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Data generated on location-aware social media provide rich information
about the places (shopping malls, restaurants, cafés, etc) where citizens
spend their time. That information can, in turn, be used to describe city
neighborhoods in terms of the activity that takes place therein. For example,
the data might reveal that citizens visit one neighborhood mainly for
shopping, while another for its dining venues. In this paper, we present a
methodology to analyze such data, describe neighborhoods in terms of the
activity they host, and discover similar neighborhoods across cities.

Using millions of Foursquare check-ins from cities in Europe and the
US, we conduct an extensive study on features and measures that can
be used to quantify similarity of city neighborhoods. We find that the
earth-mover’s distance outperforms other candidate measures in finding
similar neighborhoods. Subsequently, using the earth-mover’s distance as
our measure of choice, we address the issue of computational efficiency:
given a neighborhood in one city, how to efficiently retrieve the k most
similar neighborhoods in other cities. We propose a similarity-search strategy
that yields significant speed improvement over the brute-force search, with
minimal loss in accuracy. We conclude with a case study that compares
neighborhoods of Paris to neighborhoods of other cities.

∗According to our findings, in Trastevere.
†Work carried out at Aalto University.
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1 Introduction

More and more people live in cities. That fact raises the challenge of making decisions
about how to live in an increasingly complex environment (e.g., what neighborhood to
live in, or work in, or visit as a tourist). Yet the plethora of data gathered from social
networks, smart sensors and mobile devices offers the opportunity to make informed
decisions about these issues. In this paper, motivated by the challenge of understanding
urban environments, and seizing the opportunities created by geo-enabled social data,
we address the problem of comparing neighborhoods in different cities.

The problem we study has applications to recommending locations in a city. Imagine
a traveler planning a trip in a new city and deciding the neighborhood in which to book
a hotel room: the methods developed in this paper allow to match each neighborhood
in the new city with the most similar neighborhood in the traveler’s home city, or any
other city that the traveler wishes to compare. Such a comparison makes the traveler’s
choice easier and more intuitive.

Our methods are also applicable in the analysis of cities and urban planning. For
instance, when applied to the neighborhoods of one city, our techniques allow to identify
neighborhoods that are similar to each other, and thus help us understand the activity
that takes place in each area, what are the hubs of different activities, how citizens
experience their city, and how they utilize its resources.

Our approach is briefly described as follows. Using geo-enabled data from social-media
platforms, we represent each venue with a feature vector, that accurately describes
the characteristics and the overall activity of the venue. We then devise similarity
measures between venues, as well as between neighborhoods, i.e., sets of venues that
are geographically close to each other.

We address these two problems from a metric-learning point of view (Bellet, Habrard,
and Sebban, 2013). We experiment with many different distance measures and with
algorithms that aim to learn their parameters. To learn the parameters of the distance
measures and select the optimal settings, we use ground-truth data, either present in
the dataset or gathered from carefully-designed user studies.

The measure that is shown to perform best for the task of finding similar neighbor-
hoods is the earth-mover’s distance (EMD) (Rubner, Tomasi, and Guibas, 1998). EMD
is known to be a robust measure—however, it is also expensive to compute. Motivated
by this observation, we address the issue of computational efficiency. In particular,
given a neighborhood R in one city, we ask how to find the k most similar neighborhood
to R in another city (or a set of other cities) under EMD, and without performing
brute force computation. We design a pruning strategy that yields significant speed
improvement with minimal loss in accuracy.

Our study and our algorithms are based on extensive experimental evaluation in
European and US cities, using activity logs gathered from Foursquare, a location-based
social network. Yet our study can be enriched by many other types of data, such as
transportation, weather, air quality, energy consumption, etc. Such an extension is left
for future work.
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Table 1: Number of check-ins and venues per city.

City 2010 Check-ins 2014 Check-ins Venues

New York 408 584 369 562 67 363
San Francisco 104 363 77 294 15 580
Washington 75 984 80 274 13 168
Paris 32 952 67 382 17 231
Barcelona 21 448 44 462 11 351
Rome 9 364 24 128 7 691
14 others 643 810 988 671 206 285

Total 1 296 505 1 651 773 338 669

2 Datasets

Our dataset consists of geo-tagged activity logs from Foursquare. Foursquareis a
popular location-based social network that, as of 2015, claims more than 50 million
users.1 It enables users to share their current location with friends, rate and review
venues they visit, and read reviews of other users. Foursquare users share location
information by generating “check-ins” using a dedicated mobile application2. Each
check-in is associated with a web page that contains information about the user, the
venue, and other details of the visit. Each venue is also associated with a public web
page that contains information about the venue—notably its category such as Food or
Nightlife Spot—and aggregates information from user check-ins.

According to Foursquare’s privacy policy, check-ins are private information. However,
sometimes users opt to share their check-ins via Twitter, a popular micro-blogging
platform. We were thus able to obtain Foursquare data by retrieving check-ins from
Twitter, between March and July 2014. We focused on 10 US and 10 European
cities, chosen for their high activity. In addition, we also used a previously released
dataset (Cheng et al., 2011), with Foursquare check-ins generated between September
2010 and January 2011 in these cities. In total, our Foursquare data consists of almost
3 million check-ins, even though none of them took place in August. Details can be
found in Table 1, where we focus on the 6 cities on which we carry on our main
experimental evaluation.

Exploration

We highlight some high-level patterns we observe in our dataset, as they guide our
later choice of features used to describe venues.

First, we cluster the venues in each city by the temporal distribution of associated
check-ins during a day. Specifically, for each venue in one city we calculate the fraction
of check-ins that occur at different times of the day, using 4-hour-long windows — i.e.

1According to http://foursquare.com/about .
2The Swarm application, http://www.swarmapp.com.
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Figure 1: Results of k-means with k = 5 on the 4-hour-window check-in distribution
of venues. Each line in each figure is the centroid of a cluster in a city. We
observe that the centroids of the five clusters are almost identical in all cities.

Figure 2: Venue density in Paris, computed by a Gaussian kernel.

the fraction of check-ins occurring from 1 am to 5 am, from 5 am to 9 am, and so on.
We then perform k-means clustering on the computed distributions for all venues of
each city, using k = 5. Figure 1 shows the k = 5 identified centroids with a different
color for each city. We observe five clearly-separated clusters of venues in all cities,
with clear peaks of activity within a day, that are also remarkably consistent across all
cities and thus motivate this choice of k.

Then, we explore the geographic distribution of venues within a city. We observe that
venues are not uniformly distributed within the city and that the density of nearby
locations is a discriminative feature as well. For instance in Figure 2, we can clearly
distinguish venues belonging to the city center from the others.

Finally, we notice that venues differ in the diversity of people who visit them—some
having a large number of infrequent visitors, and others a smaller number of dedicated
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visitors. To quantify the diversity of unique visitors for different venues, we use the
measure of user entropy introduced by Cranshaw et al. (2010). Intuitively, a higher
value of entropy means that check-in activity is shared among a larger number of users.
Computing this value for all venues in Paris and Barcelona shows that it is a good
descriptor of the “publicness” of a place. Touristic attractions like Sagrada Famı́lia and
Eiffel Tower exhibit high entropy because they are visited by a large and diverse set of
people. On the other hand, work offices and private houses have low entropy.

3 Data model and problem setting

In this section we introduce the notation and the problem setting we will be working
with in the rest of the paper.

Cities and venues. We consider a set C of n cities, C = {C1, . . . , Cn}. Each city
contains a set of venues. A venue is a uniquely identified location that can be visited
by individuals, like a restaurant, shop or park. We write V (C) to denote the set of
venues of the city C ∈ C. We also use V to denote the set of all venues in all cities, i.e.,
V =

⋃
C∈C V (C). The description of each venue v ∈ V contains a geographic location

loc(v), expressed as a pair of latitude and longitude coordinates.

Activities. We consider a set of activities A = {a1, . . . , a|A|}, each one corresponding
to an instance of user behavior in the cities C. Each activity aj ∈ A is represented by a
tuple aj = (typej ,uj , locj , tj ,descrj), where typej is the activity type, uj is a user-id,
locj and tj are the spatio-temporal coordinates of the activity, and descrj provides
additional information depending on the type of activity.

Although this framework supports a variety of sources, in this initial study we focus
on single type of activities, namely one Foursquare user checking in at a particular
location and time. Such check ins are naturally associated with a single venue.

Feature vectors. Given the set of activities A associated with venues in V , we extract
30 features and describe each venue v ∈ V with a feature vector f(v) that contains
information about associated activities. The features include the total number of check-
ins at v, the number of unique users, entropy of the check-in distribution, number of
likes, and number of visits/check-ins split down by day (weekday/Saturday/Sunday)
and time of day (morning/noon/...). Additionally, since venues in a city are typically not
considered in isolation, but location and context is very important, some features of the
vector f(v) contain information about other venues around v, namely the distribution
of the categories of venues around v. Specifically, the features involving the surrounding
were computed from all others venues, weighted by a 2D Gaussian of arbitrary radius
r = 350 meters. To make our data more reliable, we only consider venues with at least
five check-ins by two different users.

Comparing venues. Given two venues vi, vj ∈ V with feature vectors fi = f(vi)
and fj = f(vj), the simplest distance one can define between the two venues is the
p-norm between their feature vectors ||fi − fj ||p. This simple definition has a number of
shortcomings, as it does not account for (i) the different scale of individual features,
(ii) different scale due to variations in the cities, (iii) importance of features, and (iv)
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potential correlations between features. One way to address the first two shortcomings
is to ensure that each feature, aggregated at a city level, has mean equal to zero
and standard deviation equal to one. To address the other two shortcomings, one
well-motivated and principled approach is to consider the Mahalanobis distance

dW (vi, vj) = ||fi − fj ||W = (fi − fj)
TW (fi − fj), (1)

where W is the inverse of the covariance matrix of the features. Learning a more
suitable matrix W , and thus the distance measure between venues, is the first challenge
we face.

Objective 1 Learn the matrix W so that the distance measure dW captures best the
human perception of similarity between venues.

We approach this problem as a metric-learning problem (Bellet, Habrard, and Sebban,
2013), where we learn the matrix W with different methods to maximize consistency
with a ground-truth labeling in our data.

City neighborhoods. Summarizing our discussion so far, each venue v ∈ V is described
by the pair (loc(v), f(v)), where loc(v) and f(v) specify the location of the venue v,
and its feature vector, respectively.

Now, given a city C ∈ C, we define a neighborhood (or a region) R of the city C as a
geographical region (a closed and connected set in the geographical plane). We abuse
notation and we write R ⊆ C to denote that R is a neighborhood of the city C. For a
neighborhood R ⊆ C we define V (R) to be the set of venues of C that are contained
in R, i.e.,

V (R) = {v ∈ V | loc(v) ∈ R}.

We also define F (R) to be the set of feature vectors of all the venues in R, that is,

F (R) = {f(v) | loc(v) ∈ R}.

Comparing neighborhoods. Our objective is to define a meaningful distance measure
between city neighborhoods. We want two neighborhoods to be similar, if they contain
the same kind of venues, and in the same proportion. Thus, given two neighborhoods
Ri and Rj we consider the feature vectors F (Ri) and F (Rj) of the venues contained
the two neighborhoods, and we define the distance δ(Ri, Rj) between Ri and Rj by

δ(Ri, Rj) = D(F (Ri), F (Rj)), (2)

where D is a distance function between sets of feature vectors. Our second objective is
stated as follows.

Objective 2 Choose a distance measure δ between city neighborhoods as expressed by
Equation (2), i.e., a distance measure D between sets of feature vectors of the venues in
the two neighborhoods. The distance measure should capture best the human perception
of similarity between city neighborhoods.
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In the next section we consider a number of different options for the distance func-
tion D, and we discuss our methodology for selecting the best one. Building on the
optimal distance measure selected for our objective, we then consider the following
city-neighborhood search problem.

Problem 1 We are given a neighborhood R in a city C ∈ C and a subset of target
cities C′ ⊆ C. The goal is to find a small set of neighborhoods {R′

i}ki=1 in some city
C ′ ∈ C′ so that the distances δ(R,R′

i) are minimized.

Two interesting special cases of Problem 1 are (i) C′ = C, search for the most similar
neighborhood in all cities; and (ii) C′ = {C ′}, search for the most similar neighborhood
in a given city C ′. The emphasis for Problem 1 is on computational efficiency, and the
aim is to improve over brute-force search.

4 Measures and evaluation methodology

In this section, we describe methods to achieve the two objectives we set above.

4.1 Measures to compare venues

We consider the following approaches to compare venues in terms of their feature
vectors:

ITML Information Theoretic Metric Learning (ITML) (Davis et al., 2007) is a
metric-learning method that aims to learn the matrix W in Equation (1). Its input
consists of the feature vectors of venues V , along with class labels. It learns a matrix W
so that the following goals are achieved: (i) the distance between two feature vectors of
the same class is less than a (low) threshold tlow, (ii) the distance of vectors of different
class exceeds a (high) threshold thigh, and (iii) matrix W is as close to the identity
matrix as possible (in order to provide regularization). The two thresholds, tlow and
thigh, are set automatically to the 5th and 95th percentiles of all pairwise euclidean
distances of the original feature vectors.

We use the category of venues provided by Foursquare3 as the class of each feature
vector. To summarize, this method learns a matrix W that places venues of the same
category in close distance of each other and venues of different categories at large
distance from each other.
LMNN Large Margin Nearest Neighbor (LMNN) is also a metric-learning method

that aims to learn matrix W in Equation (1). It accepts the same input as ITML (i.e.
feature vectors of venues, classified according to their Foursquare categories), but
unlike ITML, it optimizes an unconstrained cost function, defined so that, for the
learned matrix W , feature vectors of the same class are as close as possible, while
vectors of different class are as far as possible. In our study, we use Gradient Boosted
LMNN, a state-of-the-art variant proposed by (Kedem et al., 2012).

3We use the top level of Foursquare’s category hierarchy.
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t-SNE This method embeds feature vectors to a 2-d plane via t-distributed stochastic
neighbor embedding (t-SNE), a state-of-the-art dimensionality-reduction method (Maaten
and Hinton, 2008), and computes the Euclidean distance on the projected space
Euclidean Finally, we consider the Euclidean distance in the original space. Note,

again, that feature values have been centered and normalized, so that each feature has
zero mean and standard deviation equal to one at a city level.

4.2 Measures to compare neighborhoods

We proceed with addressing Objective 2, that is, selecting a distance measure between
sets of feature vectors, in order to evaluate similarity between city neighborhoods. We
consider the following options.

1. Earth mover’s distance. EMD is a standard distance for vector sets that measures
the total amount of work needed to transform (move) one vector set (total mass) to the
other (Rubner, Tomasi, and Guibas, 1998). In our case, we have two neighborhoods X
and Y made of feature vectors X = {xi}ni=1 and Y = {yj}mj=1. Assuming the distance
between two vectors xi and yj is defined by an underlying metric as di,j , the distance
between X and Y is the solution f of a bipartite flow problem formalized by this linear
program:

min
f

∑
i,j di,jfi,j

subject to
∑

j fi,j = wxi

∑
i fi,j = wyj∑

i,j fi,j =
∑

i wxi =
∑

j wyj = 1

Each vector is assigned a weight (their sum being 1 in each neighborhood) and fi,j
represents the amount of mass we bring from xi to yj The constraints express the
requirement to move all the mass from one side to the other while minimizing the total
work needed to move it. We find experimentally that uniform weighting gives more
accurate results.

We experiment with the following variants of EMD: (i) using as the underlying
metric the distance learned with ITML (EMD-ITML); (ii) using as the underlying
metric the distance learned with LMNN (EMD-LMNN); (iii) using t-SNE as the
underlying metric (EMD-t-SNE); (iv) using as the underlying metric the Euclidean
distance (EMD-Eucl); (v) using as the underlying metric the Euclidean distance and
requiring only a certain fraction of the smaller feature vector set (F (X) or F (Y )) to be
matched (EMD-Partial). The rationale of EMD-Partial is to provide more flexibility
by allowing for two neighborhoods to have a fraction of venues that are completely
different. For the fraction of vectors to match, we used 80% in our experiments.

2. Jensen–Shannon divergence. JSD is a symmetrized and smoothed version of the
Kullback–Leibler divergence, a function for measuring distance between distributions.
JSD can be computed for multivariate distributions, however, in our setting we have a
relatively small number of samples (a typical neighborhood contains around 100 venues,
and never more than 700) and a high dimensions (30) so we cannot estimate an accurate
joint probability distribution. To account for this problem, we opt for computing the

8



JSD independently for each feature. In particular, we compute JSD1(F (i), G(i)), where
JSD1 is univariate JSD, while F (i) and G(i) are the distributions of the i-th feature for
the vector sets F and G, respectively. We then aggregate over all features by

JSD(F,G) =
∑
i

θi · JSD1(F (i), G(i)), (3)

with
∑

i |θi| = 1. To calibrate θi, we sample different neighborhoods and label each pair
of neighborhoods as “similar” or “not similar.” The labeling of the neighborhoods is
based on our ground-truth, which we describe shortly. We then compute θi to maximize
the sum of the JSD values over similar pairs minus the sum of JSD values over non
similar pairs.

3. Minimum cost matching distance of set centroids. A very simple way to
compute a distance between two sets of feature vectors is to compute the centroid
of each set and then compute the distance between the two centroids. We extend
this simple definition with k centroids. Given a set of feature vectors we perform
k-means clustering, and represent the set with k centroids. Then, given two sets of
feature vectors, and their corresponding k-set centroids, we compute the distance of a
min-cost matching, using the Hungarian algorithms (Munkres, 1957). We experiment
with different values of k and report the best results, obtained for k = 3.

Evaluation methodology. We now describe our evaluation process for selecting the
best function for measuring distance over feature vector sets. Consider a neighborhood
R in a source city C, and a target city C ′. Assume that we have obtained k ground-truth
neighborhoods R1, . . . , Rk in C ′, which are the most similar to R. For example, if R
is a neighborhood with many offices, companies, and financial services in C, so are
neighborhoods R1, . . . , Rk in C ′.

Given a distance measure δ we want to evaluate, we can then compute the distance
δ(F (R), F (R′)) for each possible neighborhood R′ of C ′ and rank all those neighbor-
hoods in order of increasing distance. We can evaluate the quality of this ranking by
checking the position that the ground-truth neighborhoods R1, . . . , Rk appear in the
ranking—if appearing at all. The higher we find a match, the better the ranking, and
thus, the better the distance measure δ.

Since we do not have any a-priori neighborhood boundaries (and in fact we do not
want to use any, since a neighborhood may be defined in a dynamic way, different than
what administrative boundaries would give), any subset of venues that corresponds to
a closed and connected region is a candidate neighborhood. As there are exponentially
many such subsets, we restrict our search to regions of a certain shape. We consider
neighborhoods R′ to be circles (v′, r), centered at a venue v′ and with radius r. We
take as v′ regularly spaced venues in C ′ and r ∈ {200, 275, 350, 425, 500} meters, with
the additional constraint that the resulting circle should contain at least 20 venues.

After ranking all possible such circular neighborhoods R′ in order of increasing
distance δ(F (R), F (R′)) we remove overlapping neighborhoods (in an Eratosthenes-
sieve way) so that the resulting ranking does not contain overlapping neighborhoods.

To evaluate the resulting ranking, we need a relevance score for each neighborhood
R′ in the ranking with respect to the ground-truth neighborhoods R1, . . . , Rk. Note
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that R′ may not be identical to any of the ground-truth neighborhoods (for one, R′ is
circular, while the ground-truth neighborhoods can have arbitrary shapes) but there
may have significant overlap with some of them. To account for such overlap, we define
the relevance of each R′ as the best overlap of R′ with a ground-truth neighborhood
R1, . . . , Rk, where the overlap is measured using the Jaccard coefficient on the sets of
venues of two neighborhoods.

rel(R′ | R1, . . . , Rk) =
k

max
i=1

|V (R′) ∩ V (Ri)|
|V (R′) ∪ V (Ri)|

,

Having assigned a relevance score for each neighborhood R′ in the ranking, we
evaluate the quality of the ranking using discounted cumulative gain (DCG) Sakai
(2007). The gain is a measure of relevance and we accumulate them (or sum them) but
discount results that came too far in the ranking according to

DCG =
∑
i=1

2rel(Ri) − 1

log2(i+ 1)
.

Evaluation results. To perform the evaluation described above we need ground-truth
information regarding neighborhoods in cities. Since ground truth requires concrete
knowledge of a city, we conducted a user study. Our study involved six cities: Barcelona,
New York, Paris, Rome, San Francisco, and Washington DC. The participants in
the study are international friends and colleagues of ours, who have lived for many
years in at least one of those cities. The participants were given textual description
of neighborhoods and were asked to mark some neighborhoods in their own city that
matched best that description. The descriptions are shown in Table 2. The table also
shows matching neighborhoods for Paris, as chosen by the first author of this paper
who happens to have lived in that city. The participants provided their answers via
a graphical interface.4 The answers were curated, so that if more than one person
provided answers for one city, the answers were merged. To give a better sense of the
typical size and shape of these neighborhoods, we present in Figure 3 three of them in
Paris and in Barcelona.

Starting with each of the 6 cities as a source city and for each of the 8 query
neighborhoods, we compute the most similar neighborhoods in all other cities, using
each of the distance measures that we want to evaluate.5 The results are shown in
Table 3. Each row corresponds to a source city. DCG scores are averaged over all target
cities and all 8 query neighborhoods.

We see that EMD-Eucl is the best-performing measure, while JSD and EMD-t-SNE
perform rather poorly. EMD-LMNN performs only slightly worse than EMD-Eucl.
Another observation is that the absolute DCG scores of all measures are relatively low.
One reason for the low scores is that many neighborhoods in the ground truth have

4http://where-would-you.herokuapp.com/
5 Note that we experiment with 203 queries instead of 6 × (6 − 1) × 8 = 240, as in a couple of cases

(pairs of city - neighborhood description) our study did not yield a ground-truth neighborhood
with enough venues inside.
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Figure 3: Three neighborhoods selected in Paris (top) and the corresponding annota-
tions from Barcelona (bottom) experts: 16th arrondissement Montmartre

, and Official . The black dots on each map represent the venues of our
dataset.
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Table 2: Neighborhood description used in user study and corresponding Paris neigh-
borhoods. Participants in the study were asked to identify up to 5 most similar
districts in their own city.

1 Fashion shops, luxurious places Golden triangle

2 College & student neighborhood Quartier Latin

3 Red light district Pigalle

4 Touristic and artsy district Montmartre

5 Government buildings Official

6 LGBT neighborhood Le Marais

7 Expensive residences 16th arrondissement

8 Parks & leisure The banks of Seine

Table 3: Average score of each metric from a given city. The best metric in each city is
highlighted and the last row is the average score over all cities.

Query Min cost EMD- EMD- EMD- EMD- JSD EMD-
Source matching Eucl LMNN ITML t-SNE Partial

Barcelona .083 .078 .084 .033 .028 .042 .078
New York .059 .059 .059 .049 .026 .057 .053
Paris .061 .091 .078 .021 .044 .045 .061
Rome .024 .042 .039 .055 .038 .021 .029
San Franc. .045 .045 .040 .060 .042 .033 .044
Wash. DC .043 .034 .038 .035 .026 .033 .038

Average .052 .058 .056 .042 .033 .038 .051

non-circular shapes (e.g., a long street of luxurious shops). Thus, even if our measures
discover an area very close to the ground truth, due to its circular shape it can have
low overlap with the ground truth, and low relevance score.

5 Searching for similar neighborhoods efficiently

We now turn our attention to the efficiency aspects of the neighborhood similarity-
search problem, i.e., the Problem 1 defined in page 7. Following our evaluation from the
previous section, we focus on the EMD distance. The brute-force approach to solve this
problem is an exhaustive search algorithm, as the one used above for the evaluation of
neighborhood distance measures. Namely, given neighborhood R, consider all candidate
neighborhoods R′ of a certain shape (circle, rectangle, or other) in the target city C ′,
evaluate the distance EMD(F (R), F (R′)), and return the neighborhood that achieves
the smallest distance.
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Figure 4: Intuition behind our pruning strategy: for two neighborhoods with small
EMD, the venues of one neighborhood are in the k-NN set of the venues of
the other.

In this section, we show how to speedup the search task significantly, with very little
loss in accuracy. Our solution relies on the following observation: the EMD between
two sets of feature vectors F (R) = F and F (R′) = F ′ is zero, if all feature vectors in
F and F ′ coincide. Relaxing this condition, the EMD is small, if for many vectors in F
there is some near vector in F ′. Put differently, when one feature vector in F is far
away from all vectors in F ′, it contributes a large cost to EMD.

Therefore we can reduce the search space by preprocessing all venues in the target
city and keeping only those venues whose feature vectors are close to feature vectors of
venues in the query neighborhood. The venues kept in this preprocessing step can be
used as anchors. We can then look for areas in the target city that are dense in anchor
venues, and group them in candidate neighborhoods, for which we calculate the actual
EMD.

To see how this idea works, consider Figure 4, where we search in Barcelona to find the
neighborhood that is most similar to Pigalle (Paris). Each row in the figure corresponds
to one venue v in Pigalle, and contains the ranking of all venues in Barcelona sorted
by distance to v. There is a cross (x) in i-th position of the ranking if the i-th ranked
venue in Barcelona belongs to the ground truth neighborhood (in this case, el Raval,
which we know from our user study). We see that if we restrict ourselves to the 100
nearest neighbors of each venue in the query neighborhood, we recover most of the
venues in the ground-truth neighborhood.

Our algorithm works as follows. Starting from the query neighborhood R and target
city C ′ (or cities), we obtain the set of k-nearest neighbors Nk(v) ⊆ V (C ′) for each
venue v ∈ V (R). All venues found in at least one k-NN set form the set of anchor
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venues VA =
⋃

v∈V (R)Nk(v). The set of anchor venues VA is then treated with respect
to its geographic coordinates: the dbscan algorithm is applied and areas with low
density in anchor venues are discarded. dbscan also produces a clustering of venues,
which are treated as candidate neighborhoods. For the candidate neighborhoods the
exact EMD is computed. If a candidate neighborhood is too large, the exact EMD is
computed for sliding subareas. Finally, to account for misses that may happen during
the pruning phase, each area considered is extended by adding to its radius a distance
of j × 50 meters, j = 0, . . . , `, and the extended area is also treated as a candidate
neighborhood. In the end of the process, the algorithm returns the the neighborhood
with the smallest distance (or top-m smallest distances).

The two parameters of the algorithm, k and `, offer an accuracy vs. efficiency trade-
off. Our experiments in the next Section , as detailed in Section 6, suggest that the
algorithm produces very accurate results even for small values of the parameters (which
also give the highest efficiency). With respect to k, we found that in our data, k = 50
works very well, as in most cases, this value returns around 50% of the venues in the
ground truth, while covering only 33% of the city. With respect to `, even ` = 0 (no
extension) works quite well. While the robustness of EMD (and more generally optimal
transport based distance) has recently lead to active research about speeding up their
computation (e.g. Pele and Werman, 2009; Cuturi, 2013; Tang et al., 2013), we find
that our simple filtering approach is more than adequate for our purposes.

6 Scalability experiments

In this section we quantify how well our proposed method approximates a brute-
force EMD search. We conduct our performance evaluation on the 203 query triplets
(C,R,C ′) that were used in the analysis shown in Table 3.

For each of these queries, we execute the brute-force search ; namely, we compute
the EMD for all circles (v′, r) centered at a venue v′ of C ′ and with radius r ∈
{200, 275, 350, 425, 500} meters. We also execute the neighborhood similarity-search
algorithm, described in the previous section. We compare these two methods in terms of
execution time and quality of solution found. In particular, given a query triple (C,R,C ′)
let RBF be the most similar neighborhood found by the brute force and let RA be the
most similar neighborhood found by the approximation method. Let the corresponding
closest distances be DBF = EMD(F (R), F (RBF )) and DA = EMD(F (R), F (RA)),
respectively. We define the relative distance ρ for that query as

ρ =
DA

DBF
(4)

The smaller is ρ, the better the approximation. We would in fact expect that ρ is greater
than 1, as values less than 1 indicate that the approximation method is better than
the brute force. However, as the brute force is constrained to circular neighborhoods,
it is possible that the approximation method finds better solutions. Removing this
constraint from the brute force implies searching over other shape families (rectangles,
diamonds, etc.), which will increase its running time even more.
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Figure 5: Approximation performance.
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Table 4: First, second and third quantile of relative distance as k varies.

k 8 25 50 80 160
1 0.942 0.940 0.942 0.946 0.944
2 1.003 0.998 0.994 0.994 0.986
3 1.093 1.070 1.059 1.067 1.061

Overall, our results show that for the range of parameters we experiment with, the
approximation method is much faster than the brute force—in most cases by at least
one order of magnitude, while often by two or even three. At the same time the relative
distance is very close to 1, often below 1, and rarely above 1.5.

In more detail, we first analyze the effect of `, the number of times we extend the
initial regions found after clustering, while using k = 50. As ` increases, more EMD
computations are required, but the chances to find a more similar region increase.
Indeed, as we see in Figure 5a, the relative distance decreases as ` increases, while the
computation becomes more expensive (Figure 5b). We also note that after ` = 1, the
gain is small, suggesting that the initial regions are already relevant enough.

We perform the same experiment for k ∈ {8, 25, 50, 80, 160} with ` = 1. As shown in
Table 4, the relative distance is very small for all values of k, showing the robustness
of the method. At the same time, k does not affect much the running time of the
algorithm (results not shown), as the bottleneck is the computation of EMD.

7 Empirical Study

A natural way to assess our method is to compare its results with randomly selected
neighborhoods. In this section, we employ our approximate search algorithm to find
matching neighborhoods between cities, compare them with randomly selected ones,
and report indicative results.

Specifically, we run approximate search on the 203 query triplets (C,R,C ′) that
were used to generate Table 3. For each query triplet, we retrieve the list of top k = 5
neighborhoods returned by approximate search, order them by distance to the query
neighborhood, and measure their overlap with the ground-truth neighborhoods in target
city C ′. Moreover, for each query triplet, we generate 2000 lists of randomly selected
and ordered neighborhoods in C ′, each of size k = 5. To produce a random list of k = 5
neighborhoods, we first sample a venue from city C ′, and then select a neighborhood
around it of size approximately equal to the query neighborhood, repeating the process
k = 5 times.

Subsequently, we measure the overlap of each result list with the corresponding
ground-truth neighborhoods in the target city. To measure overlap, we again use the
DCG score of result lists against the ground-truth regions.

In Table 5, we report the percentile at which our method’s DCG score ranks compared
to the random neighborhoods. Higher percentile means that our result lists have higher
overlap with ground-truth than more random neighborhoods. In most cases, it performs
significantly better than random. Even when we miss completely the ground truth
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Figure 6: A query in Washington and its result in New-York.

(entries marked with grey font), the same happens with a large fraction or even the
majority of the 2000 random lists – which means that the ground truth is intrinsically
difficult to recover because of its size or location in the city.

Examples To illustrate the results produced by our method, we present examples of
findings, produced by the best-performing measure, EMD-Eucl.

For the first example, we select Bethesda as our query neighborhood. Its location is
shown in Figure 6-left . Bethesda is a neighborhood in Washington D.C. and was
identified in our user-study as a neighborhood with ‘expensive residences’ (Table 2).
Subsequently, we ask to find the most similar neighborhoods in New York City. The
most similar neighborhoods suggested by our method are shown in blue in Figure 6-right
( ), and they coincide with lower- and upper-east-side Manhattan. Note that east-
side Manhattan was identified in our user study as the neighborhood with ‘expensive
residences’ ( ), which indeed is an area of high-cost apartments. This is especially
encouraging since our Foursquare data does not include any information about price.

For the second example, we submit two queries. As a first query, we select Montmartre,
the “touristic and artsy” neighborhood of Paris, famous for the Basilica of the Sacred
Heart, which sits on top of the highest point in the city and thus offer a stunning view
to million of tourists. Many artists have worked here, such as Monet, van Gogh, Picasso,
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and Daĺı, which matches its bohemian atmosphere. As a second query, we pick the
La Ribera district in Barcelona, identified as a “touristic and artsy” in our user study.
Indeed, it is a popular place for expats and home to many art boutiques. Subsequently,
we ask for the most similar neighborhood in Rome. The most similar neighborhood
is Trastevere and is shown in Figure 7. Indeed it is a neighborhood in Rome that is
known to match the description of ‘touristic and artsy’ neighborhood. Furthermore, we
observe that besides Trastevere, both queries returned the same areas of Rome, a good
indication that the aforementioned neighborhoods share similar features.

Figure 7: Top: the neighborhood query in Barcelona (La Ribera). Bottom: the results
in Rome match the ground truth (in orange), both from Barcelona (green)
and Paris (blue, the query is showed in blue in Figure 3).
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Table 5: Percentile rank of the result obtained by our method compared with those
obtained by chance. Rows refer to the neighborhood types described in target
city, abbreviated as follow BR: Barcelona, NY: New York, PR: Paris, RO:
Rome, SF: San Francisco and WS: Washington. For instance, the top-left
number means that if we look in Barcelona for an area that is similar to
the one chosen in New York by our expert to match the “luxurious shops”
description, our method’s result overlap more with the ground truth than
68.7% of the random samples. “—” denote queries not run due to lack of
suitable ground truth. When our result has no overlap at all (in grey), the
percentages indicate the fraction of random samples that fail likewise, even
though our result is not better.

neighborhood Barcelona New York Paris

fashion shops NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
& luxury 68.7 89.4 73.2 100.0 53.8 70.1 70.1 70.1 70.1 70.1 98.1 60.0 85.6 93.5 82.8
colleges NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
& students 45.8 45.8 45.8 — 71.7 79.5 94.2 45.9 — 45.9 81.8 84.5 81.8 — 81.8

red light
NY PR RO SF WS no ground truth BC NY RO SF WS
— 91.6 — 85.6 69.0 for this query 93.7 — — 93.5 78.0

touristic NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
& artsy 32.4 91.1 13.9 75.1 91.0 90.3 87.9 49.2 49.2 49.2 81.2 81.2 81.2 81.2 81.2

government
NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
49.5 99.7 78.8 51.9 99.6 87.2 87.2 87.2 95.0 87.2 74.1 74.1 74.1 77.5 74.1

LGBT
NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
75.1 84.0 — 79.8 66.1 77.0 95.0 — 50.7 60.7 36.9 55.6 — 56.8 86.1

expensive NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
residences 96.2 36.8 8.7 8.7 99.7 95.2 72.8 72.8 72.8 99.8 87.9 87.9 95.6 97.2 87.9

leisure
NY PR RO SF WS BC PR RO SF WS BC NY RO SF WS
95.2 98.8 95.2 96.4 — — 81.3 98.2 81.3 — — 99.6 99.6 99.6 —

neighborhood Rome San Francisco Washington

fashion shops BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
& luxury 100.0 97.2 99.1 99.2 89.6 78.2 40.5 91.6 58.0 48.7 91.8 95.1 91.8 91.8 91.8
colleges BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
& students 28.0 28.0 28.0 — 28.0 95.6 95.6 95.6 95.6 95.6 39.0 — 95.5 50.9 —

red light
no ground truth BC NY PR RO WS BC NY PR RO SF

for this query 92.2 — 95.0 — 36.9 51.2 — 51.2 — 51.2
touristic BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF

83.3 0.4 90.0 70.5 87.6 8.9 9.9 8.9 8.9 74.8 58.9 95.3 89.3 99.5 47.9

government
BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
1.1 4.5 11.5 5.9 11.7 73.2 — 95.0 73.2 92.5 83.2 — 97.0 62.6 46.1

LGBT
BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
90.5 90.5 90.5 90.5 90.5 96.9 93.4 76.5 — 76.5 88.3 78.6 86.5 — 57.6

expensive BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
residences 82.7 77.3 77.3 77.3 84.2 68.2 68.2 68.2 68.2 73.7 67.3 66.4 73.9 67.0 66.4

leisure
BC NY PR SF WS BC NY PR RO WS BC NY PR RO SF
— 50.9 50.9 50.9 — — 86.5 88.9 86.5 — — 98.2 98.2 98.2 98.2
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8 Related work

Our work lies within the scope of urban computing, an area of increasing interest. In one
line of work, the concentration of social online activity is used to determine interesting
geographic regions of cities. For instance, Deng, Chuang, and Lemmens (2009) use
dbscan to cluster Flickr photos, and they exploit tag co-occurrence to characterize
the discovered clusters. Rattenbury and Naaman (2009) also employ spatial methods
to discover hotspot regions in San Francisco where certain photo tags appear in burst.
Moreover, Wakamiya, Lee, and Sumiya (2012) used geolocated data from Twitter to
detect sentiment and movement and draw a socio-cognitive map of the Kinki region in
Japan.

Closer to our work, Cranshaw et al. (2012) analyze 18 million Foursquare check-ins
to find so-called livehoods.6 They build a spatial neighbor graph between venues, where
edges are weighted by the cosine similarity of the user distribution of two venues, and
then perform spectral clustering. Faced with the same difficulty as ours to evaluate their
results, they interview residents of Pittsburgh who validate the resulting subdivisions.
Another approach was proposed by Zhang et al. (2013), also based on Foursquare

check-ins. Each venue is assigned a category, a peak activity time, and a binary label:
touristic or not. The venues are then clustered along these features, and the city is
divided into a regular grid, where grid cells are described by their feature density.
Similar cells are then clustered into neighborhoods. With respect to the last two
papers, our work makes a number of advances: different notions of similarity between
neighborhoods are defined and evaluated, the problem of finding similar neighborhoods
in other cities is considered, and the scalability of the search problem is addressed.

In addition to the analysis of static data like check-ins, another line of work takes
advantage of dynamic data, such as trajectories. For instance, Giannotti et al. (2011)
analyze GPS data in Italian cities to find temporal patterns, which can then be used for
detect events or regulate traffic jams. Similarly, Cao, Cong, and Jensen (2010) extract
“stay points” from car GPS data and assess the significance of each point by the number
of visitors, time taken to reach there, and duration of stay. Uddin, Ravishankar, and
Tsotras (2011) develop efficient methods to address closely-related tasks. Once the
semantics of locations is known, it is still challenging to find frequent patterns efficiently
(Zhang et al., 2014).

The problem of identifying and characterizing neighborhoods has also been addressed
by companies. For instance, research in Flickr has shown that by computing the
α-shape of a set of tagged photos, it is possible to recover neighborhood boundaries;7

we remind that the α-shape is a generalization of the convex hull (Edelsbrunner,
Kirkpatrick, and Seidel, 1983). Likewise, Airbnb, a social lodging renting website, has
recently produced a ranking of cities by hospitality8, as well as data-driven charac-
terization of neighborhoods.9 However, the methods and details for these commercial

6http://livehoods.org/
7http://code.flickr.net/2008/10/30/the-shape-of-alpha
8http://nerds.airbnb.com/most-hospitable-cities
9http://airbnb.com/locations
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systems are not publicly available.
Finally we note that our setting is tangentially related to work on spatio-temporal

topic modeling. In this line of work, Yin et al. (2011) address the problem of finding
k localized topics and n Gaussian spatial regions. They develop and apply a latent
geographical topic analysis framework: each region has a topic distribution and each topic
is a multinomial distribution over all possible photos tags. By taking into account user
information, such an approach can be used to provide recommendations (Kurashima et
al., 2013). Similar ideas can be applied to finding localized tweets with a hierarchical
topic model (Ahmed, Hong, and Smola, 2013). The main difference between these
works and ours is that they focus on discovering salient regions rather than comparing
them with each other. Going beyond words, Doersch et al. (2012) discover frequent
and discriminative patches from Google Street images and use them, among other
applications, to retrieve similar buildings across cities.

9 Conclusion

In this paper, we studied the problem of matching neighborhoods across cities using
Foursquare data and considered various measures for their comparison. Evaluating
against ground truth data, we found that EMD performs best and presented a method
to enhance its running time with minimal loss of accuracy. Finally we illustrated the
quality of results obtained by anecdotal evidence.

Although these results are encouraging, they could be extended in various direc-
tions:

• Use more data sources to derive more features (for instance photos sharing website,
transportation, weather, air quality, energy consumption, demographics, etc).

• Match several (or all) neighborhoods at the same time (but without excessive
overlapping) and thus obtain a similarity measure between whole cities.

• Provide a justification for the neighborhoods selected by the algorithms. For instance,
design algorithms that provide explanations of the type “These two regions match
because people take a lot of photos, go there on weekday from 4pm to 8pm and
there are a lot cultural buildings.” Another source of information is the resulting
flow of EMD: looking at what kind of venues are close to what, and obtain insights
from those matches.
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