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The limits of statistical signicance of Hawkes processes tted to nancial data

Many ts of Hawkes processes to nancial data look rather good but most of them are not statistically signicant. This raises the question of what part of market dynamics this model is able to account for exactly. We document the accuracy of such processes as one varies the time interval of calibration and compare the performance of various types of kernels made up of sums of exponentials. Because of their around-the-clock opening times, FX markets are ideally suited to our aim as they allow us to avoid the complications of the long daily overnight closures of equity markets. One can achieve statistical signicance according to three simultaneous tests provided that one uses kernels with two exponentials for tting an hour at a time, and two or three exponentials for full days, while longer periods could not be tted within statistical satisfaction because of the non-stationarity of the endogenous process. Fitted timescales are relatively short and endogeneity factor is high but sub-critical at about 0.8.

I. INTRODUCTION

Hawkes processes are a natural extension of Poisson processes in which self-excitation causes event clustering [START_REF] Hawkes | Spectra of Some Self-Exciting and Mutually Exciting Point Processes[END_REF][START_REF] Hawkes | Point Spectra of Some Mutually Exciting Point Processes[END_REF].

Originally applied to the modeling of earthquake occurrences [START_REF] Ogata | Seismicity Analysis through Point-process Modeling: A Review[END_REF][START_REF] Ogata | Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes[END_REF], they have proven to be useful in many elds (e.g. neuroscience, criminology and social networks modeling [START_REF] E S Chornoboy | Maximum likelihood identication of neural point process systems[END_REF][START_REF] Crane | Robust dynamic classes revealed by measuring the response function of a social system[END_REF][START_REF] G O Mohler | Self-Exciting Point Process Modeling of Crime[END_REF][START_REF] Volker Pernice | Recurrent interactions in spiking networks with arbitrary topology[END_REF][START_REF] Yang | Mixture of Mutually Exciting Processes for Viral Diusion[END_REF]). This is because of their tractability and the ever-increasing number of estimation methods [START_REF] Bacry | Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency nancial data[END_REF][START_REF] Bacry | Second order statistics characterization of Hawkes processes and non-parametric estimation[END_REF][START_REF] Da | Hawkes process: Fast calibration, application to trade clustering, and diusive limit[END_REF][START_REF] Lewis | A Nonparametric EM algorithm for Multiscale Hawkes Processes[END_REF][START_REF] Marsan | Extending Earthquakes' Reach Through Cascading[END_REF][START_REF] Reynaud | Adaptive estimation for Hawkes processes; application to genome analysis[END_REF]. Since many types of nancial market events such as mid-quote changes, extreme return occurrences or order submissions are clustered in time, Hawkes processes have become a standard tool in nance too.

In the context of market microstructure, Hawkes processes were rst introduced by Bowsher [START_REF] Bowsher | Modelling security market events in continuous time: Intensity based, multivariate point process models[END_REF], who simultaneously analyzed trades time and mid-quotes changes with a multivariate framework. Two others pioneer approaches are the ones by Bauwens and Hautsch [START_REF] Bauwens | Dynamic Latent Factor Models for Intensity Processes[END_REF] and Hewlett [START_REF] Hewlett | Clustering of order arrivals, price impact and trade path optimisation[END_REF] who focused on the durations between transactions. Subsequently, Large [START_REF] Large | Measuring the resiliency of an electronic limit order book[END_REF] supplemented transaction data with limit orders and cancellations data in a ten-variate Hawkes process in order to measure the resilience of an London Stock Exchange order book. Bacry et al. [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF] have recently modeled the mid-price change as the dierence between two Hawkes processes and showed that the resulting price exhibits microstructure noise and the Epps eect. Jaisson and Rosenbaum [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] established that under a suitable rescaling a nearly unstable Hawkes process converges to a Heston model. Bacry and Muzy [START_REF] Bacry | Hawkes model for price and trades high-frequency dynamics[END_REF] used an enhanced version of the model to account for market impact. Finally, Jedidi and Abergel [START_REF] Jedidi | On the Stability and Price Scaling Limit of a Hawkes Process-Based Order Book Model[END_REF] modeled the full order book with a multivariate Hawkes setup and proved that the resulting price diuses at large time scales. Remarkably, Hawkes processes are also applied to other nancial topics such as VaR estimation [START_REF] Chavez-Demoulin | High-frequency nancial data modeling using Hawkes processes[END_REF][START_REF] Chavez-Demoulin | Estimating value-at-risk: a point process approach[END_REF], trade-through modeling [START_REF] Muni | Modelling Trades-Through in a Limited Order Book Using Hawkes Processes Trades-through[END_REF], portfolio credit risk [START_REF] Errais | Ane Point Processes and Portfolio Credit Risk[END_REF], or nancial contagion across regions [START_REF] Aït-Sahalia | Modeling Financial Contagion Using Mutually Exciting Jump Processes[END_REF] and across assets [START_REF] Bormetti | Modelling systemic price cojumps with Hawkes factor models[END_REF].

It is widely accepted among researchers that only a small fraction of price movements is directly explained by external news releases (e.g. Cutler et al. [START_REF] David M Cutler | What moves stock prices?[END_REF], Joulin et al. [START_REF] Joulin | Stock price jumps: news and volume play a minor role[END_REF]). Thus, the price dynamics is mostly driven by internal feedback mechanisms, which corresponds to what Soros calls market reexivity [START_REF] Soros | The Alchemy of Finance: Reding the Mind of the Market[END_REF]. In the framework of Hawkes processes, endogeneity comes from self-excitation while the baseline activity rate is deemed exogenous (see Sec. II for a mathematical denition). In other words, these processes provide a straightforward way to measure the importance of endogeneity, for example in the E-mini S&P futures [START_REF] Filimonov | Quantifying reexivity in nancial markets: Toward a prediction of ash crashes[END_REF][START_REF] Stephen J Hardiman | Critical reexivity in nancial markets: a Hawkes process analysis[END_REF]. Filimonov and Sornette [START_REF] Filimonov | Quantifying reexivity in nancial markets: Toward a prediction of ash crashes[END_REF] argued that the level of endogeneity has increased steadily in the last decade due to the advent of high-frequency and algorithmic trading.

Hardiman et al. [START_REF] Stephen J Hardiman | Critical reexivity in nancial markets: a Hawkes process analysis[END_REF] showed that it is only the short-term endogeneity (linked to increases of computer power and speed, and, indeed, HFT) that has increased over the years, while the endogeneity factor has been very stable and close to 1, the special value at which the process becomes totally self-referential and unstable. Fitting Hawkes processes to nancial data requires some care: one should not use a single exponential self-excitation kernel [START_REF] Stephen J Hardiman | Critical reexivity in nancial markets: a Hawkes process analysis[END_REF], while many other biases may aect ts with long-tailed kernels on long time periods [START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency nancial data[END_REF].

Nobody claims that Hawkes process are the exact description of the whole dynamics of nancial markets. However, testing the signicance of the ts is not a current priority in the literature. Given the fact that the ts are usually visually satisfactory, it seems obvious that statistical signicance may be obtained in some cases. Here, we wish to assess the extent (and the limits) of the explanatory power of Hawkes processes with several possibly types of parametric kernels, according to three statistical tests. One of the diculties in obtaining signicant ts come from jumps in trading activity such as those occurring when markets open and close. This is why we work on data from FX markets which have the advantage of operating continuously for longer periods. There may still be discontinuities, either implicit (e.g. xing time) or explicit (e.g. week-end closures) in our FX data, but at least one day of FX data spans many more hours than one day of equity market data and is thus more suitable to our aim. Hence, a minori, one may extrapolate most of our failures to t correct Hawkes processes to other types of data with more signicant activity discontinuities.

The two other papers on FX data and Hawkes processes have a dierent focus than ours: Hewlett [START_REF] Hewlett | Clustering of order arrivals, price impact and trade path optimisation[END_REF] deals with the relatively illiquid EUR/PLN currency pair and uses a single-exponential kernel. Rambaldi et al. [START_REF] Rambaldi | Modeling FX market activity around macroeconomic news: a Hawkes process approach[END_REF] also use EBS data (with the same time resolution as ours) and studies the dynamics of best quotes around important news.

Because our data set consists of order book snapshots every 0.1 s (see Sec. III for more details), we can trace most trades but not mid price changes. This is why we t a univariate Hawkes process to EUR/USD trade arrivals. The endogeneity parameter is then the average number of trades triggered by a single trade.

The structure of the paper is as follows: we rst dene Hawkes processes, the tting method, the parametric kernels and the statistical tests that we will use. We rst show that Hawkes processes excel at tting one hour of FX data, are fairly good for a single day, and fail when used for two consecutive days.

II. HAWKES PROCESSES

An univariate Hawkes process is a linear self-exciting point process with an intensity given by

λ t = µ t + ˆt 0 φ(t -s)dN s = µ t + ti<t φ(t -t i ), (1) 
where µ t is a baseline intensity describing the arrival of exogenous events and the second term is a weighted sum over past events. The kernel φ(t -t i ) describes the impact on the current intensity of a previous event that took place at time t i .

A Hawkes process can be mapped to (and interpreted as) a branching process, where exogenous mother events occurring with intensity µ t can trigger one or more child events. In turn, each of these children, can trigger multiple child events (or grand-child respectively to the original event), and so on. The quantity n ≡ ´∞ 0 φ(s)ds controls the size of the endogenously generated families. Indeed, n is the branching ratio of the process, which is dened as the average number of children for any event. Therefore, n quanties market reexivity in an elegant way. Three regimes exist depending on the branching ratio value:

• a sub-critical regime (n < 1) where families dies out almost surely,

• the critical regime (n = 1), where one family lives indenitely without exploding. In the language of Hawkes process, this requires µ = 0 to be properly dened and it is equivalent to Hawkes process without ancestors studied by Brémaud and Massoulié [START_REF] Brémaud | Hawkes Branching Point Processes without Ancestors[END_REF],

• the explosive regime (n > 1), where a single event triggers an innite family with a strictly positive probability.

Evaluating n gives a simple measure of the market distance to criticality. For n ≤ 1, the process is stationary if µ t is constant. In this case, the branching ratio is also equal to the average proportion of endogenously generated events among all events.

A. Parametric kernels

We compare the performance of the following kernels, each labeled by its own index.

• Sum of exponentials:

φ M (t) = M i=1 α i e -t/τi ,
where M is the number of exponentials. The amplitudes α i and timescales τ i of the exponentials are the estimated parameters. The branching ratio is then given by: n

= M i=1 α i τ i = M i=1 n i .
• Approximations of power-laws have the advantage of needing a few parameters only. As a consequence, tting them to data is much easier. Approximate power-law kernel is given by

φ PL M (t) = n Z M -1 i=0 a -(1+ ) i e -t a i ,
where

a i = τ 0 m i .
M controls the range of the approximation and m its precision. Z is dened such that ´∞ 0 φ P L (t)dt = n. The parameters are the branching ratio n, the tail exponent and the smallest timescale τ 0 .

• Approximate power-law with a short lags cut-o [START_REF] Stephen J Hardiman | Critical reexivity in nancial markets: a Hawkes process analysis[END_REF]:

φ HBB M (t) = n Z M -1 i=0 a -(1+ ) i e -t a i -Se -t a -1
, the denition is the same as φ PL M with the addition of a smooth exponential drop for lags shorter than τ 0 . S is dened such that φ HBB M (0) = 0. • We propose a new type of kernels, made up of an approximate power-law φ PL M and one exponential with free parameters. This is to allow for a greater freedom in the structure of time scales. The kernel is then dened as

φ PLx M (t) = n Z M -1 i=0 a -(1+ ) i e -t a i + be -t τ ,
where the exponential term adds two parameters b and τ . The other variables have the same meaning as above.

When a kernel is a sum of exponentials, one can exploit a recursive relation for the log-likelihood calculation that reduces the computational complexity from O(N 2 ) to O(N ) (see Ozaki [START_REF] Ozaki | Maximum likelihood estimation of Hawkes' self-exciting point processes[END_REF]). It provides reasonable computation time on a single workstation since N is O(10 4 ). The rst form is the most exible and can approximate virtually any continuous function, at the cost of extra-parameters and more sloppiness [START_REF] Waterfall | Sloppy-Model Universality Class and the Vandermonde Matrix[END_REF]. The second and third ones aim to reproduce the long memory observed in many market but are less exible; their eective support may span well beyond the tting period. The last one tries to combine the best of both worlds.

Once a kernel form is specied, we use the L-BFGS-B algorithm [START_REF] Byrd | A Limited Memory Algorithm for Bound Constrained Optimization[END_REF] to estimate the parameters that maximize the log-likehood. For each t we try dierent starting points to avoid local maxima.

Using multivariate Hawkes process to t the arrival and the reciprocal inuence of buy and sell trades systematically yields null cross-terms. Both buy and sell trades yield indistinguishable results; we therefore focus on buy trades.

B. Goodness-of-ts tests

The quality of the ts is assessed on the time-deformed series of durations {θ i }, dened by

θ i = ˆti ti-1 λt dt,
where λ is the estimated intensity and {t i } are the empirical timestamps. If a Hawkes process describes the data correctly, the θ i s must be (i) independent and (ii) exponentially distributed with unit rate. The maximum-likelihood estimation, by construction, tends to maximize the exponential nature of the θs, but not their independence. This explains why QQ-plots of the resulting θs are visually very satisfying as long as the kernel contains than more one exponential.

Visual checks of QQ-plots is only one of the available criteria, many of them being more precise and rigorous. Indeed, property (i) can be tested by the Ljung-Box test, which examines the null hypothesis of absence of auto-correlation in a given time-series. We use here a slight modication of the original test statistic from Ljung and Box [START_REF] Ljung | On a measure of lack of t in time series models[END_REF], dened as

Q = N (N + 2) h+1 k=2 ρ2 k n -k ,
where N is the sample size, ρk is the sample autocorrelation at lag k, and h is the number of lags being tested. Under the null, Q follows a χ 2 with h degrees of freedom. Note that we start the sum at k = 2 (instead of 1). This is because of the systematic small one-step anti-correlation introduced by the data cleaning procedure (Sec. III B). In other words, we wish to test the absence of auto-correlation at lags that are unaected by this procedure. Property (ii) is assessed by two tests 1. Kolmogorov-Smirnov test (KS henceforth), based on the maximal discrepancy between the empirical cumulative distribution and the exponential cumulative distribution. The asymptotic distribution under the null is the Kolmogorov distribution. It is known to be a very (even excessively) demanding test. [START_REF] Robert | Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data[END_REF] Excess Dispersion test (ED henceforth), which veries the lack of excess dispersion in the residuals. The test statistic reads:

Engle and Russell

S = √ N σ2 -1 √ 8 ,
where σ2 is the sample variance of θ which should be equal to 1. Under the null, S has a limiting normal distribution.

All these three tests check basic but essential properties of the θs.

III. DATA

A. Description

We study EUR/USD inter-dealer trading from January 1, 2012 to March 31, 2012. The data comes from EBS, the leading electronic trading platform for this currency pair. A message is recorded every 0.1 s. It contains the highest buying deal price and the lowest selling deal price with the dealt volumes, as well as the total signed volume of trades in the time-slice. Orders on EBS must have a volume multiple of 1 million of the base currency, which is therefore the natural volume unit. This is, to our knowledge, the best data available from EBS in terms of frequency (almost tick by tick) and, above all, has the invaluable advantage of containing information about traded volumes.

B. Treatment

The data must be ltered to improve the accuracy of ts. The coarse time resolution introduces a spurious discretization of the duration data, as illustrated in Fig. 1 (left plot). To overcome this issue, we added a time shift, uniformly distributed between 0 and 0.1, to trade occurrence times (Fig. 1, middle plot).

The number of transactions on one side during a time-slice can be determined from the total signed volumes in 92% of cases. Indeed, when the total signed traded volume (V total ) is equal to the reported trade volume (V report ), only one trade occurred and the only uncertainty is about the exact time of the event. However, when V total > V report , one knows that more than one trade occurred. If V total -V report = 1, exactly two trades occurred, one with volume V report and one with volume 1; their respective event time are randomly uniformly drawn during the time slice. Finally, the case V total -V report > 1 (about 8% of the non-empty time-slices) is ambiguous because the extra volume may come from more than one trade and hence may be split in dierent ways. We tried dierent schemes: not adding any trade, adding one trade, adding a trade per extra million, adding a uniform random number of trades between 1 and V total -V report and a self-consistent correction that uses the most probable partition according to the distribution of the volume of unambiguously determined trades. All of them give similar estimated tting parameters for all kernels. However, statistical signicance is best improved by adding one trade irrespective of the kernel choice . We therefore apply this procedure in this paper; as a consequence, all statistical results closely depend on this choice. This simple correction procedure introduces a weak, short-term memory eect. Figure 2 (left) plots the linear autocorrelation function of the sequence {θ i }, for a particular day (March 3rd 2012) (other days yield similar results). All the coecients are almost statistically equal to zero except at the rst lag (which is why we apply Ljung-Box test starting from the second lag). This negative value is induced by the correction procedure (see Sec. III B) since the same measure performed in raw displays no memory at all (Fig. 2 (right)). The auto-correlation of the (θ i ) 2 series is however null with the correction procedure. This test therefore shows that the time stamp correction procedure, without which no t ever passes a Kolmogorov-Smirnov test, is not entirely satisfactory from this point of view.

Nevertheless, the side eects are small and most of the auto-correlation of the corrected timestamps is well explained by a Hawkes model.

There may be other unwanted side eects caused by limited time resolution and by the randomization of timestamps within a given interval. In particular, one may wonder if limited time resolution introduces a spurious small time scale in the ts. Appendix A reports extensive numerical simulations that assess the eect of limited time resolution and time stamp shuing and shows rst that this is not the case when time stamps are shued in an interval. In addition, the smallest tted time scale is inuenced by the limited time resolution, but to a limited extent. 

IV. RESULTS

A. Hourly ts

Hourly intervals are long enough to obtain reliable calibrations, at least on active hours during which 1500 events take place on average. In such short intervals, the endogenous activity µ t in Eq. ( 1) can be approximated by a constant. We choose m = 2 and M = 15 for the power-law types of kernel. At the hourly scale, the results are fairly insensitive to changes in these parameters.

Kernel comparisons

Table I summarizes the results of the 8 types of kernels for the three tests. The mono-exponential kernel φ 1 is clearly much worse than all the other specications and we can safely rule it out as a possible description of the data.

Taking more than two exponentials only marginally improves the ts of hourly activity. QQ-plots (Fig. 3) illustrate the inadequacy of φ 1 and show indeed that φ 2 is a good kernel: for this time length, two time scales are enough to describe a whole hour of the arrival of FX trades. We judge the trade-o between log-likelihood and the number of parameters with Akaike criterion, denoted by AIC p , Akaike weights w i of kernel i, and N max , the number of intervals in which kernel i was the best. Both Akaike criteria are averaged over all the intervals. In the end, both w i and N max convey (almost) the same information because most of the time only one kernel has a weight almost equal to one.

Power-law types of kernels also achieve good results, in particular φ PLx 15 , but all indicate a larger endogeneity factor n than kernels with free exponentials. Akaike weights strongly suggest that φ 2 is the best model at an hourly time scale. In addition we note that the means and medians of the tted parameters of φ n (n = 1, 2, 3) kernels are very similar, while those of kernels that approximate power laws are signicantly dierent, which points to the fact that this type of kernel is prone to tting diculties at an hourly time scale. Finally, the free exponential of φ PLx , are the probabilites that kernel φ is the best according to KullbackLeibler discrepancy [START_REF] Wagenmakers | AIC model selection using Akaike weights[END_REF]. Nmax[φ] is the number of intervals in which the Akaike weight of kernel φ is the largest one. Values averaged over the ts on 1090 non-overlapping windows with more than 200 trades.

Detailed results for φ2

Given its simplicity and good performance, it is interesting to look further into the results for the double exponential case. We note that Rambaldi et al. [START_REF] Rambaldi | Modeling FX market activity around macroeconomic news: a Hawkes process approach[END_REF] also suggest that this kernel is a good candidate for the modeling of mid-quotes changes in EBS data (without signed volumes). We characterize each hourly time-window by averaging the ts over three months. First, let us have a look at goodness of ts results. Fig. 3 (left plot) reports the quantiles of {θ i } for a particular day and hourly window against the exponential theoretical quantiles. The t is visually very satisfactory. Other time windows of all days yield similar results. Fig. 3 (right plot) demonstrates that all hours of the day pass Kolmogorov-Smirnov test by a large margin. q q q q q q q q q q q q q q q q q q q q q q q q 0 500 1000 1500 2000 0 5 10 15 20 hour <#events> q q q q q q q q q q q q q q q q q q q q q q q q 0.00 In Fig. 4 (left), the number of trades displays the well-known intraday pattern of activity in the FX market [START_REF] Michael M Dacorogna | A geographical model for the daily and weekly seasonal volatility in the foreign exchange market[END_REF][START_REF] Ito | Intraday seasonality in activities of the foreign exchange markets: Evidence from the electronic broking system[END_REF].
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Figure 5: Average branching ratio throughout the day (left); black symbols: total ratio; green symbols: branching ratio of the largest time-scale; blue symbols: branching ratio of the smallest time-scale. Average associated times-scales on the right. Error bars set at two standard deviations.

Remarkably, the endogeneity level n is relatively stable (within statistical uncertainty) for all hours (Fig. 5) given the fact that the typical trading activity is 10 times smaller at nights (Fig. 4). This is particularly striking for the endogeneity associated to largest time scale, n 2 . Endogeneity associated with the smallest time scale, n 1 , follows, albeit with a much smaller relative change, the daily average activity, except for the lunch time lull, which comes from the largest time scale. This suggests that while automated algorithmic trading takes no pause, human traders do have a break. In turn, this means that at this scale, most of the endogeneity at the smallest time scale comes from algorithmic trading, and that a sizable part of the endogeneity at longer times scales is caused by human trading.

B. Whole-day ts

The relative stability of the branching ratio and the high p-values of e.g. KS tests encourages us to t longer time windows. As we will see, this is possible for a full day at a time. In this case, µ cannot be considered constant anymore (see Fig. 4). As suggested by Bacry and Muzy [START_REF] Bacry | Hawkes model for price and trades high-frequency dynamics[END_REF], a time-of-the-day dependent background intensity is a good way to account for the intraday variation of activity. This method has the advantage of not mixing data from other days like classic detrending methods do. We thus approximate, for each day, µ t by a piecewise linear function with knots at 0 am (when the series begin), 5 am, 9 am, 12 pm, 4 pm and at the end of the series. The 6 knots values are additional tting parameters.

Kernel comparison

The results are synthesized in table II Only φ 2 and φ 3 pass the Ljung-Box test. This time φ 3 is the favored model according to the Akaike weights and performs well with respect to the three tests. We note that φ PLx 15 , whose free exponential has a timescale equal to 0.11 s, is also a strong contender. We can gain a global insight across days from QQplots. Indeed, under the null hypothesis, the residuals possess the same distribution independently of the considered day. We therefore merge all the residuals from all the daily ts and construct the QQplot against the exponential distribution. Fig. 6 reports the performance of four families of kernel and bring a visual conrmation of the results in Table II. In addition, it allows one to understand where each kernel performs best and worst. For example, φ PL 30 is better in the extreme tails than in the bulk of the distribution. One also sees the problems of φ 3 in this region, solved by adding a fourth exponential (see φ 4 ).

Figure 6: QQ-plot of the residuals merged from all intervals (one-day ts).

Detailed results for φ3

Let us investigate in details the ts of φ 3 , the overall best kernel for whole days. We also show some results for φ 2 for sake of comparison. The background intensity tted values are summarized in Fig. 7 and are in line with the average intraday activity pattern. Figure 8 reports the Kolmogorov-Smirnov p-value for each tted day. Again, the null hypothesis of exponentially distributed {θ i }, i.e., good ts, cannot be rejected. Fits are however less impressively signicant that those of hourly ts case because of additional non-stationarities. On this plot and on all the remaining plots of the section, line breaks correspond to weekends. The QQ-plot (left plot of Fig. 8) visually conrms the accuracy of the t. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 
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C. Multi-day ts

Extending ts to two days requires to account for weekly seasonality. First and most importantly, EBS order book does not operate at week-ends, which implies that Mondays and Fridays most likely have a dynamics distinctly dierent from the other days. Thus we t all pairs Tuesdays-Wednesdays, and Wednesdays-Thursdays, which amounts to 26 ts (2 points per week, 13 weeks). Before proceeding, it is important to keep in mind that Figure 7 forewarns that the daily variations of activity at various times of the day are ample, particularly at about 4pm, the time of the daily xing. This may also prevent a single kernel to hold for several days in a row, the composition of the reaction times of the population of traders being potentially subject to similar uctuations between two days. No kernel can pass the three tests at the same time (φ 3 does for a single pair of days). The timescales of φ 3 are stable and similar to those of single-day ts ( τ 1 0.15 s, τ 2 10.6 s, τ 3 178 s), while φ 4 sometimes manages to nd a fourth timescale. For the record, we tried to use 5 exponentials, but never found a fth timescale. It is noteworthy that φ 4 has an acceptable average pKS. The free exponential of φ PLx 15 has a timescale of 0.13 s.
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V. DISCUSSION AND CONCLUSIONS

Our results are mostly positive: Hawkes processes can indeed be tted in a statistically signicant way according to three tests to a whole day of data. This means that they describe very precisely a large number of events (around on average 15000). This is all the more remarkable because the tted timescales are quite small. This shows that the endogenous part, which account for about 80% of the events, is limited to short time self-reactions in FX markets.

This also means that at these time horizons, the instantaneous distribution of reaction time scales of the traders inuences much the tted kernels, as shown by the lunch lull in endogeneity. This is one reason why tting more than one day with the same kernel is very hard since nothing guarantees that the composition of the trader population will be the same for several days in a row.

Fitting longer and longer time periods requires more and more exponentials. Fitting sums of exponentials with free parameters yields successive timescales whose ratios are not constant, which contrasts with the assumption of kernels that approximate power-laws. This is why the kernel φ PLx

15 , which adds one free exponential to the latter, has an overall better performance than pure approximations of power-laws. Longer time periods also leads to larger endogeneity factors, which makes sense since measuring long memory by denition requires long time series. As it clearly appears in all the tables, the use of power law-like kernels mechanically increases the apparent endogeneity factor, some of them being dangerously close to 1 (e.g φ HBB 30 and φ PL 30 ). That said, and quite importantly, the best kernels are never those with the largest endogeneity factors.

One may wonder if signicance could be much improved by using data with a much better time resolution. It would certainly help, but only to a limited extent. As shown in Appendix A, only the KS test is aected by introduction of limited time resolution. Since the ts also fail to pass the the LB test for two consecutive days that is not aected by a limited time resolution, it is safe to assume that this failure has deeper reasons. The main problem resides in the diculties caused by the non-stationarities of both exogeneity and endogeneity. The example of the lunch lull is striking: assuming a constant kernel shape for all times of the day, while a good approximation, cannot lead to statistical signicance of ts over many days. In this precise case, one could add a daily seasonality on some weights.

Our results may well be specic to FX markets. In particular, the endogeneity is never close to 1, in contrast with studies on futures on equity indices. However given the nightly closure of equities markets (for example) and their short opening times, and given the diculties encountered for FX data, it seems dicult to envisage a statistically satisfying comparison.

Appendix A: Simulations

We simulate a Hawkes process with a φ 2 kernel with parameters similar to those of hourly ts on real data: we set µ = 0.05, n 1 = 0.37, n 2 = 0.42, τ 2 =21 s and vary τ 1 from 0.05 s to 1.5 s. For each value of τ 1 we perform 50 simulations of 22 hours. Then, on each simulated time-series, we articially reduce the data resolution to 0.1 s, introducing time slicing as in our data set, and then randomize the timestamps within each time slice in order to mimic the procedure applied on empirical data (see Sec. III B). We t each resulting time-series and average the results over the 50 runs with two-and three-exponential kernels. . Nevertheless, this increase is small, of the order of 15%. In addition, shuing does not introduce a spurious third time scale, as ts with kernels with three exponentials did not yield any third time scale. q q q q q q q q q q q q q q q 0.4 0.8 1.2 0.4 0.8 1.2 τ 1 sim τ 1 fit q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.1 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 0.25 0.50 0.75 1.00 0.1 0.2 τ 1 sim p-values q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 Finally, Fig. 12 shows that only the Kolmogorov-Smirnov p-values are aected by the time slicing and time stamp shuing within a time slice. Nevertheless, at τ f it 1 = 0.15s , pKS is still larger than 0.05. This is consistent with ts on real data: signicance is possible, but limited time resolution does not help.

  The distribution of resulting durations are plotted in Fig 1 (right plot).

Figure 1 :

 1 Figure 1: Duration distribution. Left: Raw times. Middle: Randomized times. Right: Corrected times. Three months of data, restricted to London active hours (9am-5pm).

Figure 2 :

 2 Figure 2: Time-adjusted durations autocorrelation function for March 3rd 2012. Left: with correction. Right: without correction.

Figure 3 :

 3 Figure 3: Goodness of Fit tests under the null hypothesis of exponentially distributed time-deformed durations. Left: A typical QQ-plot (February 1st 2012, 3-4pm) for φ1. Middle: Same for φ2. Right: Kolmogorov-Smirnov test average p-value. Error bars set at two standard deviations.

Figure 4 :

 4 Figure 4: Left: Average number of trades (left) and average baseline intensity (right) throughout the day. Error bars set at two standard deviations.

Figure 7 :

 7 Figure 7: Tukey boxplot of baseline intensity knots values.

Figure 8 :

 8 Figure 8: Goodness of Fit tests under the null hypothesis of exponentially distributed time-deformed durations. Left: A typical QQ-plot (March 3rd 2012). Right: Kolmogorov-Smirnov test p-value. The continuous line is the 0.05 signicance level.

3 Figure 9 :

 39 Figure 9: Daily branching ratio (left) and associated time-scales (right). The shortest characteristic timescale is very stable; the model captures 1 or 2 longer time scales depending on the day.

Figure 11

 11 Figure 11 reports the tted smallest time scale as a function of the original time scale and shows that the shuing of time stamps within an interval leads artically increases the apparent smallest time scale, particularly (and quite expectedly) for small τ sim

1

 1 

Figure 11 :

 11 Figure 11: Fitted short timescale (black points) versus simulated short timescale. In red, the y = x line. Right plot is a zoom on the critical region (close to 0.1 s). Blue points are the tted values without the slicing procedure. Small distortion in the short timescale determination. Error bars set at two standard deviations..

  q

Figure 12 :

 12 Figure 12: Fits p-values for Kolmogorov-Smirnov test (black), Ljung-Box test (red) and Excess-Dispersion test (blue). Left plot: with time stamp shuing within a time slice. Right plot: without shuing. Only the Kolmogorov-Smirnov p-value is aected by the data bundling. Error bars set at two standard deviations.

Table I :

 I Comparison the ability of various kernels to t Hawkes processes on hourly time windows.

									15 has a
	timescale of 0.06 s.								
		φ1	φ2	φ3	φ HBB 15	φ PL 15	φ HBB 30	φ PL 15	φ PLx 15
	µ	0.13	0.08	0.08	0.07	0.07	0.07	0.07	0.06
	n	0.41	0.64	0.64	0.67	0.67	0.77	0.75	0.72
		NA	NA	NA	0.23	0.38	0.26	0.40	0.28
	pKS	0.16	0.69	0.68	0.56	0.52	0.56	0.52	0.56
	pED	0.03	0.57	0.55	0.63	0.60	0.58	0.57	0.62
	pLB	0.11	0.38	0.38	0.34	0.31	0.29	0.28	0.33
	log Lp 4022.9 4069.5 4069.9 4055.6 4062.9 4045.8 4060.3 4064.2
	AICp -8035.9 -8122.7 -8117.0 -8098.2 -8112.7 -8078.5 -8107.6 -8105.8
	w	0.01	0.55	0.14	0.05	0.06	0.03	0.04	0.11
	Nmax	21	692	84	65	70	21	21	116

pKS, pED and pLB are respectively the Komogorov-Smirnov, Excess-Dispersion and Ljung-Box test average p-values. log Lp is the log likelihood per point for the t of each intervals, averaged over all intervals, and multiplied by the average number of points per interval. Idem for the Akaike information criterion AICp. The Akaike normalized weights w[φ] = 1 W exp -AIC[φ]-AIC min 2

  .

	Kernel	φ1	φ2	φ3	φ4	φ HBB 15	φ PL 15	φ HBB 15 /µcst φ PL 15 /µcst	φ HBB 30	φ PL 30	φ PLx 15
	n	0.48	0.79	0.83	0.85	0.81	0.83	0.92	0.93	0.98	0.97	0.88
	pKS	7e -13	0.09	0.13	0.16	4 × 10 -6 2 × 10 -7 6 × 10 -9 6 × 10 -10 6 × 10 -4	4e -6	0.04
	pED	0	0.10	0.31	0.45	0.61	0.51	0.6	0.54	0.52	0.49	0.66
	pLB	0	0.058	0.056	0.012	9e -5	0.001	0.017	0.026	1 × 10 -4	2e -4	0.006
	log Lp 60271.0	61559.3	61596.2	61575.5	61279.6	61340.2	61181.5	61271.1	61286.3	61340.6	61468
	AICp -120525.4 -123097.7 -123167.4 -123121.8 -122540.4 -122661.7 -122354.7 -122534.0 -122553.9 -122662.5 -122912.0
		NA	NA	NA	NA	0.090	0.115	0.027	0.057	0.13	0.14	0.08
	w	0	0.13	0.38	0.24	0	0	0	0	0	0	0.24
	Nmax	0	9	22	14	0	0	0	0	0	0	14

Table II :

 II Kernel comparison. Full day ts. 59 points.

Table III :

 III , the shortest timescale τ 1 does not depend on the eective number of timescales, while the second indeed does. Average timescales when two or three timescales are found by tting φ3 to whole days.

		2 timescales 3 timescales
	τ1	0.16 s	0.15 s
	τ2	21.9 s	9.3 s
	τ3	NA	161 s

Table IV :

 IV Kernel comparison of two-days ts. 26 points.

Table

  IV compares the performance of all kernels. Kernel φ 2 performs poorly, while φ 3 , φ 4 and φ PLx 15 are the best ones according to AIC p criterion.

Table V :

 V Average timescales when three or four timescales are found by tting φ4 to two consecutive days.

		τ (seconds)		q q q	τ 1 τ 2 τ 3
			3	5 Day of Year 7 9	11 13
	Figure 10: Endogeneity factors (left plot) and associated timescales (right plot) for ts of φ3 to two consecutive days
		3 timescales 4 timescales
	τ1	0.15 s	0.15 s
	τ2	13.5 s	7.1 s
	τ3	226 s	33 s
	τ4	NA	295 s