Nicolas Boutry

Thierry Géraud

Laurent Najman
email: l.najman@esiee.fr

How to make nD images Well-composed without interpolation

Keywords: Digital Topology, nD images, Well-Composed Sets, Mathematical Morphology

 L'archive ouverte pluridisciplinaire

INTRODUCTION

Well-composedness has been proposed as a practical way to deal with the well-known connectivities paradox encountered with the 4and 8-connectivities [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF][START_REF] Kong | Digital topology: Introduction and survey[END_REF][START_REF] Latecki | Wellcomposed sets[END_REF]: the 2nand (3 n -1)connectivities are equivalent in a well-composed image [START_REF] Rosenfeld | Connectivity in digital pictures[END_REF][START_REF] Tustison | Topological well-composedness and glamorous glue: A digital gluing algorithm for topologically constrained front propagation[END_REF]. Furthermore, well-composed images enjoy many more properties: the Jordan Separation theorem [START_REF] Latecki | Wellcomposed sets[END_REF] holds true, we can design much simpler thinning algorithms [START_REF] Marchadier | Thinning grayscale well-composed images[END_REF], make the Euler characteristic locally computable [START_REF] Latecki | 3D well-composed pictures[END_REF], simplify graph structures resting from skeleton algorithms [START_REF] Latecki | Wellcomposed sets[END_REF], and simplify the algorithm of the marching cubes [START_REF] Tustison | Topological well-composedness and glamorous glue: A digital gluing algorithm for topologically constrained front propagation[END_REF][START_REF] Etiene | Topology verification for isosurface extraction[END_REF].

Two approaches exist to make binary images well-composed. The first one is to keep the original space of the image and to change some of the values of the initial image in such a way that the modified image becomes well-composed [START_REF] Siqueira | Topological repairing of 3D digital images[END_REF]. The second is to make an interpolation to preserve the topology of the original image [START_REF] Latecki | Well-composed sets[END_REF][START_REF] Stelldinger | 3D object digitization: Majority interpolation and marching cubes[END_REF]. However this second approach needs a subdivision of the original space and measurably increases the computational costs of the algorithms.

In this paper, we propose a fast method that produces a well-composed image by modifying the original values. The plan of the paper is the following. Section 2 is a short reminder on well-composedness in nD for sets, binary images, and gray-valued images. Section 3 describes an algorithm producing well-composed images. Before concluding the paper, we illustrate with a 2D application to text detection.

STATE-OF-THE-ART

Latecki et al. introduced in [START_REF] Latecki | Wellcomposed sets[END_REF] the notion of well-composedness for 2D sets. A 2D set is well-composed iff it does not contain any critical configuration 0 1 1 0 or 1 0 0 1 . Then Latecki extended the well-composedness to 3D sets in [START_REF] Latecki | 3D well-composed pictures[END_REF]. A 3D set is well-composed iff it does not contain any critical configuration ot type 1: 0 1 1 0 , or of type 2: 1 0 0 0 0 0 0 1 and 0 1 1 1 1 1 1 0 , modulo rotations and axial symmetries.

We have proposed in [START_REF] Boutry | How to make well-composed images in nD in a self-dual way with a front propagation algorithm[END_REF] an extension to dimension n of the notion of well-composed sets and images. Let us now recall this extension. With z a point in Z n and F = {f 1 , . . . , f k } a subset of the canonical basis B of Z n , we define the block associated to the couple (z, F) by:

S(z, F) =    z + card(F) j=1 λ j .f j with λ j ∈ {0, 1}    , (1)
Moreover, we call a block of D ⊆ Z n any element of the set:

B(D) = S(z, F) ∃z ∈ D, ∃F ⊆ B, S(z, F) ⊆ D .
(2) Finally, two points p and p are said antagonist in a block S iff they maximize the Euclidian distance between two points in the block S.

A set X ⊆ Z n contains a primary critical configuration of dimension k iff there exists a block S of dimension k ∈ [2, n] such as X ∩ S = {p, p } where p and p are antagonist in S. A set X ⊆ Z n contains a secondary critical configuration of dimension k iff there exists a block S of dimension k ∈ [2, n] such as X c ∩ S = {p, p } where p and p are antagonist in S. Then a set is said well-composed iff it does not contain any critical configuration.

Let D ⊆ Z n be the domain of the image. For n = 2, Latecki et al. defined in [START_REF] Latecki | Wellcomposed sets[END_REF] a well-composed image u : D → Z as an image whose for any λ ∈ R, the upper threshold sets

[u ≥ λ] = {x ∈ D u(x) ≥ λ} and the lower threshold sets [u ≤ λ] = {x ∈ D u(x) ≤ λ} are well-composed.
This definition can straightforwardly be extended in nD [START_REF] Boutry | How to make well-composed images in nD in a self-dual way with a front propagation algorithm[END_REF]. Latecki also introduced a characterization of a well-composed

2D image u = a b c d : u is well-composed iff iv(a, d) ∩ iv(b, c) = ∅, where the interval between a and b is denoted by iv(a, b) = [min(a, b), max(a, b)].
We have extended in [START_REF] Boutry | On making nD images well-composed by a self-dual local interpolation[END_REF][START_REF] Boutry | How to make well-composed images in nD in a self-dual way with a front propagation algorithm[END_REF] this characterization to nD images: u is well-composed iff for any block S and for any p ∈ S:

iv(u(p), u(p)) ∩ span(u(p) p ∈ S \{p, p }) = ∅, (3) with p = antag S (p) and span(A) = [min(A), max(A)], ∀A ⊆ R.
Several methods have been proposed to obtain wellcomposed images: the interpolation methods [START_REF] Boutry | How to make well-composed images in nD in a self-dual way with a front propagation algorithm[END_REF][START_REF] Stelldinger | 3D object digitization: Majority interpolation and marching cubes[END_REF][START_REF] Gonzalez-Diaz | Well-composed cell complexes[END_REF] which increase the size of the domain of the original image, and the repairing method of Siqueira [START_REF] Siqueira | Topological repairing of 3D digital images[END_REF], i.e., a method which selects an image close to the original one and which is defined on the same domain. However, the method of Siqueira works only on binary images and is restricted to the 2D and the 3D cases. The goal of this paper is to extend on this previous work, and we propose a method that produces, without any interpolation, well-composed gray-valued images in nD.

AN INCREASING PROCESS PRODUCING

WELL-COMPOSED IMAGES

Principle

Let u : D → Z be a given image. We want to find a wellcomposed image u * which minimizes the deformation of u,

u * = arg min v { ||v -u|| 1 v is W.C. } (4)
However, to the best of our knowledge, such a combinatorial problem does not have a solution reachable in a reasonable time. To find an approximate solution to this problem, we propose to iteratively select critical configurations and correct them, one by one. To prevent oscillation, we impose that, at each step of the algorithm, the current solution is greater than the previous one. Our process is thus increasing.

As we modify a critical configuration, our algorithm is local, in the sense that we only need to look at a block and modify the pixel in the block. However, the modification of the value of a given pixel can create a novel critical configuration in its neighborhood. Hence, there is potentialy a propagation effect, and thus several passes on the image are in principle necessary to achieve convergence.

Due to this propagation effect, the convergence of the algorithm is only ensured if the process is increasing. Indeed, if we allow the modifications to either decrease or increase the image, then oscillation effects could appear.

Correction Step

We want to correct a given critical configuration in the block S ∈ B(D). By definition of a critical configuration, there exists two points p ∈ S, p ∈ S with p = antag S (p), verifying:

iv(u(p), u(p)) ∩ span{ u(q) q ∈ S \ {p, p } } = ∅. (5)
Then two cases are possible. Either we have: max(u(p), u(p)) < min{ u(q) q ∈ S \ {p, p } }, [START_REF] Marchadier | Thinning grayscale well-composed images[END_REF] and we set p * ← arg max q { u(q) q ∈ {p, p } } and u(p *) ← min{ u(q) q ∈ S \ {p, p } }, or we have: max{ u(q) q ∈ S \ {p, p } } < min(u(p), u(p)), [START_REF] Latecki | 3D well-composed pictures[END_REF] then we set p * ← arg max q { u(q) q ∈ S \ {p, p } } and u(p *) ← min(u(p), u(p)). In both cases, u has been made well-composed on S.

m 1 ← min(u(p), u(p)) M 1 ← max(u(p), u(p)) m 2 ← min{ u(p) p ∈ S \ {p, p } } M 2 ← max{ u(p) p ∈ S \ {p, p } } /* Primary case: */ if M1 < m2 then p * ← arg max{ u(q) q ∈ {p, p } } u(p *) ← m2 /* Secondary case: */ if M2 < m1 then p * ← arg max{ u(p) p ∈ S \ {p, p } } u(p *) ← m1
return p *

Convergence

The convergence of the method is easy to prove. Indeed

Proposed Algorithm

Given the correction step, the algorithm is straightforward, it is detailed in Algorithm 2. It proceeds in two steps. First, the initialization step detects all the critical configurations of the threshold sets {[u ≥ λ]} λ on D and enqueue them into Q. Second, the correction step solves one by one the critical configurations listed into Q using Algorithm 1 and enqueue the new critical configurations which appeared in the neighborhood of the modified value. This algorithm iterates until there is no longer any critical configuration in D; the resulting image u is then well-composed.

Experimental Results and Complexity of the 2D Case

We used the test set of 100 natural images of the Berkeley image database [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. Their sizes are (sx, sy) with sx = 481 and sy = 321 pixels or the converse. We cropped each image with ten different windows (for each image) to obtain images of various sizes. The size (newsx, newsy) of the crop window is randomly chosen into 2, sx × 2, sy and its position is randomly chosen into We experimentally assessed the percentage of critical configurations contained in a given image. Fig. 2 shows that between 0.88% and 24.84% of the domain of the original images are covered by critical configurations. From a statistical point of view, a image contains on average 0.1246(±0.036) critical configuration by pixel. It is rare to have a wellcomposed image.

Queue initialization. To initialize the queue of critical configurations, we simply have to detect among the (newsx -1) × (newsy -1) blocks which one contains a critical configuration, and in this case we insert it in the queue Q. Each detection and each insertion in the queue is in constant time. This implies that the initialization step in linear time relatively to the size of the image.

Correction process. Concerning the correction step, we had to proceed to c corrections by pixel, with c ∈ [9.10 -3 , 0.2386]. From a statistical point of view, an average number of 0.1203(±0.0348) corrections by pixel has been observed. Numerical experiments show that the correction step is linear on average with respect to the image size. The number of corrections by initial critical configuration is not a constant: it can be seen on Fig. 3 that the number of corrections is between m = 80% and M = 104% of the number of initial critical configurations. Indeed, a given correction can repair several critical configurations at the same time, which explains that m is less than 100%. Conversely, the propagation effect is responsible for M being greater than 100%. Statistically, we obtain a mean ratio of 0.965764(±0.014) corrections by initial critical configuration.

Detection of the direction of the propagation. For each processed correction, there exists only one position p ∈ D such as u(p) is modified in the image, and then the propagation is possible in a bounded number of blocks, i.e., in the blocks containing p. This means that the number of blocks processed in the detection step is proportional to the total number of corrections. Since the correction step is in linear time, so is the detection step.

Complexity. Since the 3 steps of the algorithm are in linear time with respect to the initial number of critical configurations, the complete algorithm is in linear time with respect to the size of the image (in number of pixels).

ILLUSTRATION AND CONCLUSION

We illustrate the interest of well-composedness to text detection with the morphological Laplacian in 2D. Let us recall that the morphological Laplacian L of a given image u is defined as L se (u) = δ se (u) + ε se (u) -2u where se is a given structuring element. The contours of u are the zero-crossing of the Laplacian. As they are boundaries of level-sets of the grayscale image, the zero-crossing are closed curves. We can set the gray-level of a given contour to the mean of the gradient of the original image along the contour.

Without correction of the well-composedness, it can be seen on Fig. 4b and Fig. 4d that some characters are broken into several connected components. If we apply the proposed process on the Laplacian image, we observe that the contours are simple. In practice, it can be seen on Fig. 4c and Fig. 4e that the correction repairs many contours. In conclusion, we have presented a new algorithm that produces well-composed images without interpolation. Compare to the interpolation methods, the proposed algorithm is faster and less memory consuming. It can be seen as a natural extension of the algorithm of topological repair of Siqueira et al. [START_REF] Siqueira | Topological repairing of 3D digital images[END_REF] to gray-valued images.

Future work will apply the methods to segmentation problems, including text detection in natural images, where first tests are encouraging. Another research direction is to take advantage of the natural hierarchy provided by the closed contours of the zero-crossing of the Laplacian. This hierarchy is yet another promising tree-based image representation that fits into the morphological framework [START_REF] Najman | A graph-based mathematical morphology reader[END_REF].

The source code of the proposed algorithm has been implemented using our image processing C++ library "Milena" [START_REF] Levillain | Why and how to design a generic and efficient image processing framework: The case of the Milena library[END_REF][START_REF] Levillain | Writing reusable digital topology algorithms in a generic image processing framework[END_REF], which is free software under the GNU Public Licence v2. Since we advocate reproducible research, this source code will be released on our web site as supplementary material (if this paper is accepted).

Fig. 1 :

 1 Fig. 1: Hierarchical representation of an image: since component boundaries are simple closed curves on well-composed images, two boundaries are either disjoint or in an inclusion relationship; thus, the delimited regions naturally form a tree.

Algorithm 1 :

 1 The correction process. SOLVECC (u, S) : p begin p ← antag S (p)

Algorithm 2 :

 2 , let us define u min = min{ u(p) | u(p) ∈ D } and u max = max{ u(p) | p ∈ D }. As the algorithm increases the function u by at least one, we have a maximum of (u max -u(p)) corrections for each p ∈ D. The total number of corrections is then inferior or equal to p∈D (u max -u(p)) ≤ (u max -u min) × card(D). This ensures the convergence of the algorithm, since the domain of u is finite. The increasing nD algorithm. INCREASING (u) : Image /* Makes the image W.C. */ begin /* Initialization of the queue: */ for all S ∈ B(D) do if CRITICALCONFIGURATION(S, u) then PUSH(Q, S) while Q = ∅ do S ← POP(Q) /* Correction process: */ p ← SOLVECC(u, S) /* Detection of the direction of the propagation: */ for all S ∈ B(D) s.t. p ∈ S do if CRITICALCONFIGURATION(S , u) then PUSH(Q, S)

Fig. 2 :

 2 Fig. 2: Number of critical configurations as a function of the size of the image given in number of pixels.

Fig. 3 :

 3 Fig. 3: Number of corrections as a function of the number of initial critical configurations.

 (a) Original image u. (b) Zero-crossings of the original Laplacian. (c) Zero-crossings of the Laplacian modified by the increasing process. (d) Crop of (b).(e) Crop of (c).

Fig. 4 :

 4 Fig. 4: Results obtained without and with the algorithm; in (d) and (e) the connected components have been colorized.