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Abstract

This paper revisits the modeling of compressive failure of long fiber com-
posite materials by considering a multiscale finite element approach. It is
well known that this failure follows from a fiber microbuckling phenomenon.
Fiber microbuckling is governed by both material and geometrical quantities:
the elastoplastic shear behavior of the matrix and the fiber misalignment. Al-
though all these parameters are easily accounted by a finite element analysis
at the local level, the failure is also influenced by macrostructural quantities.
That is why a multilevel finite element model (FE2) is relevant to describe
the compressive failure of composite. Furthermore, fiber local buckling leads
to a loss of ellipticity of the macroscopic model, which can be a criterion of
failure.
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1. Introduction

It was long believed that the strength of long fiber composite is lower
in compression than in tension [1, 2, 3]. This was mainly observed in pure
compression tests, but flexural or buckling tests highlighted higher strength
level than in tension or pure compression [4, 5, 6]. In other words, compres-
sive strength is not only a material property, but it depends on structural
data like specimen size, stacking sequences of composite laminates or load-
ing conditions. In the same spirit, it was experimentally established that a
single carbon fiber embedded in an epoxy resin is able to bear higher com-
pressive stress than in tension [7]. One can also mention that the reliability
of some pure compression tests is questionable. For instance, the GARTEUR
program pointed out that experimental strength depends strongly on the ex-
perimental set up [8], which was corroborated by finite element studies, see
for instance [9]. In other words, the compressive strength cannot be defined
without knowledge of structural data.

Besides, it is well known that compressive strength is governed by an
instability called fiber microbuckling [10]. Fiber microbuckling is a local in-
stability that depends mainly on fiber volume fraction, on nonlinearity of
matrix behavior in shear and on fiber waviness [11, 12], i.e. on microstruc-
tural data. Explicit critical stresses established from a kink band analysis
are available [12, 13], which can be corroborated by microstructural finite
element computations, see for instance [14, 15]. One can refer for instance
to [6, 14, 15, 16, 17, 18, 19, 20] for a full bibliography on the topics.

Hence, a consistent model should involve macroscopic data at the scale
of the structure and microscopic data at the scale of the fiber and of the
microbuckling wavelength. The model of Drapier et al [21, 16] is a partial
answer because it accounts both for microscopic and macroscopic data, but
it is limited to few wavelengths and cannot be applied directly to the whole
structure. A common criticism can be done to these various local [13, 14, 15]
or semi-local [16] modeling: they propose maximal values of the stress from
microstructural instability analyses, but it is implicitly assumed that this
macroscopic stress is not influenced by the local instability. Concurrent mod-
els are nowadays available, for instance the multilevel finite element technique
(FE2) also called computational homogenization [22, 23, 24] that considers
two nested continuum models needing constitutive assumptions only at the
local level. Such a concurrent modeling will be applied in this paper.

Therefore, a consistent numerical modeling of compressive strength has
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to involve a double scale analysis, by coupling instabilities at microscopic
level with a structural analysis. There are many papers about instability
phenomena in heterogeneous materials. In the first one by Abeyaratne and
Triantafyllidis (1984) [25] about porous materials, it was found that the ho-
mogenized material may loose ellipticity while the matrix remains elliptic.
Other papers [26, 27] established a strong connection between macroscopic
loss of ellipticity and bifurcation buckling at the local level. Nezamabadi et al.
[28, 29] studied the compressive behavior of long fiber composite structures
in a FE2 framework and proved a similar connection between bifurcation at
the local level and maximal macroscopic loading. Additional studies can be
found in [27, 30, 31, 32, 33, 34, 35, 36, 37].

In the present paper, the same FE2 approach as in [28, 29] will be used
to discuss the connection between local bifurcation, loss of ellipticity at the
macroscopic scale and the kink band stress proposed by Budiansky [13]. It
is quite well known that the ellipticity condition is related to the stability of
a continuous medium and is a necessary condition for the well-posedness of
a boundary value problem [38]. Loss of ellipticity is considered as a failure
criterion, see for instance [39, 40] that has been used in multi-scale frame-
works [30, 33, 35]. Only the classical first gradient continuum model will
be considered at the macroscopic level. This is a bit restrictive because the
account of fiber bending stiffness is necessary to predict the microbuckling
wavelength [41], which should require a model with an internal length such
as Cosserat theory [42, 43] or second order homogenization [44].

The paper is organized as follows: in section 2, our multiscale models
[28, 29] will be shortly described, the connection between local instability
and macroscopic loss of ellipticity will be explained and two classical failure
criteria will be presented. Section 3 is devoted to numerical applications.
Several multilevel numerical applications will be discussed, especially beam
bending tests that can be considered as reference cases [6]. This permits us
to revisit the relation between microbuckling, macroscopic loss of ellipticity,
mesh sensitivity and kink band predictions, in a multiscale framework with
a single constitutive assumption at the microscopic level.

2. Failure model of long fiber composites

2.1. A generic computational homogenization

Let us describe the main features of a multilevel finite element scheme
(FE2) that is also often called computational homogenization. Such a model
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is described by two nested domains, each material point belonging together
to the so-called macroscopic domain Ω and to a microscopic domain ω, also
called Representative Volume Element (RVE) or basic cell. Here both do-
mains are in their reference configuration. After the finite element discretiza-
tion, each domain is associated to a mesh so that a microscopic domain (or a
microscopic mesh) is associated with each integration point of Ω. According
to [45], FE2 models are characterized by the lack of constitutive law at the
macroscopic level and by the localization/homogenization relations. In the
case of heterogeneous hyperelastic materials, the multilevel model is repre-
sented in Fig. 1 and Table 1, where all macroscopic quantities are denoted
by (̄·). Classically F̄ = ∇ū + I, is the macroscopic deformation tensor, ū de-
notes the macroscopic displacement field and P̄ is the first macroscopic Piola-
Kirchhoff stress tensor. The corresponding quantities at the microscopic level
are denoted as F, u and P , while γ and S represent the Green-Lagrange
strain and the second Piola-Kirchhoff stress tensor.

The equations (4–8) and the associated boundary conditions define the micro-
scopic problem that is a classical boundary value problem within hyperelasticity.
This problem is a function of the macroscopic deformation F̄. Classically, the
homogenization relation (2) defines the macroscopic stress as a function of the
microscopic stress, so that the problem (2–8) can be considered as a hyperelastic
constitutive law at the macroscopic level, the macroscopic stress P̄ depending on
the corresponding deformation gradient F̄. This dependence is not represented by
a closed-form relation and it follows from the solution of a hyperelastic microscopic
problem.

The microscopic problem brings back few questions. The first question is re-
lated to the boundary conditions on the RVE that were widely discussed in the
literature. Here, we apply the classical periodicity conditions that proved to have
least drawbacks. The definition of the RVE is also not simple in the case of micro-
scopic instabilities, even with a periodic spatial distribution, as pointed out in Gey-
monat et al. [27]. In this paper, we focus on a third question: the non-uniqueness
of the solution of the local hyperelastic problem. Since a path following technique
will be used, a well-defined family of solutions will be computed that contains so-
lutions along this branch. Nevertheless, there are other solutions and Nezamabadi
et al. [28, 29] established numerically that a bifurcation at the microscopic level
coincides with a macroscopic maximal load, what is in accordance with the theo-
retical predictions of Triantafyllidis and Maker[26] associating macroscopic loss of
ellipticity and local bifurcation. This question is revisited in this paper.

At the microscopic scale, we assume constitutive relations in each phase (r) of
the RVE (see the relation (5)). For the applications that we target in the present
work, we shall consider linear material behavior and nonlinear deformation theory

4

https://www.researchgate.net/publication/245357985_On_the_Comparison_Between_Microscopic_and_Macroscopic_Instability_Mechanisms_in_a_Class_of_Fiber-Reinforced_Composites?el=1_x_8&enrichId=rgreq-ac2b8055-de63-4787-9cd9-ebdf3aaf46c8&enrichSource=Y292ZXJQYWdlOzI3NDA5NjU3NTtBUzoyMTIzMTcyMDA0OTA0OTZAMTQyNzYzMTc3MzMyMA==
https://www.researchgate.net/publication/242097836_A_multilevel_computational_strategy_for_handling_microscopic_and_macroscopic_instabilities?el=1_x_8&enrichId=rgreq-ac2b8055-de63-4787-9cd9-ebdf3aaf46c8&enrichSource=Y292ZXJQYWdlOzI3NDA5NjU3NTtBUzoyMTIzMTcyMDA0OTA0OTZAMTQyNzYzMTc3MzMyMA==
https://www.researchgate.net/publication/30846923_Homogenization_of_Nonlinearly_Elastic_Materials_Microscopic_Bifurcation_and_Macroscopic_Loss_of_Rank-One_Convexity?el=1_x_8&enrichId=rgreq-ac2b8055-de63-4787-9cd9-ebdf3aaf46c8&enrichSource=Y292ZXJQYWdlOzI3NDA5NjU3NTtBUzoyMTIzMTcyMDA0OTA0OTZAMTQyNzYzMTc3MzMyMA==
https://www.researchgate.net/publication/222804676_Feyel_F_A_multilevel_finite_element_method_FE2_to_describe_the_response_of_highly_non-linear_structures_using_generalized_continua_Comput_Methods_Appl_Mech_Eng_19228-30_3233-3244?el=1_x_8&enrichId=rgreq-ac2b8055-de63-4787-9cd9-ebdf3aaf46c8&enrichSource=Y292ZXJQYWdlOzI3NDA5NjU3NTtBUzoyMTIzMTcyMDA0OTA0OTZAMTQyNzYzMTc3MzMyMA==


Table 1: Macroscopic and microscopic variational formulations

Macroscopic problem:∫
Ω

tP̄ : δF̄ dΩ = λ

∫
∂Ωt

f · δū dΓ in Ω (1)

P̄ = 〈P〉 =
1

|ω|

∫
ω

Pdω (2)

+ BC: ū = û on ∂Ωu (3)

Microscopic problem: ∫
ω

tP : δF dω = 0 (4)

S = F (r)(γ) (5)

P = FS (6)

γ =
1

2

(
tFF + I

)
(7)

F = ∇ u + I (8)

Periodic boundary condition on ∂ω : u+ − u− = (F̄− I)(X+ −X−) (9)
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Ω

ω

ω
(r)

 microscopic problem macroscopic problem

Figure 1: Computational homogenization scheme

of plasticity [46], both in a finite strain framework. These assumptions are rather
common in the studies about compressive strength of composites. These laws are
the most simple ones able to capture the main effects, but they are presented
only as an example and can be easily modified, for instance to account for elastic
unloading. The first law is the linear Saint-Venant Kirchhoff constitutive relation
that can be expressed as:

S = C : γ , (10)

where C refers to the classical fourth-order elastic tensor.
Concerning the nonlinear constitutive relation, we choose an elastoplastic con-

stitutive law based on the Ramberg-Osgood relation [47, 48, 49] which is written
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in the 3D case in the following form:

E γ = (1 + ν) Sd − (1− 2ν) P I +
3

2
α

[
Seq
σy

]n−1

Sd , (11)

where E, ν, α, n and σy denote, respectively, the Young modulus, Poisson’s ratio,
yield offset, hardening component and the yield stress. P = −1

3S : I is the
equivalent hydrostatic stress, Sd is the stress deviator defined by Sd = S + P I.

Seq is the von-Mises equivalent stress defined as Seq =
√

3
2S

d : Sd.

2.2. Resolution technique

The full multilevel model is described by the nonlinear system of equations
presented in Table 1. The solutions of this nonlinear multiscale problem are sought
using the asymptotic numerical method (ANM). ANM is a path following technique
where each step is represented by a Taylor series with respect to a path parameter.
By comparison with incremental-iterative algorithms, ANM can be considered as a
high order predictor without need of any iteration. Many applications of ANM to
structural and fluid mechanics show the performance of this technique especially
for the treatment of instabilities; see for instance [50, 51, 52, 53]. The problem
being coupled, all the variables at the two levels U = (ū, P̄,u,P, ...) and the load
parameter λ are expanded into power series:{

U(a)
λ(a)

}
=

{
U0

λ0

}
+

N∑
p=1

ap
{

Up

λp

}
, (12)

where (.)(a) refers to quantities defined continuously with respect to a scalar path
parameter ’a’ to be defined, (.)0 denotes a known initial solution such that (.)(0) =
(.)0, N is the truncation order of the series, and (.)p indicates a term at order ’p’
that has to be determined. The resulting problems at each order are linear and
can be solved separately at the two levels, as within linear homogenization; but
of course, the computation of the full series (12) requires alternate micro/macro
computations. It is worth noting that the macroscopic tangent tensor at each
macroscopic integration point is computed numerically from constructed problems
at the microscopic level. Details of the solving procedure of multiscale problems
using ANM are given in our previous papers [28, 29].

We choose the path parameter from the macroscopic displacement field as:

a = (ū(a)− ū0).ū1 . (13)

Note that alternative choices are available, see [54].
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Within ANM, each step length is defined a posteriori from the convergence
of the series, when all the terms have been computed. This completely adaptive
step length is very important to get a secure path following, what is a great help
for the present problems involving multiple bifurcations and sudden changes of
direction. In this paper, we used a simple end step criterion that is also based on
the macroscopic displacement:

amax = (δ
‖ ū1 ‖
‖ ūN ‖

)
1

N−1 . (14)

Thus the algorithm needs only two parameters: the order N that must be suffi-
ciently large to minimize the error of truncation and the accuracy parameter δ that
must be very small in order to remain clearly inside the domain of convergence.

2.3. Loss of ellipticity, homogenization and failure of composite

The connection between macroscopic loss of ellipticity and microbuckling is
well established and has been discussed from a lot of points of view. This can be
explained in a very simple way by considering the classical stack of soft and hard
layers as in Fig. 2, the fibers being parallel to Ox1. Let us deduce the incremental
problem from the balance equation (1) and from P̄ = F̄S̄. In the small strain
case (F̄0 ≈ I and S̄ ≈ σ̄ where σ̄ is the macroscopic Cauchy stress tensor), with a
uniaxial pre-stress (S̄0 = Σ0e1 ⊗ e1) and with a constant load (λ̇ = 0), it can be
written as

x1

x2

Ef

Em

Figure 2: Composite geometry.

∫
Ω

(
˙̄σ : δF̄ + Σ0

∂ ˙̄u

∂x1
· ∂δū
∂x1

)
dΩ = 0 , (15)
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which leads to the classical bifurcation equation:

∇ · ˙̄σ + Σ0
∂2 ˙̄u

∂x2
1

= 0 . (16)

The balance equation (16) has to be completed by constitutive equations. In the
present small strain framework, elastic homogenization can be performed analyt-
ically because of the simplicity of the basic cell. Very simple formulae can be
obtained if one considers assumptions that are rather realistic for usual compos-
ites, except matrix elasticity that can be removed in forthcoming applications:
fiber and matrix are elastic and isotropic, fiber is stiffer than matrix (Ef � Em)
and Poisson’s ratio can be neglected. Indeed, the local equilibrium in the basic
cell implies that the transverse and shear stresses are the same in the fiber and
in the matrix (i.e. σ12 = σ̄12 and σ22 = σ̄22), while the axial strain is constant
in the basic cell because of the continuity of the displacement along the interface
(i.e. ε11 = ε̄11). Hence, the simplified homogenized constitutive equations can be
written as

˙̄σ11 ≈ fEf ˙̄ε11 = fEf
∂ ˙̄u1

∂x1
, (17)

˙̄σ12 ≈ 2
Gm

1− f
˙̄ε12 =

Gm
1− f

(
∂ ˙̄u1

∂x2
+
∂ ˙̄u2

∂x1

)
. (18)

˙̄σ22 ≈
Em

1− f
˙̄ε22 =

Em
1− f

∂ ˙̄u2

∂x2
, (19)

where Gm is the matrix shear modulus and G = Gm
1−f is the composite shear

modulus. By combining (16–19), one gets a system of linear partial differential
equations:

(fEf + Σ0)
∂2 ˙̄u1

∂x2
1

+
Gm

1− f
(
∂2 ˙̄u1

∂x2
2

+
∂2 ˙̄u2

∂x1∂x2
) = 0 , (20)

(
Gm

1− f
+ Σ0)

∂2 ˙̄u2

∂x2
1

+
Gm

1− f
∂2 ˙̄u1

∂x1∂x2
+

Em
1− f

∂2 ˙̄u2

∂x2
2

= 0 , (21)

The system (20–21) is elliptic for a small applied stress Σ0, and it looses ellipticity
when the first term of (21) vanishes, i.e. when:

Σ0 = − Gm
1− f

= −G . (22)

Thus this ellipticity-homogenization approach permits to recover the microbuck-
ling critical load of Rosen [10] that was established by a linear bifurcation analysis,
where the fiber was represented by a flexible beam and the shear stress is dominant
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in the matrix. Thus a simple multilevel model is able to highlight the coincidence
between fiber microbuckling and loss of ellipticity at the macroscopic level.

This class of multilevel model should be improved in two ways. First, a clas-
sical continuous model as (20–21) is not able to define neither the microbuckling
wavelength nor the macroscopic bifurcation mode. This would require accounting
both fibers bending as in Rosen model and transverse effects as in the last term
of (21), as illustrated in [41, 55]. In the same way, the multilevel model of Table 1
will not be able to represent the bifurcation mode at the macroscopic level: a
model with internal length would be necessary for this. On the basis of the first
gradient model of Table 1, one can predict the failure level, but not the details of
the deformation pattern at the end of the failure process.

Second, it is well known that the critical stress (22) is too high and one has to
include nonlinear matrix behavior and fiber waviness to get realistic predictions.
Of course this will be accounted easily in our multilevel model of Table 1. Closed-
form formulae have been established from nonlinear local kink-band analyses, see
[11, 12, 13]. In this paper, we shall discuss the analytic formula of Budiansky and
Fleck [13] that follows from a local analysis with a mode in the form of a shear
band. It can be expressed as:

σc =
G

1 + n
(

3
7

)1/n( φ̄/γc
y

n−1

)(n−1)/n
,

(23)

where G is the elastic shear modulus of the composite, φ̄ is the initial misalignment
angle of the kink band, n is the hardening exponent and γcy denotes the yield strain
in shear. This formula has been obtained from the assumption of a linear elastic
fiber and an elastoplastic matrix according to the deformation theory (11). If no
misalignment, the failure strain (23) is equivalent to the Rosen’s microbuckling
prediction and to loss of ellipticity condition (22).

In this paper, we aim at defining the failure limit from a multi-level model-
ing without ad hoc assumptions as in the shear band analysis. In this respect,
Hadamard ellipticity is a relevant and universal concept to define the stability
domain. It is expressed from the acoustic tensor Q(n) based on the macroscopic
tangent stiffness tensor L̄:

Qij = L̄kiljnknl . (24)

In the stability domain, this acoustic tensor is positive definite for any direction
n, n 6= 0. Thus the stability limit can be characterized by:

∃n 6= 0 such that det (Q(n)) = 0 . (25)

In the next section, we shall compare the numerical predictions of the two sta-
bility criteria (23) and (25). Even though they seem very different, they express
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the same multi-scale instability property as long as the acoustic tensor is defined
from a multi-level modeling as in 2.1. Indeed the Budiansky-Fleck formula (23)
results from a local instability analysis and it is known that the condition of macro-
scopic loss of ellipticity (25) generally coincides with a local bifurcation [26, 28].
Obviously the condition (23) has the advantage to be explicit and therefore easily
understood and cheap to be applied. As for the condition (25), this is a generic
condition to have a well-posed problem, it does not assume a specific mode and
does not imply a specific constitutive law that is introduced only at the local level.

3. Numerical examples

In this section, the multi-scale model is applied to several simple structural
problems. The constitutive laws are only defined at the local level: the fiber and
sometimes the matrix follow the linear Saint-Venant Kirchhoff law. When dealing
with more realistic materials, the Ramberg-Osgood model (11) will be considered.
No macroscopic constitutive law is needed: this is the main originality of this
paper. Of course the FE2 multi-scale approach is a generic procedure that can be
applied to any material modeling and any microstructural geometry, unlike closed-
form formulae like (23) that are simple, but assume a specific imperfection shape
and matrix behavior.

The discussion focuses on the failure criterion: as suggested in [25], there is
a strong connection between macroscopic loss of ellipticity and bifurcation at the
local level. This suggests that loss of ellipticity could be considered as a failure
criterion, which has the advantage of being a universal property independent of
the model. On the contrary, the classical failure criteria for composite material
(see e.g. [13]) involve material and structural properties that are here included in
the multi-scale model. The two types of approaches will be compared in the next
examples.

The proposed problems have been discretized using two-dimensional finite el-
ement in the plane stress framework, at the two scales. The macrostructures have
been meshed with eight-node quadrangular elements whereas the microstructures
have been meshed with nine-node quadrangular elements. These elements have
been used with a 3 × 3 Gauss integration scheme.

Let us underline a weak point of the approach: the instability wavelength is
prescribed via the choice of the width of the unit cell. As highlighted in [27],
the periodicity of the response is not necessarily the material periodicity. For one-
dimensional microstructures as in Fig. 3, it is possible to deduce the microbuckling
wavelength [42], but not in a first gradient approach as here.

The few parameters of the algorithm are the truncation order N of the series
and the accuracy parameter δ which allows limiting the length of each asymptotic
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step in a continuation procedure. The chosen values of N and δ are about the
same as in many other calculations. In all the tests presented here, we have solved
the nonlinear problems using ANM with N = 15, but δ = 10−6 for the first test
and δ = 10−8 for the second one. For all the examples, Poisson’s ratio is equal to
0.3.

3.1. Elastic microbuckling of a fiber reinforced structure

The first example is a very simple benchmark already studied in [28]: the fiber
is straight and the macroscopic domain is a rectangle (Fig. 3 and 4). We consider
periodic boundary conditions on the RVE as described in Table 1. The rigidity
ratio of fiber per matrix is equal to 1000 (Ef/Em = 1000 and Ef = 100000 MPa).
The macrostructure is shown in Fig. 4: it is a rectangular plate clamped on three
edges and submitted to a force distribution λP on a part of the top edge. Because
of the symmetry of the problem, only a half of the structure is discretized. We use
our multiscale procedure to solve this micro-macro problem.

Fiber

Matrix

Figure 3: Elementary cell of a fiber reinforced composite material. The fiber is straight,
h
l = 1

20 .

To show the mesh dependency of the macroscopic results, we consider three
types of mesh shown in Fig. 5. The load-displacement responses for different
meshes are presented in Fig. 6 that shows the displacements of the points located
on Fig. 5. This figure shows the influence of microscopic instability on the macro-
scopic one: initially, in the portions of the curves preceding the points of the loss
of ellipticity (points LE1, LE2 and LE3), the macroscopic behavior is mainly lin-
ear. However, we can observe an abrupt change after these points. This is caused
by the occurrence of microscopic instabilities at these points. It is worth noting
that thanks to the high order predictor of ANM, we can detect these instabili-
ties. Moreover, we can observe clearly the macroscopic mesh dependence in this
multiscale problem.
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Symmetry plane

λP

20 mm

40 mm

10 mm

10 mm

Figure 4: Geometry and boundary conditions of the rectangular plate made of the fiber
reinforced composites, P =1 N/mm

Mesh 1 Mesh 2 Mesh 3

•• •

Figure 5: Different macroscopic meshes

Rosen’s microbuckling stress (22) is 40.5 MPa in this case. The points corre-
sponding to this stress (points SB1, SB2 and SB3) are shown in Fig. 6. We observe
that the points of the loss of ellipticity are close to these points for all meshes.

Thus in this simple elastic case, the double scale model associated with the
Rice-Hadamard criterion permits to recover the predictions of the simplest mi-
crobuckling approach. This corroborates many previous results, see for instance
[25, 26, 33, 35]. Beyond this limit, the multi-scale model is not well-posed, as shown
by the observed mesh dependence. In a previous paper [28], the same problem was
solved with another microscopic boundary condition (prescribed displacement). In
the latter case, a macroscopic instability characterized by a maximal load point
was observed just after the microscopic bifurcation. In the present case, it is not
so easy to detect the microscopic instability, at least with a coarse mesh, but the
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Figure 6: Load-displacement diagrams for different meshes. The multi-scale problem is
described in Fig. 3 and 4, with an elastic behavior. One compares the failure levels
predicted by loss of ellipticity, pictured by LE and circles (◦) and by the shear band
approach, pictured by SB and by stars (?).

loss of ellipticity criterion seems to work for any mesh.

3.2. Bending of a beam made of a fiber reinforced composite

After the previous academic test, we try to model more realistic structures.
Beam bending tests are among the most simple and the most useful ones to char-
acterize the strength of composite materials, see for instance [5, 6, 9]. One knows
that fiber waviness and matrix nonlinear behavior are necessary to get realistic
failure predictions [11, 12]: this will be easily introduced in the definition of the
microstructural problem. The chosen material properties are issued from exper-
imental data [4] and have been previously used in other models, see for instance
[16].

3.2.1. Plastic microbuckling from a multi-scale computation
First let us consider only the microscopic problem by prescribing a uniaxial

compressive strain (F=F11 e1 ⊗ e1, where e1 corresponds to the direction of the
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Table 2: Characteristics of T300/914 material and data used for the plastic microbuckling
study

Fiber T300 Matrix 914 Composite T300/914 Imperfection
(isotropic) (isotropic)
Ef = 230 GPa Em = 4500 MPa E = 139800 MPa λ0 = 200 π µm
νf = 0.3 Gm = 1600 MPa G = 3817 MPa v0 = 3 µm
rf = 5 µm νm = 0.4 φ0 = 3◦

f = 0.6 n = 3
σmy = 60 MPa
εmy = 2 %

fibers). The goal is to check the ability of the microscopic model to recover basic
plastic microbuckling phenomena, for example as in [12, 13, 14, 15, 16]. The
employed mechanical properties are shown in table 2, which corresponds to a
T300/914 composite. The width of the basic cell is given by the material geometry,
but a priori the microbuckling wavelength is not a data. This wavelength can be
deduced from a second gradient model as in [41, 55] and a value of 200 π µm is
relevant. We choose the same value for the imperfection wavelength and the length
of the basic cell. The fiber is no longer straight: it is sinusoidal and the imperfection
magnitude (v0) is constant through the thickness. All these geometric data are
summarized in the basic cell pictured in Fig. 7. The parameters characterizing the
nonlinear behavior of the matrix are deduced from [16].

v0

e1

e2

Figure 7: The basic cell with an imperfection of amplitude v0.

Fig. 8 shows the macroscopic constitutive law that is deduced from the plastic
computation on the basic cell for various sizes of the imperfection. These results
are similar to many results from the literature [14, 15, 16]. For small imperfections,
there is a sharp peak and the maximal stress is expected to be close to the loss of
ellipticity.
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Figure 8: The macroscopic stress-strain diagrams for the different imperfection magni-
tudes.

3.2.2. Interaction between micro- and macro-instabilities
We now study full structural problems with a constitutive law deduced from

a microstructural problem, according to the FE2 procedure of section 2.1. The
macro-structure is a simply supported beam submitted to three types of force
distribution λP on the top edge of the macrostructure (see Fig. 9). The beam
has been discretized using 60 (15 × 4) eight-node quadrangular elements. The
microstructure is the same as in the previous part, with an elastic fiber, a plastic
matrix and a sinusoidal imperfection v0 = 3 µm.

The load-displacement responses for the three different cases are presented in
Fig. 10 where the displacements of the points located on the top middle of beam
are plotted. The failure stresses characterized by the criterion of macroscopic loss
of ellipticity are located (points LE1, LE2 and LE3), as well as by the criterion
deduced from the shear band analysis (points SB1, SB2 and SB3): clearly the two
criteria give very close results, corresponding here to a limit stress of -1030 MPa.
Note that the macroscopic mesh dependence also exists in this problem, but the
influence of the macroscopic instability is not very apparent in Fig. 10 because of
a rather coarse mesh.

Last we underline the connection between local instability and macroscopic
loss of ellipticity. In this respect, one has pictured in Fig. 11b the deformed shapes
of the microstructure at the integration point located in the top middle (in a 3 ×
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Figure 9: Geometries and boundary conditions of the rectangular beams made of the fiber
reinforced composites with different loadings: (a) Loading case 1; (b) Loading case 2; (c)
Loading case 3; P =1 N/mm

3 integration point scheme) of the top middle element at points A, B and C of the
load-displacement curve (see Fig. 11a). There is a significant difference between
these deformed microstructural shapes despite the small variation of macroscopic
load. The growth of local buckles becomes important at the point B that is
near the point of the loss of ellipticity. In Fig. 11c, the macroscopic stress-strain
diagram is presented for the considered integration point. The points A, B and
C in this figure are the same as in Fig. 11a. Note that the point B corresponds
also to the maximum stress (see Fig. 11a and 11c). This illustrates the strong
connection between local and global instabilities, between local buckling and loss
of ellipticity, between shear band analysis and the present multi-scale approach.
The latter point may be surprising because the local modes are not the same: the
double scale finite element method predicts more or less sinusoidal mode shapes
(see Fig. 11b) that does not look like shear bands.

Finally, let us discuss the sensitivity of the approach to the size of the basic cell.
Theoretically any buckling analysis depends on the size of the body; but, in this
case, this dependence should be rather weak: for instance the Rosen microbuckling
stress (22) is not length-dependent. The FE2 calculation of Fig. 11 has been done
for three values of the microscopic length: λ0 = 200 π µm, λ0 = 150 π µm, λ0 =
100 π µm. The corresponding loss of ellipticity occurs respectively for a stress of
-1030 MPa, -1050 MPa, -1025 MPa, which confirms the weak dependence to the
microstructural length.
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Figure 10: The load-displacement diagrams of the plastic microbuckling problem for dif-
ferent loading cases. The circles (◦) are the points of the loss of ellipticity and the stars
(?) denote the points corresponding to the theoretical failure compressive stress.

4. Conclusion

The present paper has been devoted to investigate the compressive failure of
long fiber composites, thanks to a multiscale finite element procedure. This tech-
nique combines multiscale finite element analysis (FE2) and asymptotic numerical
method (ANM). Several numerical tests have proved the relevance of the concept
of macroscopic loss of ellipticity to define a compressive failure criterion. The
strong connection between macroscopic loss of ellipticity and bifurcation at the
local level has been long established [25]. This has been confirmed in this paper
from multiscale finite element calculations. Moreover, the predictions obtained by
a well-established shear band analysis are very close to those obtained by com-
bining multiscale finite element and loss of ellipticity. Thus it appears that this
combination between loss of ellipticity and FE2 leads to a relevant and clear failure
criterion. Because the macroscopic model becomes ill-posed beyond, this approach
does not permit to predict the last stages of the failure process, which would re-
quire a macroscopic model with an internal length, for instance as in [45]. Clearly
the double scale concurrent approach leads to high computational costs and that
is why we limited ourselves to 2D models. Likely it would be possible to consider
more simple modeling, for example by coming back to an uncoupled approach or
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Figure 11: Third loading case: (a) The load-displacement diagram; (b) Deformed shapes
of microstructure at the integration point located in the top middle (in a 3 × 3 integration
point scheme) of the top middle element at points A, B and C, deformation scale = 10;(c)
The macroscopic stress-strain diagram for the considered integration point.

by applying reduced-order models at the local level.
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