipes (plane wave assump-
tion) (cf. e.g. [Chaigne and Kergoma2608 p.293] and [Cook
1997).

3. GEOMETRY ESTIMATION

Consider &¢1-regular profilel — R(¢) on [0,L] such that va-
rations of functior? — Y{¢) cannot be neglected.

3.1. Target profile and objective

In practice, the bore of a wind instrument (that is its interior
chamber) is often described by a sefbf-1 measured points
(zm,r(zm)) or (ém,R(¢m)). Usually, the mesh is not equable:
the instrument makers adjust the discretization step so that its
piecewise continuous affine interpolation provides an accurate
description of the bore. For this interpolation, an exact conver-
sionz« / is available which preserves the interpolation type.
However, theg1-regularity is lost.

Here, we consider that such a piecewise continuous affine in-
terpolation/— R(¢) of an original¢’1-regular profile is given.
The objective is to represent the profile usidg-(1) with a
numberN of pieces of pipes much lower th&in order to

1. regenerate @1-regular approximation of the profile,

2. obtain a reliable geometrical description of the profile
with only a few parameters,

3. obtain an analytic description of the resonator acoustics
with the same (few) parameters,

4. benefit from formalism3) with the accuracy stemming
from the Webster-Lokshin model,

2See [Hélie2002 p.66] for a discussion on the compatibility of this hypothe-
sis with that of the quasi-sphericity of isobars.
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3.2. Distance and free parameters

Contrarily to splines whose parameters are only controlled by
junction points (of piecewise polynomials), we wish to make
the (piecewise affine) targ&and the modeR as close as pos-
sible on? € [0,L]. This proximity on[0, L] is chosen to be mea-
sured by the standard mean square deviation

d.(RR) = %/OL (R(0) — R(0))2dlt.

SinceRis piecewise affine anRis the piecewise-defined func-
tion given in @), computing the integral yields a closed-form
analytic functions depending dim, R(¢m)) -\, @nd 0N the
parameters of the modé& (10-11) defined forN pieces of
pipes. This closed-form solution is used to avoid numerical
computation of the integral that significantly accelerates the
optimization algorithm (see. [HézagD09 for details).

Among the A +2 free parameter of mod&, one part can be
used minimized, (R, R) while the complementary part can be
dedicated to guarantee new constraints such that

N
1 preserving the total length of the bor§ Lh=L.
n=1

k (0<k< 4)geometrical boundary conditions suchdg:)=
E(¢c) with F=RorR and/{:=0 orL.

Then, the number of DOF d&& becomes R+1—k.

A simple way to constraint the total length consists of replac-
ing Ly by L— yN"!Ln in R A simple way to constrain two
boundary conditionsk(=2) consists of solving them with re-
spect to the two parametef8g, B; } so that the system to solve
is linear. In this case, theNe—1 remaining DOF are given by
the vector

6 =[Y1,...Yn,L1,...Ln_1]",

whose the profile modeR is depending on (it is then denoted
Rg). The objective function to minimize is then

%L(8) =dL(R Rg).

In the sequel, the considered case includes the constraint on the
total length preservation and on the two following boundary
conditionsR(0) = R(0) andR/ (0) = R(0).

3.3. Algorithm

Minimizing % is a nonlinear non-convex problem. To obtain
a satisfying solution by using standard numerical optimization
algorithms, the following practical solution is proposed.

Initialization:
* Initialize @ with Y1 =---=Yy=0andLy = --- =Ly =
so thatln=nL/N (or values given by the user, see per-
spectives),

* Minimize €,(0) w.r.t. Y1; updated ([6]1—Y;).

Iterations for n starting from 2 to N: Minimization of

%1,(0) with respect to

1. variableYy (updatef),
2. then, variable¥s,... Yy (idem)
3. then, variable¥7,... Yn,L1,...Ln1 (idem)

(with Ly = ¢n— $p—7 L)

3Here, Matlab optimization functions have been usédinbnd for cases
with one variable andminsearch for the case with multiple variables.
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In practice, these steps usually lead to solutions close to the
global optimum. When constraints on boundary conditions at
¢=L(E(L)=F(L)) are required, a last step is added. Since the
model is linear w.r.t. no remaining paramet@¥,, solving the
associated Lagrangian would be awkward. Instead of this ap-
proach, the penalized version of the objective function is used,
where the type of the added penalty functionss(E(L) —

F(L))Z: parametere > 0 is progressively increased until the
constraint deviation becomes lower than a fixed threshold.

4. APPLICATIONS AND COMPARISONS

The following three target profiles are considergg/) =0.3¢3—
0.45(24-0.194/4-0.0075 andR,(¢) =0.0025+¢* are polynomi-
als from which piecewise affine interpolatioRs andR, are
built (discretization step: 1mm), arfé; accounts for the de-
scription of a tromborfe These profiles are plotted in figute
They all satisfy the conditiofR, | < 1.

o L)

l orz(iﬁsm)
Figure 1: Test profile®, (-). For R; andR,: examples of op-
timal approximation withN =2, N=4 andN =6 pieces of
pipes ¢ -+ and- -0). Original borers(z) (- - -), Rz(¢) (-) and
approximation withN =11 pieces of pipes (o).

Profile Ry Figurelexhibits the results of the algorithm with
the four constraintsk(= 4) at boundaries fol =2 andN =6
pieces of pipes (junctions are marked with symbols + or 0).

Algorithm performances are illustrated in figu2evhich plots

the normalized mean error®f ES'®2"=/di (R, Ry)/||Ry |2
and the normalized maximal errors {0) EJ"®=maxg IRy (€)—

R(0)|/|IRy |2 for N € {3,4,5,6}, with constraints orR(¢) and
R(¢).

i

mean max
Ey®@andEy
8,
i

Figure 2: ProfileR; : errorse}"¢@"andE}"@

To estimate the the accuracy obtained at each step, &§5/(-
) and EJ"® (---) are plotted for several versions of the algo-
rithm. If the step 3 is removed (version 1, curves errors

4The authors thank R. Caussé who has furnished the data.
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are significantly increased, that confirms that optimizing the
lengthsL, is of great interest. If the step 3 is kept but only at
the very last iteration, i.en=N (version 2,x), results are im-
proved compared to those of version 2 but the quality of the
original algorithm is not recovered: the optimizer reaches a lo-
cal minimum that is worse than the original one, in which it is
trapped.

Works on initialization could improve these results and make
it possible to recover a quality with version 2 similar to that
of original algorithm. The interest is to significantly reduce the
computation cost.

Profile R, This flared bore is approximated by connecting
128 straight pipesRg, Ln=L/128), or 64 conesRy, L, =
L/64), or 2 or 4 pieces of flared pipeBY andRJ) with op-
timized parameters (see figuty

In each case, the global acoustic transfer matrix has been com-
puted as well as the input impedance obtained for an ideally
zero load impedance at= L. These impedances are compared
to the referencin figure 3. Two pieces of pipesRg) are not

° " [— reference
201 RS (cylinders)
i i

I I I
0 1000 2000 3000 4000 5000 6000

— T T T
[ — reference

20+ . " Lo - - R3(cones)

Ll L i i I
0 1000 2000 3000 4000 5000 6000

— reference
- - RE(N=

I I i i I
0 1000 2000 3000 4000 5000 6000

— reference

20 - - (N=4)

I I I I
0 1000 2000 4000 5000 6000

30‘00
f (in Hz)

Figure 3: Input impedance Magnitude (in dB) computed for
profilesRg (- -), R3 (- --), RS (---) andRy§ (- - -), compared to
the reference (-).

enough to yield accurate results but four pied&y (that is 16
parameter§An, Bn, Y, Ln}1<n<4), still yield accurate results for
both the geometry and the acoustic impedance.

Profile R3 The inputimpedance measured on a trombone in-
cluding a mouthpiece is plotted in figude This impedance is
computed usingld), the transfer matrix of a simplified mouth-
piece model (acoustic mass, compliance and resistance, see
e.g. [Fletcher and Rossird98) and the radiation impedance

of a pulsating portion of a sphere inscribed in the cone which is
tangent at the horn boundafy=L (see [Hélie and Rod@003
Model (M2)]).

5. CONCLUSION AND PERSPECTIVES

The computation of transfer matrices of flared acoustic bores
built by connecting pieces of pipes with constant parameters
R’/R and based on the “curvilinear Webster-Lokshin model”

has been recalled. An algorithm which estimates the geometric
parameters of the pieces of pipes, optimized to approximate

5The reference is computed by solvirgg®) with the Matlab functiorode23.
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Figure 4. Comparison between Input impedances com-

puted for N =11, N=5 and that measured on a trom-
bone (see [Migno2009 for more details).

%-regular target profiles has been proposed. Using this algo-
rithm, accurate representations of profiles can be obtained even
with a few parameters. Then, from these parameters, accurate
acoustic transfer matrices and immittances are derived so that
the complete tool could be integrated into a computer-aided
design system (especially for designing horns) dedicated to in-
strument makers. Furthermore, real-time simulations based on
digital waveguide synthesis are available for these bore repre-
sentations (see [Mign@009).

Futures works could take into account discontinuities for non-
regular profiles as well as holes, keys, ring keys, etc. To con-
nect severals’l-regular optimized profiles with such objects,
one way consists of using formalism based on zero-volume
junctions and adding some equivalent acoustic masses accord-
ing to results given in [Chaigne and Kergom&@08 p.302-
332]. Another perspective is to improve the algorithm initial-
ization (even using simple heuristics) in order to accelerate
the computation of optimal parameters without damaging their
quality. Finally, rather than optimizing geometric parameters
on target geometries, the optimization could be done on tar-
get impedances or on special descriptors (harmonicity of peak
frequencies, resonance qualities, etc): such optimizations on
acoustic features is more complex than on the target geometries
but the fact to use only a few parameters to describe even com-
plex geometries and acoustics should be worthwhile to reach
this goal.
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