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Abstract. In obtaining a tractable solution to the problem of extracting
a minimal partition from hierarchy or tree by dynamic programming, we
introduce the braids of partition and h-increasing energies, the former
extending the solution space from a hierarchy to a larger set, the latter
describing the family of energies, for which one can obtain the solution
by a dynamic programming. We also provide the singularity condition for
the existence of unique solution, leading to the definition of the energetic
lattice. The paper also identifies various possible braids in literature and
how this structure relaxes the segmentation problem.
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1 Introduction

Hierarchical segmentation methods have been an important tool in providing a
simplification of the image domain, following which various operations of filter-
ing, segmentation and labeling become simpler structured problems on hierar-
chies of partitions (HOP), in comparison to the whole space. These problems
are often formulated as optimization problems, where the space of solutions are
partitions from a hierarchy. Breiman et al. [4] performed decision tree pruning
to obtain a tree-classifier with least complexity to avoid overfitting, which cor-
responds to a pruning with minimal energy from a tree. This was first extended
for the image segmentation problem, by Salembier-Garrido [13], where they cal-
culated an optimal pruning of a binary partition tree by performing a gradient
search over the Lagrange multiplier. Further on Guigues [8] introduced the scale-
set descriptor, which operates on an input hierarchy of segmentations on an input
image, and a parametrized energy. The scale sets are a hierarchy of minimal cuts
corresponding to a given Lagrange multiplier. These methods use the Breiman
Dynamic programming approach to perform pruning or extract the optimal cut.
Further on Guigues provides conditions of sub-additivity of constraint function
and super-additivity of objective function as conditions for finding a globally
unique optimal cut, which was generalized in [9] to h-increasing energies. The
A-cut or scale-set [8] produces a descriptor based on any input hierarchy and a



parametrized energy like Mumford-Shah. The attribute watersheds [6] work on
the attributes of volume, area, dynamic of the component-tree hierarchy.>

In this paper firstly introduce a new family of partitions larger than the
hierarchy over which the dynamic program is still valid, namely the braids of
partitions (BOP). Further on we extend the property of h-increasingness to the
braids, and as well prove the energetic lattice and ordering relation over braids.

2 Braids of partitions (BOP)

We now consider the problem of construction of other families, which no longer
form chains, while they share hierarchical properties, and expand the search
space for the optimization problem. We propose the braid, which on one hand
provides a richer hierarchical model enabling multiple segmentations of a given
region of the image domain, while on the other remains in conformance with the
dynamic program substructure.

2.1 Definitions

A partition 7 of space E is a set of subsets of E that are pairwise disjoint and
whose union reconstitutes F. A partial partition [12] of support S denoted as
7(S), is a partition of the subset S C E. The family of all partitions are denoted
by IT(E) and that of partial partitions as D(E). A hierarchy of partitions (HOP)
is a chain of partitions H = {m;, ¢ € [0, n]}, where m; < m;,i < j, where < denotes
refinement ordering. The minimal element 7y of H is the called leaves partition
which contains a finite number of elements. A cut is a partition composed of
classes from a hierarchy (or more generally any family of partitions). The cuts
of H are denoted by II(E, H).
An energy is a non-negative function on the family of partial partitions,
w : D — R*. The energy of a partition or partial partition is usually obtained
by the composition product, comp(-) of energies, by addition, supremum or other
laws, over its constituent classes, e.g. w(m(S)) = }_,r(s) w(a). Now the optimal
cut in [4], [13], [8], is calculated by aggregating local optima. The local optimum
at class S either choses the parent {S}, or the disjoint union of the optimums
over the its children as shown in equation 1.
() = {{S}, if w(S) < comp(w(n*(a))),a € 7(S) O

|_|ae7r(s) 7*(a), otherwise

2.2 Braids

A braid is a family of partitions B, where the pairwise refinement supremum of
any two elements is a cut of in some hierarchy IT(E, H). This leads to the more
formal definition:

3 This work was partly funded by ANR-2010-BLAN-0205-03 program KIDICO.



Definition 1. Let I1(E) be the complete lattice of all partitions of set E; let H
be a hierarchy in II(E). A braid B of monitor H is a family in II(E) where the

refinement supremum of any pair of distinct partitions wy, 7o € B is a cut of H,
other than {E}, that is in, II(E,H)\ {E}:

Vﬂ'l,ﬂ'QEB :>7T1\/7TQEH(E,H)\{E} (2)

Monitor hierarchy H
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Fig.1: Space F is partitioned into leaves {a, b, c,d, e, f}. The family By = {m, 72,73}
forms a braid, whose pairwise supremum is indicated on the dendrogram. Note that
7m1(X), m2(X) have a common parent X, but m2(Q), 73(Q) a common grand parent Q.
However the family 7, U B is not a braid since 73 V 7, gives the whole space F.
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Given three partitions 71, 7wy, 73 then the classes of suprema partitions m; V
o, m V w3 are nested or disjoint. A braid can posses multiple monitoring hierar-
chies. One thus still has a scale selection to perform in the context of choosing
a monitor hierarchy for a given application.

In Figure 1 we demonstrate a simple example of a braid family with the
dendrogram corresponding to its monitor hierarchy. As we can see the classes
of partitions 7y, o are neither nested nor disjoint, and basically correspond to
different segmentation hypotheses that exist in the stack of segmentations. The
set of all cuts of a braid B is denoted by IT(E, B). A braid may also contain its
monitor H, though this is not necessary. On the other hand, any hierarchy is a
braid with itself as monitor. A braid cannot be represented by a single saliency
function, except when it reduces to a hierarchy whose classes are connected sets.

The partition with one class {E} is not considered in Definition 2, since this
would imply that any family of arbitrary partitions would form a braid, with {E'}
as supremum, thus losing any useful structure. In case of a hierarchy the cone or
family of classes containing a point € E can only be nested or disjoint. While
the cone of classes in the BOP, that contain a single point, are not necessarily
nested, though their suprema are. This provides the local-global substructure
for the dynamic program.
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Fig.2: HOP vs BOP: Ultrametric contour map (UCM [3]), hierarchy (top) and a braid
of partitions (bottom). Braids of partitions were produced from multiple instances of
random marker based stochastic watershed, with same number of regions. The supre-
mum or monitoring partition, corresponding to these unordered family of partitions is
shown. Braids help reorganize partial refinement between partitions.

2.3 Underlying questions

In the process of trying to create a structure where the dynamic program sub-
structure holds, we are in fact posing the following sequence of questions. Given
a general set of partitions B = {m;},i € {1,2,3,...n}: Firstly, how the partial
optimum between any two partitions with a non-trivial supremum is calculated
? Over what support are partial partitions compared ? Secondly and more pro-
foundly, given that there are cuts extractable other than these n-partitions, how
does one index these different cuts. What are the types of ordering relations ob-
servable between any two partitions with a non-trivial supremum ? Furthermore
it would also be useful understand the combinatorial nature by calculating the
number of optimal cuts can one extract.

When B is a hierarchy, any two partitions are ordered by refinement, i.e.
m < myoor m; < m, Vi, g, € {1,2,3,..n}. We now observe the possible ordering
relations possible between pairs of partial partitions over a supports from their
supremum S € m; V g, we have: either parent-child/child parent 7; 1S < ;1S
or a braid structure m; NS # m; NS, though here one must maintain a nested or
disjoint supremum S to ensure a local ordering to follow. Given two partitions,
we can observe various local ordering between classes. This is discussed and
demonstrated in an illustrative example in Figure 3.

There are two problems that are related but that very different in algorithmic
complexity when dealing with braids: 1. Generating general braid of partitions
and 2. Validating that a given general family of partitions is a braid. In both
questions the underlying problem to evaluate is the order of refinement between
the partitions. To generate braids one needs to fix some how this choice of partial
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Fig.3: We show two partitions 71,72 demonstrating four ordering relations:
parent—child and child—parent relation (red, blue), a p.p.—p.p. braid structure
(hexagon), and finally overlapping classes that aren’t inclusions (orange). One can
note that once we have a refinement relation between two partitions locally, as in case
of classes R, S, this implies that the remaining pairs of classes are either equal, ordered
themselves or are partial partitions forming a partial braid structure since they share
a common supremum. We also show the intersection graph produced by connecting
regions with non-void overlaps to visualize the different ordering relations. The classes
corresponding to the components of the intersection graph, gives the supremum of the
two partitions. We also show a cut extracted from 71, ms.

order, while in case of validation one needs to verify this property of ordering of
supremum as evoked in the braids definition in equation (2). We also can easily
note that question (2) is a combinatorial problem since partial order across pairs
of partitions need to be validated. While question (1) is simpler. We shall use
the stochastic watershed model [2] here to demonstrate how one can control the
partial order in generating a braid. Though the generation of braids can be done
using a variety of methods. Another simple way to generate a braid would be
to fragment /regroup differently an already existing hierarchy of partitions. The
disadvantage is that here one fixes the monitoring hierarchy.

2.4 Motivation and finding Braids in literature

The need for such models arises in several situations. Firstly we observe that
many super-pixel segmentation algorithms, and also multivariate segmentation
algorithms [17], [18], operate on agglomerative clustering and region merging.
In the former case we obtain a quick super-pixel segmentation by using the
clustering tree, while in the latter case we compose partitions of the image do-
main based on different components of a vectorial image. In a paper close to our
work, [5] models the image segmentation problem as the extraction of maximally
weighted independent set (MWIS) on the intersection graph. This graph is built
over the regions of segmentations produced using various super-pixel low level
segmentations. They further associated an energy with each region or node. The



algorithm of MWIS counsists in calculating the MWIS by dynamic programming.
There are two differences between this paper and [5]: Firstly, the segmentations
used in [5] do not ensure a stable pairwise supremum, resulting in holes or over-
laps. Secondly the intersection graph is blind to the the partial ordering relation
between partitions. We demonstrate a counter example in figure 7, where we
show different refinement orders, and how they break the dynamic program sub-
structure. Thus following the refinement order during the DP is necessary, when
one calculates the optimal cut that is at the energetic infimum.

Furthermore in optimization frameworks such as the MRF, one also notes
that in forcing uniqueness, certain solution spaces are excluded. In [15], one
considers the K-best solutions i.e. a local segmentation hypothesis. It is well know
in segmentation evaluation that one encounters variation in partition boundaries,
as a result of mainly different algorithmic parametrization and subjectivity in
human expert annotations [16]. Braids enable the comparison between regions
of machine segmentations and ground truth partitions (see Figure 3), which are
neither purely refinements nor non-void intersections. It has already been well
studied that the “segmentation soup” (family of partitions generated from across
different algorithms and parameterizations) provided a better support for object
detection [11].
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Fig.4: There can be multiple minimum spanning trees (MSTs) for a given edge-
weighted graph [15]. Figure shows a planar weighted graph with two different possible
choices in selecting the lowest weighted edge in prim’s algorithm. This leads to two
different partitions of the nodes set as extracted by the components of the graph. This
gives two different hierarchies that can be extracted. The supremum or monitoring par-
tition is created when the second edge is added. Here partition {A, B, C, D} monitors
over partitions {{A, D}, {B},{C}} and {{B,C},{A},{D}}. We have demonstrated
here how the the distinct MST enumeration can used to generated a braid.

We describe shortly the braids found in literature. Angulo et al. [2] accumu-
late watersheds of stochastically sampled markers chosen from the image domain.
This produces an estimate the density function of gradient of the image. The
set of partitions produced during the iterations of the stochastic watershed algo-
rithm form a braid structure. This essentially corresponds to a random marker
based watershed extracted from the minimum spanning tree. An example is



demonstrated in Figure 2. K-Smallest Spanning Tree Segmentations [15] pro-
pose multiple distinct segmentations of the image by considering the K-smallest
distinct minimum spanning trees. It can be shown easily that the degenerate set
of weighted edges with equal weights when permuted over in Prim’s algorithm
produce different segmentations, which by definition have a common supremum,
defined by the heaviest weighted edge governing the degenerate lower weighted
edges. This is demonstrated in Figure 4. In a similar line, one can also demon-
strate that the attribute watersheds [6] based on area, volume and dynamic,
together produce a braid structure with volume hierarchies usually monitoring
the other two [10]. Particular versions of braids have appeared in classification
problems, for example Diday [7], demonstrates pyramids, where a child may have
two parents.

3 Dynamic Programming and h-increasingness

h-increasingness is a property of energies, which preserves the optimal substruc-
ture in extracting the minimal cut so that one can use a dynamic program to
solve it. It states that the ordering of energies is preserved under concatenation
of partial partitions (Figure 5).

Definition 2. (h-increasingness) Let w1(S), m(S) be two different p.p. of the
same support S € E, be a family of disjoint supports over E. Let my be any
partial partition in D other than 71(S), m(S). A finite singular energy w on the
partial partitions D(E) is h-increasing when for every triplet {m1(S), m2(S), 7o}
one has:

w(mi (5)) < w(me(S)) = w(m (S) Umo) < w(me(S) Um) ®3)

In implication (3) when the inequality is made strict, we have what we call
strict h-increasingness. h-increasingness was first introduced in [9], which gener-
alized the condition of separable energies of Guigues [8]. Separability in equation
(1), is obtained by replacing comp(-) by a sum of the energies of the constituent
classes of a partial partition, to calculate the energy of the partial partition. We
can also perform a composition by supremum [14], [17].

Both laws are indeed particular cases of the classical Minkowski expression

1

o

wl(n(8)) = injlwm)“] (1)

which is a norm in R™ for o > 1. Even though over partial partitions D(E), it is
no longer a norm, it yields strictly h-increasing energies for all « €] — oo, +o0]:

Proposition 1. Let E € P(E), let w : P(E) — R be a positive or negative
energy defined on P(E). Then the extension of w to the partial partitions D(E)
by means of Relation (4) is strictly h-increasing.
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Fig.5: Left: h-increasingness for HOP (top) versus BOP (bottom). Right: An ele-
mentary step of the dynamic program on a partial braid over a support S. The
optimal partial partition is the minimum across the partial optima and S, i.e.

w(8), w(mi(9)), w(m3(S5)).

Proof. Let w(S) 7'(S) be two p.p. of support S, with ¢, ¢’ elements each, respec-
tively. When 0 < a < oo, the mapping y = z® on R is strictly increasing and,
according to Relation (6), the inequality w(7(S)) < w(7’(S)) implies

/ /

D (T < Y W(TD] = Y [w(Tw)]*+Hlw(mo)]® < Y w(T))]* +lw(m))®
1 1 1 1

(5)

hence w(m Umg) < w(me U mg). When a < 0, the sense of the inequality
changes on both sides of implication in (5) but changes again when applying the
(1)*. This again leads to w(m U mp) < w(mg U mg), and achieves the proof. O

One can easily check that the proposition remains true when w : P(E) —
R~ is a negative energy. For a« = 400 (resp.—oo), Minkowski expression yields
the supremum (resp. the infimum), which is h-increasing but not strictly. A
number of other laws are compatible with h-increasingness, such as weighted
sum, alternating compositions varying with level in the hierarchy [10].

Table 1: Table composition laws for different a’s in equation (4)

« Composition laws Applications
—00 Infimum Ground truth energies [9]

0 Number of Classes CART classifier complexity [4]
+1 Addition Salembier-Garrido, Guigues [13], [§]
+0o0 Supremum Valero[17], Veganzones[18], Soille[14]

Many other o’s that are left open to be explored. The parameter « in fact alike

A-cuts [8] provides a way to control the refinement of the optimal cut [10].



As demonstrated in Figure 5, the dynamic program substructure would now
consist in making a choice between the parent supremum (if it is a class of the
braid), and the partial partitions that it monitors. We consider in the figure
a braid composed of two hierarchies (this is to be able to index the partial
partitions.). Equation (6) gives the DP step for BOP shown for HOPs in equation
(1). Equation (6) demonstrates a DP sub-structure very similar to the hierarchies
except now they are compared over the monitoring supremum class S. When
w(m(S)) = w(m2(9)), and w(m(S)) < w({S})), we can pick randomly, as long
as we pick one of the partial partitions, so that in a strict sense to keep the
energies remain singular.

7 (5) = arg min {W({S}%w(ﬁ(b’)),w(ﬂ%‘(S))} (6)

4 Energetic Ordering and Energetic Lattices

Given the problem of finding an optimal cut, we review separately the require-
ment of obtaining a unique solution. On the HOP, this has been enforced by
many authors [4], [13], [8], [17], [1] as a partition which is either the largest or
the smallest, amongst optimal cuts with the same energy. The classical energy
based minimization associates an energy with every cut, and takes the cut which
has the smallest energy?. A hierarchy can have multiple cuts with the same min-
imal energy, and to ensure a unique solution we introduce the following axiom
of singularity:

Definition 3. Let w be an energy on the partial partitions D(E), and B be a
braid B with a monitor hierarchy H. Energy w s singular when

1. the energies w(n(S)) of all p.p. w(S) of H are either strictly smaller, or
strictly greater, than the energies of their supports S':

V () € I(S), w({S}) <w(m(S))} or w({S}) > w(m(9))}, (7)
2. ifVmy,m3 € B and VS € w1 V w2, we have w(my M S) # w(my M.5).

Consider now two partial partitions w(S), 7’'(S) over support S, which is also
their refinement supremum S = 7(5) V 7'(S) (see Figure 6). Intuitively, one
may assess that partition 7 is less energetic than my for an energy w when
w(m N{S}) <w(ma M{S}) in each class of m; V 7.

Theorem 1. Given my,my € II(E) two partitions of space E, and an energy w,
the partition m is said to be less energetic than ma, i.e. ™ =<, T2 when in each
class of supremum m V mo the energy of the partial partition of 71 is smaller or
equal to that of T

m S m & {S €m V= w(m N{S}) <w(mn{s})} (®)

4 A finite set E of only 25 leaves can be partitioned in 0.5 x 10*® different manners,
following the Bell’s number.
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Fig. 6: An example of energetic ordering: We have m <, 7’ since in each class of 7V 7',
the energy w of 7 is less than or equal to that of 7.

The relation =, called energetic ordering, is an ordering relation for all singular
energies w, if and only if the family II is the set II(w, E, B) of all cuts of a braid
B. Proof given in thesis [10].

To prove that the energetic order yields a complete lattice, we must remark
two properties. Firstly, consider a hierarchy H reduced to the two partitions mg
and 71, with 7y < 1. Then the unique smallest partition of I1(E, H) is obviously
obtained by replacing each class S of m; by the corresponding p.p. of mp when
the latter has an energy smaller than that of S. Denote the resulting minimal
partition by mg A, 1. In case of a braid, my and m; are no longer ordered by
refinement, and the energetic comparisons have to be performed in each class of
7o V 1. Secondly, consider now a standard hierarchy H, (i.e. with n + 1 levels),
and k cuts {m;, 1 < j <k} of H. The sequence 9 generates a new hierarchy H’
where each two classes are ordered or disjoint, hence are classes of H.

/ k. o Ak . . _
T = ATy Ty = AoTj; ..y T = Tk (9)

Theorem 2. Let B be a braid of monitor H = {m;,0 <i < n}, and w a singular
energy. The family II(w, H) of all cuts of H has a unique minimal element

7 = (((mo Aw T1) Aw T2)-+2) Aw T (10)

and a unique mazximal element ©* = ((mo Y, m1)...) YT This property extends
to braid B.

Proof. As my Ay, w1 is the less energtic cut made of classes of my and 7y, the
same can be stated with (mg A, 7m1) Ay, 7o for the classes of g, w1, mo. Thus, by
induction, the cut (2) is the unique smallest cut of IT(w, H). The dual approach
leads to the largest energetic cut. Finally, if H is replaced by braid B, then
each class of S may have to be compared with several sets of children partial
partitions ai, as, etc. but again every minimal (resp. maximal) choice is unique
by singularity, which achieves the proof. ad
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Corollary 1. When in addition to 2 the energy w is h-increasing, then IT(w, H),
and further I (w, B) turn out to be complete lattices. The infimum and supremum
of family {m;,1 < j < k} are denoted by A,m; and Y,mj .

Finally, we must remark here that given a singular energy on braid, one
ensures unique optimal cut, but one which cannot be obtainable by a dynamic
program. While a singular and h-increasing energy yields itself to a DP producing
an optimal cut, though there can exist other cuts with the same minimal energy.
Finally a singular and strictly h-increasing energy is one which yields a unique
optimal cut with the DP.

1 1 2 1 3 1 1 2 5

T 0—0—0—.—0—0—2—01—03—0 T A T2 0—0—0—0—01—03—0
2 @ 2 @ 2 @ 2 O 2 Q@ T2 Ay T3 @ > O 10 2
Ti@ 8 ° L0 @ T uT3@ 2 oo’ ol oo
o 1 1 2 5 1 3

infimum calculated by DP == (71 Ay T2) Ay T3 Q@ @ O ——O0—0

following refinement order (g Ay T3) Ay 1@ 2 O B O 1 O g )

m<m<w 5 g 3 o

T <My S T3 (711 Koy 3) Aoy T2 @ O -O- a @ \

Fig.7: A counter example showing the breakdown of DP when not following refinement
ordering between partitions. Three partitions 1, w2, w3 with their energies over each
class. We demonstrate the different infima achievable for different orders of refinement
followed across the partitions, while applying the dynamic program. We see for two
orders we don’t achieve the global infimum. We thus always need an algorithm that
works in the order of refinement to keep the DP substructure. This is also why one uses
a bottom up pruning [13] or climbing [8]. The actual infimum of the energetic lattice
is obtained by following the order of refinement.

5 Conclusion

The paper introduced the new hierarchical structure of the braids of partitions,
which expanded the space of hierarchies for the problem of extracting optimal
cuts. Furthermore it showed that the braids are the largest family of partitions
over which the energetic lattice can be defined. The DP to extract a unique min-
imal cut consists inherently of an ordering based optimization problem, which
is expressed by the energetic lattice structure. A generalized h-increasingness
condition for energies operable on braids was also demonstrated. This gives the
DP that aggregates local optima to obtain the global optimum. Finally, the
paper also provided a short review of braids available in literature, and pro-
vides a perspective on how the braid model can be used to become algorithm
independent while organizing image domain or space into a family of partitions
which preserves the dynamic program substructure. We foresee applications in
the domain of multivariate optimization, machine learning and super-pixel seg-
mentation based optimization.
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