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INTRODUCTION

Many statistical methods exist to model problems in humanities and social sciences, depending on the available quantitative information. One of the traditional models consists in adjusting different types of theoretical distributions to the empirical distributions that are being studied, as long as the empirical data allows it. The values of the parameters for the adjusted distributions then provide all the elements needed for a comparison. The adjustment method is implemented in three stages: --choosing a theoretical model (exponential, inverse power, inverse power with cutoff, stretched exponential…) --choosing a method to calculate the adjustment parameters (method of moments, linear least squares method, maximum likelihood estimation method…) -- choosing a statistical test to validate the theoretical model (the khi2 test, the Kolmogorov--Smirnov test…). For the adjustment to be completely relevant, the theoretical model's parameters must be easy to interpret, allowing users to gain a better understanding of the observed phenomenon.

In the field of informetrics, we have come to observe many statistical regularities in the production and usage of information. These regularities have led researchers to work on models, using the steps described above. In practice, the characteristics of the production function don't vary much. The observed distributions are generally asymmetric, strongly decreasing with a long tail. The inverse power model, known as the lotkaian model (Egghe,

! = ! ! !" ! =
If we consider that S and I are known ! > ! > 0 and that f is a known theoretical model, then creating a mathematical source--item adjustment consists in finding a necessary and sufficient condition for f to fulfil the condition (3). The term 'mathematical adjustment' used here designates a method introduced by Egghe within the field of informetrics to characterize inverse power distributions. It carries a different meaning from the adjustment method that is commonly used in statistics, as we mentioned in our introduction This problem was solved within the framework of Lotkaian informetrics [START_REF] Egghe | The source--item coverage of the lotka function[END_REF]. We can review the obtained results by distinguishing one case -where N, the maximum item per source density, is infinite -from the more realistic case that interests us -where N is finite, for both distributions (1) and ( 2). (i) Exponential Distributions [START_REF] Lafouge | The source--item coverage of the exponential function[END_REF] (a) N is infinite The adjustment conditions (3) are met by (2) if and only if:

! = ! !!! (5) ! = ! ! !!! (6)
α depends only on the ratio !, unlike C which depends on S and µ. (b) N is finite

The adjustment conditions (3) are met by (2), ! > 1, if and only if:

! < ! !!! (7)
We therefore construct f by first calculating ! ≠ 1, obtained by solving a numerical equation with one unknown.

! ! ! - !"# !! !!! !!!!.! !!!! !!!"# (!! !!! ) ( 8 
)
Where α is the parameter that verifies the inequality (7), with:

! = !.! !!!"# (!!. !!! ) (9)
We can find equations ( 5) and ( 6) by making N tend toward ∞ in ( 8) and ( 9). (ii)

Inverse Power distributions [START_REF] Egghe | The source--item coverage of the lotka function[END_REF]

) (a) N is infinite When ! ≤ 2 I doesn't exist.
If α is greater than 2, then the adjustment conditions (3) are met if and only if:

! = 1 + ! !!! = 2 + ! !!! (10) ! = !.! !!! ( 
11) α depends only on the ratio !, unlike C which depends on S and ! The value 2 of ! plays a pivotal role since the moment of order 1 can't exist if

! ≤ 2. (b) N is finite
Two cases exist: --N ≥ 1 always exists when α ≤ 2, thus (1) meets condition (3).

--if α ˃ 2, the previous conclusion is valid if and only if:

2 < ! < 1 + ! !!! = 2 + ! !!! (12)
We then construct f by calculating N, which is obtained by solving a numerical equation with one unknown. Two cases are possible:

1. ! ≠ 2 !!! ! ! (!!!) ! !!! -! !!! + 1 - !!! ! ! !!! = 0 (13)
Where α is a parameter verifying condition (12) with: 

! = !.(!!!) ! !!! !! 2. ! = 2 !" ! + ! !.! - ! ! = 0 ( 

(iii) Discussion

The calculation of α, when N is infinite -as seen in formulas ( 5) and (10) -is obtained through an adjustment done with the famous method of moments. This method can be used for an adjustment with an exponential distribution, but it is not suitable for an adjustment with an inverse power distribution, since the latter doesn't always have a moment of order 1. The most interesting case is when N is finite. It should be noted that equations ( 8) and ( 13) - where N is the unknown and α is the parameterdepend only on the average number of items produced by a source. In the Inverse power distribution case, when N is finite or infinite, the α = 2 case is a breaking point. In these two examples, an existence theorem is used to solve the finite case -see section II.3.1.1, "the Theorem of Existence for the Size--frequency Function" in [START_REF] Egghe | Power Laws in the Information Production Process: Lotkaian Informetrics[END_REF]. This paper aims to provide additional elements to add to this important result. We will then recall the previous approach: the mathematical exponential (or power) adjustment of an IPP.

The Exponential Informetric Process and the Effort Amount

General Definition of an EIP

In this section, we assume that N (maximal item per source density) is infinite. We henceforth assume that each produced item requires a certain amount of effort. The difference between the IPP diagram (see figure 1) and the EIP diagram (see figure 2) is shown through the valuation of the arcs -for example, in order for item i 3 to be produced, source s 3 must have an effort quantified by value 3. The amount of effort needed to produce a source is generally unknown and difficult to quantify. We therefore introduce the effort function h, where h(i) is designated as the average amount of effort from a source needed to produce i items, with i= 1, 2, …. [START_REF] Lafouge | Links between entropy and production of information, characterization of informetric distribution ising the effort function, exponential informetric process[END_REF]. As previously, we work in continuous mode and define an exponential informetric process where F denotes the average quantity of effort supplied by sources to produce all the items. This paper develops the theory by using the size--frequency function ! !!! where α is a positive number and h is an effort function. More precisely, we have a set of functions called EF: !" = ℎ: 1, ∞ → ℝ ! strictly increasing and unbounded. 

exp -!. ℎ ! . ℎ ! !" < ∞ ! !
We can recall results obtained in previous studies [START_REF] Agouzal | On the relation between the maximum entropy principle and the principle of least effort : The continuous case[END_REF]: with h being an admissible effort function, there exists a real !(ℎ) ≥ 0, so that:

∀ ! > ! ℎ exp -!. ℎ ! . ℎ ! !" < ∞ ! !
We thus call the size frequency function f an 'exponential informetric process':

! ! = !. exp -!. ℎ ! ! ∈ 1, ∞ , ! ∈ ℝ ! , ℎ ∈ !", ! > ! ℎ
(15) The corresponding probability density function v is:

! ! = !.!"# (!!.! ! ) ! , ! ∈ 1, ∞ (16) S is the number of sources: ! = !. exp -!. ℎ ! !"
! ! And F is the average amount of effort produced by the exponential informetric process:

! = !. exp -!. ℎ ! . ℎ(!) !" ! ! (17)
The amount of effort F is necessarily finite, since ! > !(ℎ). It is entirely determined by the density function !, which governs the process. The amount of produced items is written as:

! = !. exp -!. ℎ ! . ! !" ! ! (18)
The amount of items is not necessarily finite. There can therefore be an infinite amount of items produced by a finite amount of effort.

In the mathematical theory of information, the amount of effort and entropy are linked [START_REF] Weaver | Théorie mathématique de la communication[END_REF]. When we calculate the ! ! entropy of the v process, we can prove that:

! ! = -!" ! ! + ! ! !
(19) An exponential informetric process therefore has a finite entropy. We would have been able to define an admissible function with entropy. m is defined as the average amount of effort produced by a source:

! = ! !
(20) The average number of items produced by a source, when this number exists, is characteristic of an IPP. Similarly, the amount of effort needed to produce a source is characteristic of an EIP. Unlike for IPPs, this average exists, for EIPs, as soon as α is higher than 1, the latter being always verified for inverse power distributions.

Examples 3.2.1 Exponential Case

In this case, according to equation ( 2), the effort function is ℎ ! = ! -1, ! ℎ = 0 and the amount of effort is:

! = ! -! (21)
This formula is valid whether N is finite or infinite.

3.2.2: Inverse Power Case

In this case, according to equation (1), the effort function is ℎ ! = !" ! , ! ℎ = 1. We now assume that ! > 1 The amount of effort is:

1. When N is infinite: So, following the integration:

! = !. exp (-!. ! ! Ln(!))!" = ! !!! ! !" (! !!! ! !
). !"(!)!" (22) But, according to equation ( 16):

! = ! (!!!) ! (23) ! = !. (! -1) (24)
The amount of effort is therefore:

! = ! (!!!)
(25) Hence the result:

! = 1 + ! ! = 1 + ! ! (26)
The pivotal role of 2 as a value of α is shown through the following implications: --! < 2 implies that the amount of effort needed to produce all the items is higher than the number of sources, --! = 2 implies that the amount of effort needed to produce all items is equal to the number of sources, -- ! > 2 implies that the amount of effort needed to produce all items is lower than the number of sources. According to ( 24) and ( 25), entropy ( 19) is written as:

! ! = -ln ! -1 + ! !!!
(27) We find the Lotka function's [START_REF] Yablonsky | On fundamental regularities of the distribution of scientific productivity[END_REF] expected result - the decrease of entropy, according to α. When α ≥ 2, according to (10), the amount of effort ( 25) is:

! = ! ! . (! -!) (28)
The amount of effort is calculated according to I and S in the same way as for the exponential case. In this case, we have:

! < ! -! The amount of effort needed during the production of an EIP that is governed by an inverse power (with α ˃ 2) is therefore smaller than an EIP governed by an exponential. This characteristic fits with the properties of informetric inverse powers distributions, as in: the more items a source has, the higher the probability that it will produce a new item.

2. N is finite Equation ( 22) is written as:

! = ! !!! . !" ! . ! !!! + ! !!!
(29) Application: calculating the amount of effort needed to produce words in a text. To illustrate this notion, we use the typical case of a text's word production, well known in informetrics as Zipf's law. In this case, the number of S sources corresponds to the size of the lexicon. The total number of words in the text is the number of produced items, known as I. In (29), N designates the maximal frequency of a word in a text and is generally very high (often consisting of grammatical words such as "the" in the English language). Furthermore, we know that the distribution (frequency rank) of words in a text obeys Zipf's law:

! ! = ! ! ! ! ∈ 1, ! , ! > 0, ! ∈ ℝ !
! and ! are linked by the following well--known relation (see, for example, II. 2.2.1 in [START_REF] Egghe | Power Laws in the Information Production Process: Lotkaian Informetrics[END_REF]

): ! = ! !!!
if N tends towards infinity and If it obeys the Zipf law, then, according to (29), the amount of effort needed to produce a text is: ! ≈ !. ! In the ideal case where β =1, the amount of effort is equal to the number of sources, i.e., to the size of the lexicon. β is generally slightly higher than 1; the effort needed to produce a text is therefore generally slightly higher than the lexicon's size. As to avoid any possible confusion, we must clarify certain points linked to the effort function when discussing this application to the production of words in a text.

Discussion on the Effort Function

The effort function supposes that each used (or produced) item has a certain "cost". In his statistic theory of language (Mandelbrot, 1953), Mandelbrot introduced a cost function. Although he doesn't mention effort functions directly, the intention remains the same:

ℎ ! = !" (!) !" (!)
(a) where V is the amount of different characters in the text and r is the word's rank (words are ranked by decreasing frequency). This function is based on the following hypothesis: the longer a word is, the higher the cost to produce it is.

This effort function has the following characteristics:

--As the number of different characters is reduced, the number of characters in words increases, and, according to (a), the amount of effort needed to produce them increases.

--The higher the rank is, the more words tend to have a large amount of characters and the rarer they are. According to (a), more effort amount is needed to produce them as the rank increases. Knowing the entropy ! and the amount of effort !, Mandelbrot then calculated the probability !(!) of a word by minimizing the average cost of information, ! = ! ! (see for example the proof in [START_REF] Mitzenmacher | A brief history of generative models for power law and lognormal distribution[END_REF]).

In this case, the effort function depends on the ranking of the frequency of words and it contributes to prove Zipf's law. An inefficient solution would have been to say that the cost of producing a word was proportional to the logarithm of a word's length.

An effort function partly defines an EIP . The result in section 4 legitimizes this introduction.

The Necessary and Sufficient Condition for the Existence of an Exponential Informetric Process

The exponential informetric process is defined by 4 parameters: --! > 0 as the number of sources, --! > 0 as the amount of effort needed to produce the process, --h as the effort function that characterizes the process, --! > 1, as the maximum item per source density. We are looking for a necessary and sufficient condition, so that C ˃ 0 and ! > 0 can exist as: 30) play the same role as equations (3) in section 2. This is why we can talk about a generalisation. Unlike section 2, N is a parameter that is supposedly known and that characterizes the process. It measures what is often referred to as the long tail of inverse power distributions. Here, the amount of effort F is what's supposedly known, whereas the number of produced items, I, is not. At first glance, the posed problem seems unrealistic since F, unlike I, is not observable. However, studying the existence of an EIP remains interesting since it allows us to add to the previous results and to develop the notion of the amount of effort needed to produce a process, itself governed by an exponential or power--law distribution. Comment Since the effort function h is a strictly increasing positive function, with ! > 0, this implies that !. exp (-ℎ ! ) is a decreasing distribution. At first, we do not need to consider h as being admissible.

! = !. exp -!. ℎ ! !" ! = !. exp -!. ℎ ! . ℎ(!)!" (30) Equations (
1. N is finite With m to solve problem, (30) equates to finding a necessary and sufficient condition where ! > 0 exist and solves the following equation: 30) are indeed equivalent to:

! = !"# !!.! ! .! ! !" ! ! !"# !!.! ! !" ! ! (31) Equations (
exp -!. ℎ ! . ℎ ! !" ! ! ! = exp (-!. ℎ ! !" ! ! ! = 1 ! Let N>1, for ! > 0 we define function ! ! as: ! ! ! = ℎ ! -! . exp -!. ℎ ! -! !" ! ! ( 
32) Solving equation ( 31) means finding α ˃ 0 so that E N (α)= 0:

! ! ! = 0 ⇔ ℎ ! -! . exp (-! ℎ ! !" = 0 ! ! ⇔ ! = exp -!. ℎ ! ℎ ! !" ! ! exp -!. ℎ ! !" ! !
To conclude, α is the solution of equation ( 33), which depends on N, h and

! = ! ! : ! ! ! = 0 ⇔ ℎ ! -! . exp (-!. ℎ ! !" -! exp -!. ℎ ! !" = 0 ! ! ! !

Proof

The Equality of (31) and the fact that h strictly increases allows us to write: exp (-!. ℎ ! ℎ 1 !"

! ! exp -!. ℎ ! !" ! ! < exp (-!. ℎ ! ℎ ! !" ! ! exp -!. ℎ ! !" ! ! < exp (-!. ℎ ! ℎ ! !" ! ! exp -!. ℎ ! !" ! ! Thus, when simplifying: ℎ 1 < ! < ℎ(!)
The calculation of the derivative is:

!! ! !" = - ℎ ! -! ! ! !
. exp -!. ℎ ! -! !" therefore, the E N function is strictly decreasing. This result highlights the fact that the average amount of effort needed to produce a source falls between the effort function's minimum and maximum. We shall now demonstrate the main result of this article. For the adjustment problem (30) to have a solution -i.e. ! existing as the unique solution to the equation E N (α) = 0 -we must give a necessary and sufficient condition, linking the effort function h, the average effort amount m and the maximal item per source density, N. Theorem 4.1 For any N ˃ 1, then there exists α ˃ 0 as unique solution so as to have E N (α) = 0, if and only if:

! = ! ! ∈ ℎ 1 , ℎ ! !" ! ! ! -1 Proof (i) Necessary Condition
According to the 4.2 lemma, E N is a strictly decreasing function, so ! > 0 implies that:

0 = ! ! ! < ! ! 0 = ℎ ! -! !" ! ! Then: ℎ 1 < ! < ℎ ! !" ! ! ! -1 (ii) Sufficient Condition
The inequality of the 4.1 lemma and the intermediate value theorem implies that there exist ! ∈ 1, ! (unique solution, since h is strictly increasing) so that m = h(y); when u ˂ y, then ℎ ! -! < 0 and ! -! > 0 when u ˃ y, then:

! ! ! = ℎ ! -! . exp (-!. ℎ ! -! !" + ! ! ℎ ! -! . exp (-!. ℎ ! -! !" ! ! so we can write: lim !→! ! ! ! = -∞ . Since E N is strictly decreasing and ! ! 0 = ℎ ! -! > 0 ! !
we can therefore conclude that ! > 0, with E N (α) = 0 as the unique solution 2. N is infinite Although we aren't covering this case as a whole, two comments can be made. First, when N is infinite, we must assume that the effort function h is admissible for F and m to be finite. An important property then completes the theorem.

Lemma 4.2 If N tends towards infinity, then the function

! ! = ! ! !" ! ! !!!

tends towards infinity and is an increasing function. Proof

Since h isn't bounded, ∀ ! > 0 N so that ∀! > !, ℎ ! > ! then ℎ ! !" > ! -1 ! ! ! therefore ! ! !" ! ! !!! > ! therefore g is not bounded. The calculation of the derivative !"(!) !" = ℎ ! . ! -1 - ℎ ! !" ! ! (! -1) ! is positive, therefore g is increasing.
Discussion Before working on examples, we must think about the significance of such a result. First of all, we notice that, in the same way as for an IPP, the normalizing factor C doesn't play a part in this problem. It is entirely determined by α. Lemma 4.2 allows us to precise the results of theorem 4.1. Supposing that we are in a stable process in which the number of sources is mostly fixed, the amount of effort increases slightly. Let's suppose that the necessary condition for the existence of an EIP is verified. Then, if N -the maximum number of items a source can produce -increases over time, then the condition of existence is always verified. Let's take, as an example, the case where a relatively long text is produced. Let's suppose that the text is lengthened over time by its author. We can suppose that the size of the lexicon doesn't change very much. If the amount of effort increases slightly, the condition of theorem 4.1 remains true because of the fact that a word's maximal frequency, generally a grammatical word, becomes very high.

Examples of Processes

This theorem is now applied to the two types of distributions seen above in the context of IPPs.

Exponential Process

We shall call this method as follows: the mathematical exponential adjustment of an EIP.

1. N is finite ! = ! -! and the effort function is ℎ ! = ! -1. According to theorem 4.1, for any ! > 1, and

! = ! ! ∈ 0, !!! !
(34) α exists as unique solution to (33) :

!. exp (-!. ! -1 !" -(1 + !) exp -!. ! -1 !" = 0 ! ! ! !
According to (21), we have ! + 1 = ! ! Following calculations, we then find, the same equation ( 8) as for the mathematical exponential adjustment of an IPP. Hence (30) implies that:

! = !.! !!!"# (! !!! .!)

Remarks

Equations for IPPs and EIPs are identical, but the solved problems are different. If we call this equation Fe, it depends on three values, α, m and N, which all play different roles in each equation. If we call the unknown x, then: -- In the case of an IPP, we find a necessary and sufficient condition for the equation Fe (x, α, m) = 0 (here, x = N) to have a unique solution:

! < 1 ! -- In the case of an EIP, we find a necessary and sufficient condition for the equation Fe(N, x, m) = 0 (here x= α) to have a unique solution :

! < ! -1 2
We therefore proved the following result. Where ! > 1, ! > ! > 0, a necessary and sufficient condition for ! > 0 and ! > 0 to exist, verifying :

! = !. exp !. ! -1 !" ! = !. exp !. ! -1 (! -1) !" ! ! ! ! (36) is ! < ! !!! !!! ! < !!! ! (37) 
We can illustrate this result with a numerical example. 2. Numerical example N°1 --The mathematical exponential adjustment of an EIP Let S = 5,000 F= 15,000 and N= 10 , then I = 20,000 and m= 3, we have equation ( 8) that takes the form of (38) (replacing α by x):

4! - !"# (!!!))(!!!!"!)!!!! !!!"# (!!!)
(38) Which can be solved (since (34) is true) by using the MAPPLE 17 software, for e.g. we find x≈ 0.239=α (35) implies that C ≈ 1, 352. To conclude, the exponential distribution is:

! ! ≈ 1,352. exp -0.239. ! -1 ! ∈ 1,10 (39) 
The result is coherent since the condition (7) of the mathematical exponential adjustment of an IPP is verified:

0.239 = ! < ! !!! = ! ! = 0.33 --
The mathematical exponential adjustment of an IPP We use the same values as the previous example. Let S= 5,000, I= 20,000 and α = 0.239 then equation ( 8) takes the form of (40) (replacing N by x):

0.956 - !"# !!.!"#!!!.!"# !!.!"#!!! !!.!"# !!!"# !!.!"#!!!.!"# = 0
(40) Which can be solved (since ( 7) is true) by using the MAPPLE 17 software, for e.g. we find the expected result, which is x≈ 10 = N. The result is coherent since the condition (34) of the mathematical exponential adjustment of an EIP is verified:

! = !!! ! = 3 < !!! ! = 4.5 3. N is infinite
If N tends towards infinity, then the equation is written as:

! ! . ! -! -1 = 0
With the value of α being:

! = ! ! = ! ! = ! !!! (41) 
We also have:

! = ! !
!!! We obtain the same result (see 5 and 6) as for the mathematical exponential adjustment of an IPP. This result was expected since the effort function in the exponential model is the identity function. The mathematical exponential adjustment of an IPP and the mathematical exponential adjustment of an EIP are identical.

Discussion Conditions (37) for the existence of an IPP that is governed by an exponential process are complete. For the exponential case, the amount of effort does not need to be known. All that needs to be known are the 3 essential characteristics of a distribution. The inverse power case is very different, as we are about to see.

Inverse Power Process

We shall call this method as follows: the mathematical inverse power adjustment of an EIP.

1. N is finite The effort function is log u. According to theorem 4.1, for any N˃1, and

! = ! ! ∈ 0, !.!" ! !!!! !!! ( 
42) There exists α, solution of (33):

ln (!) ! ! ! ! !" -! 1 ! ! ! !
!" = 0 Therefore the equation to be solved is:

! !!! ! ! !!! !" ! ! . ln ! !" -!. ! !! ! ! !" = 0 Following calculations: ! !!! Ln N . ! !!! + 1 -! !!! ! !!! + ! !!! ! = 0
(43) We also have, according to (30), the normalizing coefficient:

! = !.(!!!) !!! !!! (44) 2. Numerical example N°2
Let S =10,000, F=6,000 and N = 10; we have and ! = ! ! and: 43) takes the following form (replacing α by x): 42) is verified, this equation can be solved by using the MAPPLE 17 software, for e.g. we find x ≈ 2.47 = α. (44) implies that C ≈ 15,215. To conclude, the power distribution is:

!.!" ! !!!! !!! = 1.5584 Equation (
!" !" .!" !!! !!! + 1 -10 !!! . ( !.! !!! + ! (!!!) ! ) = 0 (45) Since condition (
! ! ≈ 15,215. ! ! !.!" ! ∈ 1,10 (46) 
Numerical example N°3: Let S=5,000, F=7,000 and N=50 we have m=1.4 !. !" ! -! + 1 ! -1 = 2.991 Equation ( 43) takes the following form (replacing α with x): 42) is verified, this equation can be solved by using the MAPPLE 17 software, for e.g. we find x ≈ 1.46 = α. (44) implies that C ≈2,679. To conclude, the power distribution is:

!" !" .!" !!! !!! -1 -50 !!! . !.! !!! + ! !!! ! = 0 (47) Since condition (
! ! ≈ !,!"# ! !.!" ! ∈ 1,50 (48 
) 4. N is infinite If N tends towards infinity, then ( 43) is written as follows:

! 1 -! + 1 (1 -!) ! = 0 With the value of α being: ! = 1 + ! ! = 1 + ! !
(49) We find the expected result (see ( 26)) for the value of α. Furthermore, we deduce, based on (30), that: ! = !. (! -1) If α ˃ 2, then, according to (28), the equation ( 49) is written as follows:

! = 1 + ! ! -! and ! = !. ! ! -! i.
e., the same result (see ( 10) and ( 11)) as for a mathematical inverse power distribution adjustment.

Discussion

In the case where N is infinite, we demonstrated the formula ! = 1 + ! ! . This formula is true, whatever α's value. The more the effort amount F decreases (or, the more entropy decreases), the more α increases. This means that the gap widens between a large number of sources that produce little and a small number of sources that produce a lot. Unlike in the case of an (IPP), the value α =2 is not a breaking point. In the two numerical examples that were considered, when we compare the value of α, solution to the equation, it is roughly equal to 1 + ! ! Example 2: exact calculation of α , 2.47, rough formula α ≈ 2.67 Example 3: exact calculation of α , 1.46, rough formula α ≈ 1.7 We can compare the necessary and sufficient conditions for the existence of an exponential process and of an inverse power process. For N ˃ 1, the inequality is as follows:

!.!" ! !!!! !!! ≤ !!! !
This inequality implies that if the mathematical power adjustment of an EIP is verified, then the same applies for a mathematical exponential adjustment. This result concurs with the mathematical adjustment of an IPP (see theorem 5 [START_REF] Lafouge | The source--item coverage of the exponential function[END_REF]). If N is infinite, it is worth making a parallel between the coefficient α of the exponential (41) and of the inverse power (49).

! =

Discussion: Limits and Contributions

The numerical examples used in this article weren't drawn from real situations. It is currently difficult for us to present such real results. The crucial problem lies in knowing the amount of effort -which is unknown and tied to the effort function, itself also unknown, as was shown above. We would need to perform calculations in a real life setting and choose a realistic value for F. We could then compare it with results obtained using the classic Lotkaian case.

The main contribution in creating an EIP lies in the fact that the EIP highlights the connectionthough already known -between the amount of effort (or entropy (see ( 19)) as understood by Shannon) and informetric distributions. Lotkaian distributions serve to explain many statistical regularities. It therefore seems important to draw attention to two points:

--the role of the logarithm effort function. In a previous article (lafouge T and Smolczewska 2006), we showed that, if h is an effort function -positive, strictly increasing and unbounded -that verifies the relation

lim !→! ℎ(!) ln (!) = ! ! > 1
then h is admissible and the amount of effort is finite. Unfortunately, such a condition is not necessary.

--We also want to highlight the pivotal point of ! = 2, since it corresponds to the case where the amount of effort is equal to the number of sources.

Conclusion

Both models are compared: the mathematical adjustment of an IPP initiated by Egghe, and the mathematical adjustment of an EIP, presented in this article. This is relevant only if the distribution is of the power or exponential type.

When N is infinite, the mathematical exponential adjustments of an IPP and of an EIP is identical.

When N is infinite and α ˃ 2, the mathematical power adjustment of an IPP and of an EIP are identical.

Results differ in a realistic case, when N is finite. In the exponential case, the mathematical adjustment of an EIP completes the result previously found for an IPP. This is due to the fact that the effort function is the identity, therefore ! = ! -! whatever the value of N. In the power case, the value α = 2 is not a breaking point for an EIP, whereas it is for an IPP. It would be interesting to study other effort functions [START_REF] Lafouge | An interpretation of the effort function trough the mathematical formalism of exponential informetric process[END_REF] in order to expand on the notion of EIP adjustments.

  14)Where α is a parameter verifying condition (12) with: ! = ! !" (!)
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 2 Figure 2: Diagram of an Information Production Process with an effort function: the EIP. ℎ ∈ !" is called an admissible effort function if ! exists as a real positive number verifying the condition: