
HAL Id: hal-01134157
https://hal.science/hal-01134157v1

Preprint submitted on 23 Mar 2015 (v1), last revised 4 Dec 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing and modeling land use organization in cities
Maxime Lenormand, Miguel Picornell, Oliva Garcia Cantú, Thomas Louail,

Ricardo Herranz, Marc Barthelemy, Enrique Frías-Martínez, Maxi San
Miguel, José Javier Ramasco

To cite this version:
Maxime Lenormand, Miguel Picornell, Oliva Garcia Cantú, Thomas Louail, Ricardo Herranz, et al..
Comparing and modeling land use organization in cities. 2015. �hal-01134157v1�

https://hal.science/hal-01134157v1
https://hal.archives-ouvertes.fr


Comparing and modeling land use organization in cities

Maxime Lenormand,1 Miguel Picornell,2 Oliva G. Cantú-Ros,2 Thomas Louail,3, 4 Ricardo
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The advent of geolocated ICT technologies opens the possibility of exploring how people use space
in cities, bringing an important new tool for urban scientists and planners, especially for regions
where data is scarce or not available. Here we apply a functional network approach to determine
land use patterns from mobile phone records. The versatility of the method allows us to run a
systematic comparison between Spanish cities of various sizes. The method detects four major land
use types that correspond to different temporal patterns. The proportion of these types, their spatial
organization and scaling show a strong similarity between all cities that breaks down at a very local
scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired
by Schelling’s segregation, able to explain and reproduce these results with simple interaction rules
between different land uses.

INTRODUCTION

Land use patterns appear as a natural result of cit-
izens and planners interaction with the urban space.
However, in a feedback loop, they also play a ma-
jor role in the experience that residents and visitors
have of a city [1]. Land use patterns have an effect
on the livability of neighborhoods and even on the
health of the local residents [2]. On the other hand,
land use and transportation display a well-established
relation [3–6]. Transport demand depends on the lo-
cation of residence and business areas, while the pres-
ence of new transport lines or facilities such as metro
stations can substantially modify the land use mixing
in a given area of the city. These ideas lie behind the
development of the so-called Land Use Transport In-
teraction (LUTI) models [7, 8], which are commonly
employed in transport planning around the globe [9].

An important issue regarding land use refers to the
methods employed to estimate it. City Hall registers,
surveys or satellite images have been used in the past
to this end [10–16]. The emergence of geo-located
ICT technologies introduces extra capabilities to di-
rectly measure the use that citizens make of each ur-
ban space. The information is exhaustive in terms of
spatial and temporal resolution, allowing for the de-
tection of concentrations of people second by second
along days, weeks and months. As long as the data
is geolocated, different sources are valid to estimate
land use. Information from mobile phone call records
[17–30], geolocated tweets [15, 31–35], credit card use
[36, 37] or FourSquare [21] has been considered in the
literature. Different data sources have been compared,
finding a consistent agreement among the estimations
on human concentrations and mobility obtained from
different ICT data [26], as well as between ICT data
and more traditional techniques [20–23, 26, 28, 38].

Such wealth of information together with the ability

to process massive data brought by the Internet era
allows the systematic comparison of features across
cities. This analysis can lead to the discovery and con-
firmation of properties that have been hypothesized to
be common to all cities, and also to laws providing in-
sights into the way a property scales with city size.
Some examples of these properties include number of
patents filed, unemployment rates, GDP per capita,
business diversity, consumption of resources, length
of road networks, or even crime density [39–46]. The
finding of these laws raises the hope of the existence of
a coherent framework for city science [40, 43–45, 47–
49].

In this work, we explore land use patterns in the five
most populous urban areas of Spain. Land use infor-
mation is obtained from mobile phone records using
a new framework based on network theory and sys-
tematic comparisons of land use distribution across
the five cities are performed at different scales. Our
results reveal common features in the land use types
spatial distributions, which can be understood with
a model introduced also here. The similarities break
down when the land use type mixing is studied at very
short spatial scales, exposing patterns characteristic
to each city.

MATERIALS AND METHODS

A network approach to detect land use

Our database is composed of aggregated and
anonymized call records during 55 days between
September and November 2009 in Spain. Every time
a user receives or makes a call, the event is registered
together with the tower (BTS) providing the service.
The positions of the BTSs are geo-referenced and so
the activity levels of each spatial area can be tracked
in time. For this work, we select the five most pop-
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Figure 1. Steps of the method to detect land use. (A-B)
The urban area is divided in cells of equal area. (C) For
each cell, we calculate an activity profile in terms of phone
calls along time during the days of the week. (D) A Pear-
son correlation matrix between cell activities is computed.
Then the matrix formed by correlations over a threshold
value δ is used to define an undirected weighted network
(E), which is clusterized using community detection tech-
niques and the results plotted again on the city map (F).

ulated metropolitan areas of Spain: Madrid (with a
population over 5.5 millions people), Barcelona (3.2
millions), Valencia (1.5 millions), Seville (980, 000)
and Bilbao (900, 000). The definition of the borders
of each urban area is not unique. It may refer, for
instance, to official, census or economic delimitation
of the cities. Since the focus here is on urban land
use, we are interested in identifying the inner zones of
each city and, therefore, we use the definition of the
metropolitan transportation offices: only areas served
by metro or urban buses are considered. This is, nev-
ertheless, an important question because the selection
of borders may influence the scaling analysis when
comparing across cities [45, 50].

The space of the urban areas is divided following
a Voronoi tessellation with the BTS location as cen-
ters. The extension of the areas served by each BTS is
very different, since it depends on the expected peaks
of demand. To ensure a common geographical frame-
work, the five urban areas are divided in a grid with
square cells of 500 × 500m2 to which the activity is
mapped. This should prevent spurious effects due to
the Voronoi areas heterogeneity (see the Appendix for

a detailed description of the cities and the division
process).

The activity (number of users) in each cell is moni-
tored in time and then processed as illustrated in Fig-
ure 1. Average activity profiles are estimated over
each day of the week hour by hour in every cell.
These profiles are normalized by the total hourly ac-
tivity to subtract the trends introduced by the cir-
cadian rhythms. A Pearson correlation coefficient is
then calculated between the activities of every pair
of cells, obtaining a correlation matrix describing the
level of similarity between activity profiles. The corre-
lations can take positive and negative values. Distri-
butions of these values are shown in the Figure S4 of
the Appendix. Considering only positive values over a
threshold δ, one can define a weighted network per ur-
ban area. We first note that variations of the threshold
do not produce significant changes in the properties
of the resulting network (see Figure S4 in Appendix).
The results in the main text refer to a value of δ equal
to the correlation distribution dispersion.

Once the networks are built, their mesoscopic struc-
ture is analyzed using clustering techniques. It is im-
portant to note that different clustering methods can
lead to distinct partitions of the networks. We report
next results obtained with Infomap [51], while a sys-
tematic comparison with results obtained with other
clustering tools is provided in Appendix (Figures S5
and S6). Infomap does not require the input of a
predetermined number of clusters. Therefore, it is in-
teresting to find that in the five cities, between 98 and
100% of the cells are covered with only 4 groups. Fig-
ure 2 shows how the activity looks like for each of these
four clusters in Madrid (similar plots for Barcelona,
Valencia, Seville and Bilbao are included as Figures
S10 and S11 in Appendix).

Each of the clusters can be associated with a main
land use: i) Residential (red), which is character-
ized by low activities from 8am to 5 − 6pm. For the
cells composing this group, the activity peaks around
7 − 8am and during the evening. In the weekend,
the activity is almost constant except for the night
hours; ii) Business (blue), where the activity is signif-
icantly higher during the weekdays than during the
weekends. Furthermore, it concentrates from 9am to
6 − 7pm; iii) Logistics/Industry (cyan), where, as for
Business, the activity is higher during the weekdays.
We observe a large peak between 5am and 7am fol-
lowed by a smaller peak around 3pm. This cluster
can be related to transport and distribution of goods:
for example, ”Mercamadrid” (the largest distribution
area of Madrid) belong to this cluster; iv) Nightlife
(orange), which is characterized by high activity dur-
ing the night hours (1am-4am), especially during the
weekends. During the weekdays, these areas show
higher activity between 9am and 6pm, as for the Busi-
ness cluster, which may be hinting a certain level of
mixing in the land use. Some examples of this cate-
gory are the ”Gran Via” in Madrid and the ”Ramblas”
of Barcelona where abound theatres, restaurants and
pubs mixed with offices and shops. This is typically



3

0.40

0.45

0.50

0.55

0.25

0.30

0.35

0.40

F
ra

ct
io

n
 o

f 
M

o
b

ile
 P

h
o

n
e 

U
se

r

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

0.30

6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218

Hour of the day

Mon.     Tue.    Wed.     Thu.     Fri.      Sat.      Sun.

Madrid 

Figure 2. Temporal patterns associated with the four
clusters for the metropolitan area of Madrid. In red:
Residential cluster; In blue: Business; In cyan: Logis-
tics/Industry; And in orange: Nightlife.

the smallest cluster of the four in number of cells.
More systematically, cadastral information is used to
validate the assignation of Residential, Logistics and
Business cells in Barcelona and Madrid. The nature of
both land use assignations is very different: the cadas-
tral data is based on the surface officially devoted to
each activity and not necessarily on the number of
people performing it. However, the overall agreement
is high: 60% in Barcelona and 65% in Madrid (see the
Appendix for more details).

RESULTS

Comparison of cities

Once defined the clusters, we can study how the
cells in each cluster are organized in the city’s space.
For the sake of comparison, we arbitrarily consider as
city center the location of the City Hall and build a
histogram with the number of cells at a certain dis-
tance from it. Since each city has a different spatial
extension, distances are normalized by dividing by the
maximal distance in each city so as to produce compa-
rable results. The distributions are shown in Figure 3,
where average curves over all cities have been super-
imposed. It is interesting to note certain similarity
in the distribution of cells for all urban areas. City
size acts as a natural cutoff in the distributions, al-
though no simple functional shape is found in any of
the clusters. For instance, pure power-law or exponen-

tial decays cannot fit these distributions. Residential
cells are well distributed across the cities but with a
maximum not very far from the center. Business cells
appear at a similar distance as Residential but peaking
a little further. Logistics and Industry are preferen-
tially located in the periphery, while the Nightlife cells
are well distributed along the urban areas but slightly
more concentrated in the central areas.

In order to quantify land use distribution patterns,
we use the Ripley’s K [52] defined as

K(r) =
A

n2

n∑
i

Ni(r), (1)

where A is the city area, r the search radius (a geo-
graphical scale), the index i runs over the cells in the
urban area and n is the total number of cells. Ni(r)
stands for the number of cells of a given type within
a distance r from the cell i. This indicator measures
the spatial heterogeneity of a given type of cells. The
baseline for homogeneous random systems is a growth
K(r) = πr2 until reaching A. If the value of K(r) is
over the random curve for a certain r it implies that
the system is clusterized at that scale. Since cities
have different sizes, both K(r) and the radius must
be normalized by their maximum values (A for K(r)
and the maximum distance for r). Curves for the nor-
malized Ripley’s K for each city and land use type are
displayed in Figure 4A as a function of the normalized
radius. The K(r)/A for each city are always above the
green curve corresponding to a random distribution of
land use types, indicating coarsening of land use. We
find a scaling-like curve for all the land use types with
most of the cities following well the general trend with
some small deviations for Nightlife in Seville.
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Figure 3. Distribution of the distance between the cells
and the City Hall according to the type of land use. The
distance has been normalized by the maximum distance in
each city.
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Figure 4. Comparison of the observed and the simulated Ripley’s K and average entropy index. (A) Ripley’s K divided
by the city area as a function of the search radius. The radius has been normalized with the maximum value in each
urban area. (B) Average entropy index as function of the lateral number of divisions (inverse scale) D. The color and
symbols of the curves represent different cities. The red curve corresponds to our model results and the green curve is
the outcome of a random null model. Results for our model were obtained with a calibrated value of γ = 0.8. The red
and green curves display the average over 100 realizations.

Deepening the analysis, we can also define an en-
tropy index to characterize the land use spatial orga-
nization. Let us consider a frame containing the full
urban area, which is, in turn, sub-divided in a certain
number D2 of equal divisions. Each of these subdivi-
sions, Bi, intersects the elementary cells so a certain
fraction of area falls in each of the land use types: fRi
in the Residential cluster, fBi in Business, fLi in Lo-
gistics, and fNi in Nightlife. An entropy index, Ei,
can be defined for Bi as

Ei = −
∑
α

fαi ln(fαi ), (2)

where α runs over the four clusters. The entropy Ei is
then averaged over all the divisions to obtain a global
metric for the city at a given scale E(D). E(D) tends
to zero if the land use within the divisions becomes
unique, as occurs for instance at large D (small spa-
tial scales). On the other extreme, when D → 1 ,
E(D) converges to a fixed value describing the full
city. Figure 4B shows how the average entropy be-
haves with D. The curves are similar across cities,
recalling the shape of scaling functions. This is not
surprising if the concept of a fractal-like distribution
of the city activity applies as has been previously dis-
cussed in the literature [39–45].

Modeling land use

Urban land use models in the literature are typically
built with relative elaborated mechanisms [53, 54]. If

basic in the rules, the models typically refer to char-
acteristics of cities such as the population or activ-
ity distributions [47–49]. The shape of E(D) can be
explained, however, by a simple model inspired by
Schelling’s segregation [55]. It is important to stress
that this model is not intended to reproduce all the
processes leading to the land use formation, but to
explain the scaling of its spatial distribution patterns.

The basic framework is a lattice in 2D representing
the urban space. Initially, a variable ti with a land
use type is assigned to every cell i at random (Res-
idential R, Business B, Logistics L or Nightlife N).
The global fraction of cells of each type respects the
proportions found in the empirical data in such a way
that E(D = 1) coincides with the observations. A sat-
isfaction index, Si, is then defined per cell taking into
account its type and those of its neighbors. Similarly
to Schelling’s model, we assume that the satisfaction
increases when a cell is surrounded by cells of its own
type. Otherwise, Si depends on the particular com-
binations of types. Some land uses attract each other
as, for instance, Residential and Business, while oth-
ers repel as Residential and Logistics. To be specific
if pit is the fraction of neighbors of i of type t, then Si
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is calculated as

if ti = L, Si = δpiL,1,

if ti = N, Si = piN δpiL,0,

if ti = R,B, Si =


δpiL,0 with probability γ,

piR,B δpiL,0 with probability 1− γ,

where δp,x is the Kronecker delta (equal to one if
p = x, zero otherwise) and γ is the only model pa-
rameter. Note that the first condition implies that for
Logistic cells Si = 1 only if they are surrounded by
cells of the same type, and that cells of other types
have zero satisfaction if surrounded by any Logistic
one. With this rule, we introduce a tendency to lo-
cate Industry and Logistics out of the core areas of the
cities. Residential and Business cells have a certain
tolerance to the R,B and N types with γ acting as a
mixing control parameter: if γ = 0, mixing is not fa-
vored. A global satisfaction measure is defined as the
sum over all the cell satisfaction indices, S =

∑
i Si.

The model is updated by choosing random pairs of
cells and interchanging their land use if the exchange
increases S. This process is repeated until the satis-
faction reaches a stationary state.

Calibrating the single parameter γ, we can repro-
duce the observed K(r)/A and E(D) scaling in the
real urban areas (see red curves in Figure 4). The
value of the mixing parameter at which the best av-
erage results are obtained is γ = 0.8. For comparison
sake, we have included a null model in which the land
use types are distributed at random, keeping the real
proportions, to show that ignoring the interactions
between the different land use types does not allow
the reproduction of the curves obtained with the data
(green curves in Figure 4).

Mixing of land use types

So far, we have considered that each elementary cell
has a unique land use type associated. This condition
can be easily relaxed. If an average activity profile is
defined for each of the four clusters, a Pearson correla-
tion coefficient between the activity profile in each cell
and the clusters’ averages can be calculated. The dis-
tribution of correlation values is shown in Figure 5A.
The highest correlation value corresponds typically to
the cluster at which the cell is assigned. Still, in some
cases, positive correlation values are found for other or
even two other clusters. For every cell, we can quan-
tify the intensity of its relation with each cluster by
summing over these positive correlations and normal-
izing by the total. A map of the Barcelona metropoli-
tan area with the intensity of each cell relation with
its assigned cluster is shown in Figure 5B. The colors
represent the four main type of cells and the color sat-
uration is related to the correlation: darker if the cor-
relation is high, paler otherwise. Most cells match well

with their original assigned cluster, keeping darker col-
ors, while some are brighter, implying a higher level
of land use mixing.

We arbitrarily define a cell as mixed when the nor-
malized correlations fall within the interval 0.3 − 0.7
for other clusters besides the assigned one. The frac-
tion of mixed cells as a function of the city popu-
lation is displayed in Figure 5C. Larger cities show
lower mixing and contain areas devoted to more spe-
cific purposes. Figure 5D illustrates how the land use
types combine in each cell. Business and Residential
integrate well together as in our model, increasingly
so for smaller cities. The mixing proportions are city-
dependent and act as a fingerprint to characterize each
urban area. This feature may be used to classify cities
with similar land use mixing patterns. Besides popu-
lation size, causal links between level of spatial mixing
and city shape, area, age of the city, function, etc. will
be explored in future investigations. The mixing pro-
portion can be either related to the organization of
cities as monocentric or polycentric [27, 56]. Smaller
cities display a more monocentric structure, which can
be associated with the mixing of land use types given
the most restricted space.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Correlation coefficient

PD
F

Assigned cluster
Second closest cluster
Third closest cluster 
Fourth closest cluster

A B

C D

0.0

0.2

0.4

0.6

0.8

1.0

Metropolitan Area

Fr
ac

tio
n 

of
 c

el
ls

Res/Bus Res/Log Res/Nig
Bus/Log Bus/Nig Log/Nig

 MAD  BAR   VAL   SEV    BIL
0.22

0.23

0.24

0.25

0.26

0.27

0.28

1 2 3 4 5 6

Population (millions) 

Fr
ac

tio
n 

of
 m

ix
ed

 c
el

ls

Madrid

Barcelona
Valencia

Seville

Bilbao
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DISCUSSION

In summary, we introduce a method to automati-
cally detect land use from electronic records and ap-
ply it to the five largest urban areas of Spain in order
to perform a systematic comparison across them on
the land use distribution. The urban space is divided
in a regular grid to prevent geographic heterogeneity
and to maintain the spatial scale under control. The
user activity profiles are monitored in each unit cell
along time, and then a correlation matrix is estab-
lished between the profiles of every pair of cells. This
correlation matrix encodes the functional network of
each city. We analyze them by using network cluster-
ing techniques, which ensures that cells showing sim-
ilar use profiles are grouped together. This method
has been applied to the five most populated Spanish
cities: Madrid, Barcelona, Valencia, Seville and Bil-
bao. Since the delimitation of urban areas could af-
fect the results, the definition of the municipal trans-
port offices is employed in each case. Interestingly
given that the method is unsupervised, four groups
consistently appear as dominant in all cities. They
correspond to activity profiles compatible with main
land uses in Residence, Business, Logistics/Industry
and Nightlife. Not only the types are the same across
cities, but also the proportions of cells and area de-
voted to each type are similar.

We also study the distribution of the four land use
types at different spatial scales. We define the Ripley’s
K and the entropy index for each land use type and
the behavior of both metrics is explored as the spa-
tial scale varies from the full city (macroscopic scale)
to a single cell (microscopic). The five cities show
similar scaling curves for the metrics, implying com-
parable structures regarding how the four types amal-
gamate at the urban level. The shape of the scaling
curves can be explained by a simple model that has
been proposed in this work. The model is based on a
Schelling-like segregation in which the different land
use types interact to generate a spatial distribution in
the city. Cells in a given land use type tend to max-

imize the number of neighbors undergoing equivalent
uses. This rule induces a tendency to coarsening in
land use types. The different land uses interact by
attracting each other, such as services and residen-
tial areas, or by repelling like industry and almost
any other type. The calibration of a single parame-
ter regulating the intensity of the attraction between
services, residential uses and nightlife is enough to re-
produce the scaling curves observed in the real cities.
Moreover, we also demonstrate that a model without
land use type interactions cannot recreate the empir-
ical scaling.

Similarities across cities break down when one fo-
cuses on how the land use types mix microscopically
within each unit cell. A characteristic mixing profile
is detected for every urban area, providing an individ-
ual city fingerprint. Further data on other cities could
help to elucidate whether different typologies exist at
this microscopic mixing level. In conclusion, despite
further data from other countries and sources could be
important to confirm our results, we find that a co-
herent picture emerges in the land use organization of
major urban areas and that its origin can be explained
with a basic model.
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nell, M, Herranz, R, Fŕıas-Mart́ınez, E, Ramasco, JJ,
& Barthelemy, M(2015) Uncovering the spatial struc-
ture of mobility networks. Nature Communications
6:6007.

[30] Blondel, V, Decuyper, A & Krings, G (2015) A survey
of results on mobile phone datasets analysis. ArXiv
e-print arXiv:1502.03406.
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APPENDIX

Case studies

In this study, we focused on the five biggest
metropolitan areas of Spain, Madrid, Barcelona,
Valencia, Seville and Bilbao (Figure S1). These
metropolitan areas are very different in terms of sizes
and populations (Table SI). For all cities we have se-
lected as urban area the one served by public trans-
portation (bus and metro) instead of the official defi-
nition that in the case of Seville includes a much larger
extension relatively depopulated.

Data pre-processing

Mobile phone records of anonimyzed users during
55 days (hereafter noted T ) within the period of
September-November 2009 were aggregated in two dif-
ferent ways. The aggregated data corresponds to the
number of users per hour and per base transceiver
stations (BTSs) identified with UTM (WSG84) coor-
dinates. A user may appear connected to more than
one BTS within a period of one hour. To avoid over
counting people the following criteria was used when
aggregating the data: each person shall count only
once per hour. If a user is detected in k different posi-
tions within a certain 1-hour time period, each regis-
tered position will count as (1/k) ”units of activity”.
From this aggregated data activity per BTS and per
hour is calculated for each day. In order to compute
the number of mobile phone users Pg,d(h) in a grid cell
g (dimension 0.5× 0.5 km2) for a day d ∈ T between
h and h+ 1, where h ∈ |[0, 23]|, we first computed the
Voronoi cells associated with each BTS.

Madrid

Barcelona

Valencia

Sevilla

Bilbao

Figure S1. Map of the metropolitan areas.

http://www.sedecatastro.gob.es/OVCInicio.aspx
http://www.sedecatastro.gob.es/OVCInicio.aspx
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TABLE SI. Summary statistics on the metropolitan areas

Metropolitan area Number of municipalities Number of inhabitants Area (km2)

Madrid 27 5,512,495 1,935.97

Barcelona 36 3,218,071 634

Valencia 43 1,549,855 628.81

Sevilla 8 983,852 352

Bilbao 34 908,916 500.2

Voronoi cells

First we remove the BTSs with zero mobile phone
users and we compute the Voronoi cells associated
with each BTSs of the metropolitan area (hereafter
called MA). We remark in Figure S2A that there are
four types of Voronoi cells:

1. The Voronoi cells contained in MA.

2. The Voronoi cells between MA and the territory
outside the metropolitan area.

3. The Voronoi cells between MA and the sea
(noted S).

4. The Voronoi cells between MA, the territory
outside the metropolitan area and the sea.

To compute the number of users associated with
the intersections between the Voronoi cells and MA
we have to take into account these different types of
Voronoi cells. Let m be the number of Voronoi cells (ie
BTSs), Nv,d(h) the number of users in a Voronoi cell v
(on day d at time h) and Av the area of v, v ∈ |[1,m]|.
The number of users Nv∩MA,d(h) in the intersection
between v and MA is given by the following equation:

Nv∩MA,d(h) = Nv,d(h)

(
Av∩MA

Av −Av∩S

)
(3)

We note in Equation 3 that we have removed the
intersection of the Voronoi area with the sea, indeed,
we assume that the number of users calling from the
sea are negligible. Now we consider the number of
mobile phone users Nv,d(h) and the associated area
Av of the Voronoi cells intersecting MA (Figure S2B).

Grid cells

Let n be the number of grid cells, the number of
mobile phone users Ng,d(h) (on day d at time h) is
given by the following equation, ∀ g ∈ |[1, n]|:

Ng,d(h) =

m∑
v=1

Nv,d(h)
Av∩g
Av

. (4)

Then the set of days T is divided into subsets Tw ⊂
T and the average number of mobile phone users is
computed for each day of the week w (Equation 5).

Ng,w(h) =

∑
d∈Tw

Ng,d(h)

|Tw|
(5)

The average number of mobile phone users for the
metropolitan areas according to the time and the day
of the week are plotted on Figure S3. The profile
curve shows two peaks, one peak around 12AM and an
other one around 7PM. It also shows that the number
of mobile phone users is higher during weekdays than
during weekend.
N is normalized such that the total number of users

at a given time on a given day is equal to 1, Equation
6,

N̂g0,w(h) =
Ng0,w(h)∑n
g=1Ng,w(h)

(6)

This normalization allows for a direct comparison
between sources with different absolute user’s activ-
ity. For a given grid cell g = g0 we defined the tem-
poral distribution of users N̂g0 as the concatenation
of the temporal distribution of users associated with
each day of the week. For each grid cell we obtained a
temporal distribution of users (also called signal) rep-
resented by a vector of length 24 × 7. It is possible
that some grid cells have exactly the same signal be-
cause some Voronoi cells may contain several cells, in
this case the grid cells have been aggregated (Figure
S2C).

Functional network

Choice of δ

In the method used to extract the functional net-
work from the mobile phone data presented in the
main text we apply a threshold δ to the correlation
matrix in order to remove the noise and negative cor-
relations from the correlation matrix. Hence, we have
to choose a value of δ high enough to remove the noise
but not too high in order to preserve the structure
and the properties of the network. Figure S4 displays
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A B C

Figure S2. Map of the metropolitan area of Barcelona. The white area represents the metropolitan area, the dark gray
area represents territory surrounding the metropolitan area and the light grey area represents the sea. (A) Voronoi cells
of the mobile phone antennas point pattern. (B) Intersection between the Voronoi cells and the metropolitan area. (C)
Recording sites composed of grid cells of dimension 0.5 × 0.5 km2.
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Figure S3. Average number of mobile phone users per hour according to the day of the week for the five metropolitan
areas.

the distribution of the weights (i.e. correlation coeffi-
cient) for the five case studies. One can observe that
these distributions can be approximated by a Gaus-
sian distribution. Therefore, we have decided to keep
only edges with a weight higher than the weight dis-
tribution’s standard deviation. In Figure S4 we note
that for δ lower than the weight distribution’s stan-
dard deviation (around 0.4, see details in Table SII)
the number of connected components is equal to 1.

Table SII summarizes the statistical properties of
the functional networks obtained for the five case stud-
ies. In these tables we can observe the threshold (SD),
the number of nodes (i.e number of cells) (N), the
number of edges (E), the average degree (< k >),
the average clustering coefficient (C) and the average
shortest path length (L). The average clustering co-
efficient Cr and the average shortest path length Lr
have been obtained with a randomly rewired network
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Figure S4. Number of connected components as a function of δ (Left) and weight distribution (Right) for the five case
studies. From top to bottom, Madrid, Barcelona, Valencia, Sevilla and Bilbao.

TABLE SII. Statistical properties of the functional net-
works

City SD N E < k > < k > /N C L Cr Lr

Madrid 0.42 1,381 222,227 321.8 0.233 0.69 2.04 0.31 1.77

Barcelona 0.38 652 46,573 142.9 0.219 0.62 2.02 0.29 1.79

Valencia 0.35 351 13,847 78.9 0.225 0.66 2.06 0.31 1.84

Sevilla 0.38 188 3,700 39.2 0.209 0.62 2.15 0.26 1.81

Bilbao 0.35 267 8,915 66.8 0.25 0.67 2.03 0.39 1.76

preserving the degree of the original network by per-
muting links (4 x (number of edges) times) [57]. We
observe that the five networks are very similar, charac-
terized by a high clustering coefficient and low average
shortest path.

Community detection

Community detection in complex networks has re-
cently been the subject of an abundant literature and
a large number of algorithms has been proposed the
last few years. The purpose of these algorithms is to
identify closely connected groups of nodes within a
network. To do so, several techniques are used such
as maximizing the modularity, measuring probability
flows of random walks or optimizing the local statis-
tical significance of communities.

In this paper, we have decided to use the Infomap
method proposed in [51]. Infomap finds communi-
ties by using the probability of flow of random walks
on the network as a proxy for information flow in the
real system and then decompose the graph into groups
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Figure S5. Contingency tables between the partitions obtained with Infomap and OSLOM for each case study. (A)
Madrid. (B) Barcelona. (C) Valencia. (D) Sevilla. (E) Bilbao. Each row represents a cluster obtained with Infomap
and each column represents a cluster obtained with Oslom. The matrices have been normalized so that the sum of each
column is equal to one.

of nodes among which information flows easily. As
shown in [59], this method gives good results, however,
to evaluate the robustness of the results, the analy-
sis has also been performed with two other clustering
methods, Oslom [60, 61] and Louvain [58]. Oslom
is a method based on a topological approach to de-
tect statistically significant cluster whereas Louvain is
based on modularity optimization which means find-
ing the optimal partition maximizing the density of
links within clusters and minimizing the density of
links between clusters.

In order to compare the partition obtained with the
different method we have plotted in Figure S5 and S6,
respectively, the contingency tables between the parti-
tions obtained with Infomap and Oslom and Infomap
and Louvain for each case study. In these figures, each
plot represents a contingency table C in which each
element Cij is the number of nodes which belong to
the cluster i detected with Infomap and to the clus-
ter j detected with Oslom or Louvain. The matrices
have been normalized so that the sum of each col-
umn is equal to one. This normalization allows us
to study how the nodes belonging to the groups ob-
tained with Oslom or Louvain are distributed among
the clusters found with Infomap. First, we can observe
that the number of communities detected with Lou-
vain or Oslom is always greater or equal to the ones
obtained with Infomap. Indeed, Louvain has detected
a similar number of clusters whereas the number of
communities detected with Oslom increases with the
size of the metropolitan area, from 5 clusters for Bil-
bao to 12 for Madrid. However, it is worth noting that

in most of the cases, more than 80% of the nodes be-
longing to the Oslom and Louvain’s clusters are gath-
ered in one Infomap cluster. This means that even
if the size of the partitions are different, we observe
that clusters obtained with Louvain and Oslom are
sub-clusters of clusters identified with Infomap.

As it can be observed in Figure S7 the fraction of
cells and the fraction of the mobile phone users ac-
cording to the land use type are very similar for the
five case studies.

Comparison with cadastral data

In order to validate the results we compared the
land use patterns obtained with our algorithm with
cadastral data available on the Spanish Cadastral
Electronic Site [62]. The dataset contains informa-
tion about land use for each cadastral parcel of the
metropolitan area of Madrid and Barcelona (about
650, 000 parcels). In particular, we have for each
cadastral parcel the net internal area devoted to Res-
idential, Business and Industrial uses. We can use
these data to identify the dominant cadastral land use
in each grid cell classified as Residential, Business and
Industrial uses by the community detection algorithm.
To do so we need to define a rule to determine what is
the dominant land use in a cell. Intuitively, one would
tend to identify the dominant land use in a cell as the
land use class with the largest area. However, Resi-
dential use is the land use class with the largest area
in most of the cell leading to an over-representation of
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Figure S6. Contingency tables between the partitions obtained with Infomap and Louvain for each case study. (A)
Madrid. (B) Barcelona. (C) Valencia. (D) Sevilla. (E) Bilbao. Each row represents a cluster obtained with Infomap
and each column represents a cluster obtained with Louvain. The matrices have been normalized so that the sum of
each column is equal to one.
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Figure S7. Fraction of cells (a) and mobile phone users (b) according to the type of land use for each case study.
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Residential cells in the metropolitan area. To circum-
vent this limitation we introduce two thresholds δBus
and δLog to identify Business and Logistics cells with
cadastral data. If the fraction of area devoted to Busi-
ness in a grid cell is higher than δBus then the grid
cell is classified as Business. Otherwise, if the fraction
of area devoted to Logistics is higher than δLog then
the grid cell is classified as Industry. Finally, if the
fraction of area devoted to Business and Logistics is,
respectively, lower than δBus and δLog then the grid
cell is classified as Residential.

Hence, we can adjust the values of these two thresh-
olds in order to obtain a distribution of the fraction
of cells according to the land use type similar to the
one obtained with our algorithm. To this end we
have calibrated these parameters by minimizing the
L2 distance between the distribution of the fraction
of cells according to the land use type obtained with
the cadastral data and the one obtained with our al-
gorithm for the municipality of Barcelona which rep-
resents 20% of the metropolitan area of Barcelona.
In Figure S8, we can observe that the minimum is
reached for δBus = 0.2 and δLog = 0.2. Now we can
use these values to identify the dominant cadastral
land use in each grid cell of the metropolitan area of
Barcelona and Madrid.

We find a percentage of correct predictions equal
to 65% for Madrid and 60% for Barcelona which is
consistent with values obtained in other studies, 54%
in [20] and 58% in [22]. Furthermore, for both case

TABLE SIII. Confusion matrix of the classification for
Madrid and Barcelona. For the Residential, Business and
Logistics rows and columns, the value in the ith row and
the jth column gives the percentage of grid cells classified
as use i by the cadastral classification which are classified
as belonging to the class j by the algorithm. The Total is
the distribution of the percentage of cells according to the
land use type obtained with our algorithm (row) and the
cadastral data (column) with the threshold values δBus =
0.2 and δLog = 0.2.

Madrid

Residential Business Logistics Total

Residential 71.23 21.67 7.1 49.04

Business 30.84 62.33 6.83 39.55

Logistics 22.9 32.06 45.04 11.41

Total 49.74 40.42 9.84

Barcelona

Residential Business Logistics Total

Residential 68 26.55 5.45 47.5

Business 28.99 52.17 18.84 35.75

Logistics 13.4 32.99 53.61 16.75

Total 45.77 37.65 16.58
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Figure S8. L2 distance between the distribution of the
fraction of cells according to the land use type (Residential,
Business and Logistics) obtained with our algorithm and
the cadastral data as a function of δBus and δLog for the
municipality of Barcelona.

studies, almost all land use types have a percentage
of correct predictions higher than 50% (Table SIII).
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γ = 0 γ = 0.08 γ = 1

Figure S9. Results obtained with different values of γ (γ = 0, γ = 0.8 and γ = 1) and T = 500, 000. The 2D lattice
used to represent the urban space is composed of 50 × 50 = 2, 500 cells. The model seems to converge after 300, 000
iterations but to ensure the convergence all the results shown in the paper were obtained with 500, 000 iterations.

Calibration of γ

The value of γ was calibrated in order to reproduce
the evolution of the entropy index as a function of the
number of divisions by side obtained with the data
(red line in Figure 4 in the main text). We chose the
value of γ minimizing the Euclidean distance between
the observed values and the average values obtained
with the model with 100 replications. The best results
have been obtained with the value γ = 0.8 (Figure S9).
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Figure S11. (A), (C) and (E) Geographical representation of the communities for Valencia (A), Sevilla (C) and
Bilbao (E). (B), (D) and (F) Temporal patterns associated with the communities for the metropolitan area of Valencia
(B), Sevilla (D) and Bilbao (F). In red, the Residential community; In blue, the Business community; In cyan, the
Logistics/Industry community; In orange, the Nightlife community.
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