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The limits of statistical significance of Hawkes processes fitted to financial data
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Many fits of Hawkes processes to financial data look rather good but most of them are not
statistically significant. This raises the question of what part of market dynamics this model is
able to account for exactly. We document the accuracy of such processes as one varies the time
interval of calibration and compare the performance of various types of kernels made up of sums
of exponentials. Because of their around-the-clock opening times, FX markets are ideally suited to
our aim as they allow us to avoid the complications of the long daily overnight closures of equity
markets. One can achieve statistical significance according to three simultaneous tests provided that
one uses kernels with two exponentials for fitting an hour at a time, and two or three exponentials
for full days, while longer periods could not be fitted within statistical satisfaction because of the
non-stationarity of the endogenous process. Fitted timescales are relatively short and endogeneity
factor is high but sub-critical at about 0.8.

I. INTRODUCTION

Hawkes processes are a natural extension of Poisson processes in which self-excitation causes event clustering [23, 24].
Originally applied to the modeling of earthquake occurrences [35, 36], they have proven to be useful in many fields
(e.g. neuroscience, criminology and social networks modeling [13, 14, 34, 38, 45]). This is because of their tractability
and the ever-increasing number of estimation methods [2, 5, 16, 31, 33, 40]. Since many types of financial market
events such as mid-quote changes, extreme return occurrences or order submissions are clustered in time, Hawkes
processes have become a standard tool in finance too.

In the context of market microstructure, Hawkes processes were first introduced by Bowsher [8], who simultaneously
analyzed trades time and mid-quotes changes with a multivariate framework. Two others pioneer approaches are the
ones by Bauwens and Hautsch [6] and Hewlett [25] who focused on the durations between transactions. Subsequently,
Large [30] supplemented transaction data with limit orders and cancellations data in a ten-variate Hawkes process
in order to measure the resilience of an London Stock Exchange order book. Bacry et al. [3] have recently modeled
the mid-price change as the difference between two Hawkes processes and showed that the resulting price exhibits
microstructure noise and the Epps effect. Jaisson and Rosenbaum [27] established that under a suitable rescaling a
nearly unstable Hawkes process converges to a Heston model. Bacry and Muzy [4] used an enhanced version of the
model to account for market impact. Finally, Jedidi and Abergel [28] modeled the full order book with a multivariate
Hawkes setup and proved that the resulting price diffuses at large time scales. Remarkably, Hawkes processes are also
applied to other financial topics such as VaR estimation [11, 12], trade-through modeling [42], portfolio credit risk
[19], or financial contagion across regions [1] and across assets [7].

It is widely accepted among researchers that only a small fraction of price movements is directly explained by
external news releases (e.g. Cutler et al. [15], Joulin et al. [29]). Thus, the price dynamics is mostly driven by internal
feedback mechanisms, which corresponds to what Soros calls “market reflexivity” [41]. In the framework of Hawkes
processes, endogeneity comes from self-excitation while the baseline activity rate is deemed exogenous (see Sec. II for
a mathematical definition). In other words, these processes provide a straightforward way to measure the importance
of endogeneity, for example in the E-mini S&P futures [20, 22]. Filimonov and Sornette [20] argued that the level of
endogeneity has increased steadily in the last decade due to the advent of high-frequency and algorithmic trading.
Hardiman et al. [22] showed that it is only the short-term endogeneity (linked to increases of computer power and
speed, and, indeed, HFT) that has increased over the years, while the endogeneity factor has been very stable and close
to 1, the special value at which the process becomes totally self-referential and unstable. Fitting Hawkes processes
to financial data requires some care: one should not use a single exponential self-excitation kernel [22], while many
other biases may affect fits with long-tailed kernels on long time periods [21].

Nobody claims that Hawkes process are the exact description of the whole dynamics of financial markets. However,
testing the significance of the fits is not a current priority in the literature. Given the fact that the fits are usually
visually satisfactory, it seems obvious that statistical significance may be obtained in some cases. Here, we wish
to assess the extent (and the limits) of the explanatory power of Hawkes processes with several possibly types of
parametric kernels, according to three statistical tests. One of the difficulties in obtaining significant fits come from
jumps in trading activity such as those occurring when markets open and close. This is why we work on data from FX
markets which have the advantage of operating continuously for longer periods. There may still be discontinuities,



either implicit (e.g. fixing time) or explicit (e.g. week-end closures) in our FX data, but at least one day of FX data
spans many more hours than one day of equity market data and is thus more suitable to our aim. Hence, a minori,
one may extrapolate most of our failures to fit correct Hawkes processes to other types of data with more significant
activity discontinuities.

The two other papers on FX data and Hawkes processes have a different focus than ours: Hewlett [25] deals with
the relatively illiquid EUR/PLN currency pair and uses a single-exponential kernel. Rambaldi et al. [39] also use
EBS data (with the same time resolution as ours) and studies the dynamics of best quotes around important news.
Because our data set consists of order book snapshots every 0.1s (see Sec. III for more details), we can trace most
trades but not mid price changes. This is why we fit a univariate Hawkes process to EUR/USD trade arrivals. The
endogeneity parameter is then the average number of trades triggered by a single trade.

The structure of the paper is as follows: we first define Hawkes processes, the fitting method, the parametric kernels
and the statistical tests that we will use. We first show that Hawkes processes excel at fitting one hour of FX data,
are fairly good for a single day, and fail when used for two consecutive days.

II. HAWKES PROCESSES

An univariate Hawkes process is a linear self-exciting point process with an intensity given by
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where p; is a baseline intensity describing the arrival of exogenous events and the second term is a weighted sum
over past events. The kernel ¢ (¢ —¢;) describes the impact on the current intensity of a previous event that took place
at time ;.

A Hawkes process can be mapped to (and interpreted as) a branching process, where exogenous “mother” events
occurring with intensity p; can trigger one or more “child” events. In turn, each of these children, can trigger multiple
child events (or “grand-child” respectively to the original event), and so on. The quantity n = fooo ¢(s)ds controls the
size of the endogenously generated families. Indeed, n is the branching ratio of the process, which is defined as the
average number of children for any event. Therefore, n quantifies market reflexivity in an elegant way. Three regimes
exist depending on the branching ratio value:

e a sub-critical regime (n < 1) where families dies out almost surely,

e the critical regime (n = 1), where one family lives indefinitely without exploding. In the language of Hawkes
process, this requires p = 0 to be properly defined and it is equivalent to Hawkes process without ancestors
studied by Brémaud and Massoulié [9],

e the explosive regime (n > 1), where a single event triggers an infinite family with a strictly positive probability.

Evaluating n gives a simple measure of the market “distance” to criticality. For n < 1, the process is stationary if
is constant. In this case, the branching ratio is also equal to the average proportion of endogenously generated events
among all events.

A. Parametric kernels

We compare the performance of the following kernels, each labeled by its own index.

e Sum of exponentials:

M
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where M is the number of exponentials. The amplitudes «; and timescales 7; of the exponentials are the
estimated parameters. The branching ratio is then given by: n = S a;m = S0 n,.



e Approximations of power-laws have the advantage of needing a few parameters only. As a consequence, fitting
them to data is much easier. Approximate power-law kernel is given by
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M controls the range of the approximation and m its precision. Z is defined such that fooo ¢pr(t)dt =n. The
parameters are the branching ratio n, the tail exponent ¢ and the smallest timescale 7.

e Approximate power-law with a short lags cut-off [22]:
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the definition is the same as ¢4 with the addition of a smooth exponential drop for lags shorter than 7y. S is
defined such that ¢472(0) = 0.

e We propose a new type of kernels, made up of an approximate power-law ¢}; and one exponential with free
parameters. This is to allow for a greater freedom in the structure of time scales. The kernel is then defined as

PLX (Z a, (1+5) +b€ 7.)’

where the exponential term adds two parameters b and 7. The other variables have the same meaning as above.

When a kernel is a sum of exponentials, one can exploit a recursive relation for the log-likelihood calculation that
reduces the computational complexity from O(N?) to O(N) (see Ozaki [37]). It provides reasonable computation
time on a single workstation since N is O(10%). The first form is the most flexible and can approximate virtually
any continuous function, at the cost of extra-parameters and more sloppiness [44]. The second and third ones aim
to reproduce the long memory observed in many market but are less flexible; their effective support may span well
beyond the fitting period. The last one tries to combine the best of both worlds.

Once a kernel form is specified, we use the L-BFGS-B algorithm [10] to estimate the parameters that maximize the
log-likehood. For each fit we try different starting points to avoid local maxima.

Using multivariate Hawkes process to fit the arrival and the reciprocal influence of buy and sell trades systematically
yields null cross-terms. Both buy and sell trades yield indistinguishable results; we therefore focus on buy trades.

B. Goodness-of-fits tests

The quality of the fits is assessed on the time-deformed series of durations {6;}, defined by
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where \ is the estimated intensity and {¢;} are the empirical timestamps. If a Hawkes process describes the data
correctly, the 6;s must be (i) independent and (ii) exponentially distributed with unit rate. The maximum-likelihood
estimation, by construction, tends to maximize the exponential nature of the s, but not their independence. This
explains why QQ-plots of the resulting 0s are visually very satisfying as long as the kernel contains than more one
exponential.

Visual checks of QQ-plots is only one of the available criteria, many of them being more precise and rigorous. Indeed,
property (i) can be tested by the Ljung-Box test, which examines the null hypothesis of absence of auto-correlation
in a given time-series. We use here a slight modification of the original test statistic from Ljung and Box [32], defined
as
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where N is the sample size, g is the sample autocorrelation at lag k, and h is the number of lags being tested.
Under the null, Q follows a x? with h degrees of freedom. Note that we start the sum at k = 2 (instead of 1). This is
because of the systematic small one-step anti-correlation introduced by the data cleaning procedure (Sec. IIIB). In
other words, we wish to test the absence of auto-correlation at lags that are unaffected by this procedure.

Property (ii) is assessed by two tests

1. Kolmogorov-Smirnov test (KS henceforth), based on the maximal discrepancy between the empirical cumulative
distribution and the exponential cumulative distribution. The asymptotic distribution under the null is the
Kolmogorov distribution. It is known to be a very (even excessively) demanding test.

2. Engle and Russell [18] Excess Dispersion test (ED henceforth), which verifies the lack of excess dispersion in
the residuals. The test statistic reads:

S \F&Q_
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where ¢ is the sample variance of 6 which should be equal to 1. Under the null, S has a limiting normal
distribution.

2

All these three tests check basic but essential properties of the 0s.

III. DATA
A. Description

We study EUR/USD inter-dealer trading from January 1, 2012 to March 31, 2012. The data comes from EBS, the
leading electronic trading platform for this currency pair. A message is recorded every 0.1s. It contains the highest
buying deal price and the lowest selling deal price with the dealt volumes, as well as the total signed volume of trades
in the time-slice. Orders on EBS must have a volume multiple of 1 million of the base currency, which is therefore
the natural volume unit. This is, to our knowledge, the best data available from EBS in terms of frequency (almost
tick by tick) and, above all, has the invaluable advantage of containing information about traded volumes.

B. Treatment

The data must be filtered to improve the accuracy of fits. The coarse time resolution introduces a spurious
discretization of the duration data, as illustrated in Fig. 1 (left plot). To overcome this issue, we added a time shift,
uniformly distributed between 0 and 0.1, to trade occurrence times (Fig. 1, middle plot).

The number of transactions on one side during a time-slice can be determined from the total signed volumes in 92%
of cases. Indeed, when the total signed traded volume (Viotq1) is equal to the reported trade volume (Vyeport), only
one trade occurred and the only uncertainty is about the exact time of the event. However, when Viotar > Vieport, One
knows that more than one trade occurred. If Viotqi — Vieport = 1, exactly two trades occurred, one with volume Vj.cpors
and one with volume 1; their respective event time are randomly uniformly drawn during the time slice. Finally,
the case Vigtar — Vieport > 1 (about 8% of the non-empty time-slices) is ambiguous because the extra volume may
come from more than one trade and hence may be split in different ways. We tried different schemes: not adding any
trade, adding one trade, adding a trade per extra million, adding a uniform random number of trades between 1 and
Viotat — Vreport and a self-consistent correction that uses the most probable partition according to the distribution
of the volume of unambiguously determined trades. All of them give similar estimated fitting parameters for all
kernels. However, statistical significance is best improved by adding one trade irrespective of the kernel choice . We
therefore apply this procedure in this paper; as a consequence, all statistical results closely depend on this choice.
The distribution of resulting durations are plotted in Fig 1 (right plot).
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Figure 1: Duration distribution. Left: Raw times. Middle: Randomized times. Right: Corrected times. Three months of data,
restricted to London active hours (9am-5pm).

This simple correction procedure introduces a weak, short-term memory effect. Figure 2 (left) plots the linear auto-
correlation function of the sequence {6;}, for a particular day (March 3rd 2012) (other days yield similar results). All
the coefficients are almost statistically equal to zero except at the first lag (which is why we apply Ljung-Box test
starting from the second lag). This negative value is induced by the correction procedure (see Sec. IIIB) since the
same measure performed in raw displays no memory at all (Fig. 2 (right)). The auto-correlation of the{(6;)*} series
is however null with the correction procedure. This test therefore shows that the time stamp correction procedure,
without which no fit ever passes a Kolmogorov-Smirnov test, is not entirely satisfactory from this point of view.
Nevertheless, the side effects are small and most of the auto-correlation of the corrected timestamps is well explained
by a Hawkes model.

There may be other unwanted side effects caused by limited time resolution and by the randomization of timestamps
within a given interval. In particular, one may wonder if limited time resolution introduces a spurious small time
scale in the fits. Appendix A reports extensive numerical simulations that assess the effect of limited time resolution
and time stamp shuffling and shows first that this is not the case when time stamps are shuffled in an interval. In
addition, the smallest fitted time scale is influenced by the limited time resolution, but to a limited extent.

0 0
[S) [S)
o o
(=) (<)
c M| c M|
S o S o
< <
SN SR
5 o 5 o
(5] (5]
o o
5 5
< o7 < o 7]
= ettt rtrtesradobot ors st = sttt bt s
S T T S " T
b b
T T
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Lag (events) Lag (events)

Figure 2: Time-adjusted durations autocorrelation function for March 3rd 2012. Left: with correction. Right: without
correction.

IV. RESULTS
A. Hourly fits

Hourly intervals are long enough to obtain reliable calibrations, at least on active hours during which 1500 events
take place on average. In such short intervals, the endogenous activity u; in Eq. (1) can be approximated by a
constant. We choose m = 2 and M = 15 for the power-law types of kernel. At the hourly scale, the results are fairly



insensitive to changes in these parameters.

1. Kernel comparisons

Table I summarizes the results of the 8 types of kernels for the three tests. The mono-exponential kernel ¢; is
clearly much worse than all the other specifications and we can safely rule it out as a possible description of the data.
Taking more than two exponentials only marginally improves the fits of hourly activity. QQ-plots (Fig. 3) illustrate
the inadequacy of ¢; and show indeed that ¢, is a good kernel: for this time length, two time scales are enough to
describe a whole hour of the arrival of FX trades. We judge the trade-off between log-likelihood and the number of
parameters with Akaike criterion, denoted by AIC), , Akaike weights w; of kernel 4, and Ny,q, the number of intervals
in which kernel ¢ was the best. Both Akaike criteria are averaged over all the intervals. In the end, both w; and Ny, 4,
convey (almost) the same information because most of the time only one kernel has a weight almost equal to one.
Power-law types of kernels also achieve good results, in particular ¢}, but all indicate a larger endogeneity factor
n than kernels with free exponentials. Akaike weights strongly suggest that ¢s is the best model at an hourly time
scale. In addition we note that the means and medians of the fitted parameters of ¢,, (n = 1,2,3) kernels are very
similar, while those of kernels that approximate power laws are significantly different, which points to the fact that
this type of kernel is prone to fitting difficulties at an hourly time scale. Finally, the free exponential of ¢}5* has a
timescale of 0.06 s.

! [ on [ ¢ | 65 | ow® [ ok [ i | gk | o5 ]
n 0.13 0.08 0.08 0.07 0.07 0.07 0.07 0.06
n 0.41 0.64 0.64 0.67 0.67 0.77 0.75 0.72
€ NA NA NA 0.23 0.38 0.26 0.40 0.28
pKS 0.16 0.69 0.68 0.56 0.52 0.56 0.52 0.56
pED 0.03 0.57 0.55 0.63 0.60 0.58 0.57 0.62
pLB 0.11 0.38 0.38 0.34 0.31 0.29 0.28 0.33
log L, | 4022.9 | 4069.5 | 4069.9 | 4055.6 | 4062.9 | 4045.8 | 4060.3 | 4064.2
AIC, |—8035.9|—8122.7|—8117.0| —8098.2|—8112.7|—8078.5| —8107.6| —8105.8
w 0.01 0.55 0.14 0.05 0.06 0.03 0.04 0.11
Nmaz 21 692 84 65 70 21 21 116

Table I: Comparison the ability of various kernels to fit Hawkes processes on hourly time windows. pK.S, pED and pLB are
respectively the Komogorov-Smirnov, Excess-Dispersion and Ljung-Box test average p-values. log £, is the log likelihood per
point for the fit of each intervals, averaged over all intervals, and multiplied by the average number of points per interval.
Idem for the Akaike information criterion AIC,. The Akaike normalized weights w[¢] = - exp (—%)

probabilites that kernel ¢ is the best according to Kullback—Leibler discrepancy [43]. Npaz[¢] is the number of intervals in
which the Akaike weight of kernel ¢ is the largest one. Values averaged over the fits on 1090 non-overlapping windows with
more than 200 trades.

, are the

2. Detailed results for ¢2

Given its simplicity and good performance, it is interesting to look further into the results for the double exponential
case. We note that Rambaldi et al. [39] also suggest that this kernel is a good candidate for the modeling of mid-quotes
changes in EBS data (without signed volumes). We characterize each hourly time-window by averaging the fits over
three months.
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Figure 3: Goodness of Fit tests under the null hypothesis of exponentially distributed time-deformed durations. Left: A typical
QQ-plot (February 1st 2012, 3-4pm) for ¢;. Middle: Same for ¢2. Right: Kolmogorov-Smirnov test average p-value. Error
bars set at two standard deviations.

First, let us have a look at goodness of fits results. Fig. 3 (left plot) reports the quantiles of {6;} for a particular
day and hourly window against the exponential theoretical quantiles. The fit is visually very satisfactory. Other
time windows of all days yield similar results. Fig. 3 (right plot) demonstrates that all hours of the day pass
Kolmogorov-Smirnov test by a large margin.
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Figure 4: Left: Average number of trades (left) and average baseline intensity (right) throughout the day. Error bars set at
two standard deviations.

In Fig. 4 (left), the number of trades displays the well-known intraday pattern of activity in the FX market [17, 26].
The average fitted exogenous part (u) perfectly reproduces this activity pattern (Fig. 4, right plot).
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Remarkably, the endogeneity level n is relatively stable (within statistical uncertainty) for all hours (Fig. 5) given
the fact that the typical trading activity is 10 times smaller at nights (Fig. 4). This is particularly striking for the
endogeneity associated to largest time scale, no. Endogeneity associated with the smallest time scale, nq, follows,
albeit with a much smaller relative change, the daily average activity, except for the lunch time lull, which comes
from the largest time scale. This suggests that while automated algorithmic trading takes no pause, human traders
do have a break. In turn, this means that at this scale, most of the endogeneity at the smallest time scale comes from
algorithmic trading, and that a sizable part of the endogeneity at longer times scales is caused by human trading.

B. Whole-day fits

The relative stability of the branching ratio and the high p-values of e.g. KS tests encourages us to fit longer time
windows. As we will see, this is possible for a full day at a time. In this case, u cannot be considered constant
anymore (see Fig. 4). As suggested by Bacry and Muzy [4], a time-of-the-day dependent background intensity is a
good way to account for the intraday variation of activity. This method has the advantage of not mixing data from
other days like classic detrending methods do. We thus approximate, for each day, u: by a piecewise linear function
with knots at 0 am (when the series begin), 5 am, 9 am, 12 pm, 4 pm and at the end of the series. The 6 knots values
are additional fitting parameters.

1. Kernel comparison

The results are synthesized in table II.

Kernel|  ¢1 | ¢2 | o5 | da | % | SE [0 pen| O fues | OB | o55 | bk
n 0.48 0.79 0.83 0.85 0.81 0.83 0.92 0.93 0.98 0.97 0.88
pKS | 7e—13 0.09 0.13 0.16 4%107% | 2%x1077 | 6x107° |6x1071°| 6x107* | 4e—6 0.04
pED 0 0.10 0.31 0.45 0.61 0.51 0.6 0.54 0.52 0.49 0.66
pLB 0 0.058 0.056 0.012 9e—5 0.001 0.017 0.026 | 1x107*| 2 —4 0.006

log £, | 60271.0 | 61559.3 | 61596.2 | 61575.5 | 61279.6 | 61340.2 | 61181.5 | 61271.1 | 61286.3 | 61340.6 61468

AIC, |—120525.4|—123097.7|—123167.4|—123121.8| —122540.4 | —122661.7 | —122354.7| —122534.0| —122553.9| —122662.5| —122912.0

€ NA NA NA NA 0.090 0.115 0.027 0.057 0.13 0.14 0.08
w 0 0.13 0.38 0.24 0 0 0 0 0 0 0.24
Nrax 0 9 22 14 0 0 0 0 0 0 14

Table II: Kernel comparison. Full day fits. 59 points.

Only ¢2 and ¢3 pass the Ljung-Box test. This time ¢3 is the favored model according to the Akaike weights and



performs well with respect to the three tests. We note that ¢}, whose free exponential has a timescale equal to
0.11s, is also a strong contender. We can gain a global insight across days from QQplots. Indeed, under the null
hypothesis, the residuals possess the same distribution independently of the considered day. We therefore merge all
the residuals from all the daily fits and construct the QQplot against the exponential distribution. Fig. 6 reports the
performance of four families of kernel and bring a visual confirmation of the results in Table II. In addition, it allows
one to understand where each kernel performs best and worst. For example, @5 is better in the extreme tails than
in the bulk of the distribution. One also sees the problems of ¢3 in this region, solved by adding a fourth exponential

(see ¢4).
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Figure 6: QQ-plot of the residuals merged from all intervals (one-day fits).

2. Detailed results for ¢3

Let us investigate in details the fits of ¢3, the overall best kernel for whole days. We also show some results for
¢o for sake of comparison. The background intensity fitted values are summarized in Fig. 7 and are in line with the

average intraday activity pattern.
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Figure 8: Goodness of Fit tests under the null hypothesis of exponentially distributed time-deformed durations. Left: A typical
QQ-plot (March 3rd 2012). Right: Kolmogorov-Smirnov test p-value. The continuous line is the 0.05 significance level.

Figure 8 reports the Kolmogorov-Smirnov p-value for each fitted day. Again, the null hypothesis of exponentially
distributed {6}, i.e., good fits, cannot be rejected. Fits are however less impressively significant that those of hourly
fits case because of additional non-stationarities. On this plot and on all the remaining plots of the section, line breaks
correspond to weekends. The QQ-plot (left plot of Fig. 8) visually confirms the accuracy of the fit.
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Figure 9: Daily branching ratio (left) and associated time-scales (right). The shortest characteristic timescale is very stable;
the model captures 1 or 2 longer time scales depending on the day.

While the total branching ratio oscillates around 0.8 (Fig. 5), the parameters associated to each exponential make
it clear that three timescales are only found on some days. This, once again, may either be because some days do not
require three timescales, or because of the sloppiness of sums of exponentials. As reported by Table III, the shortest
timescale (1) does not depend on the effective number of timescales, while the second indeed does.

’ ‘2 timescales|3 timescales

(11) 0.16s 0.15s
(72) 21.9s 9.3s
(r3)|  NA 161s

Table III: Average timescales when two or three timescales are found by fitting ¢3 to whole days.

C. Multi-day fits

Extending fits to two days requires to account for weekly seasonality. First and most importantly, EBS order
book does not operate at week-ends, which implies that Mondays and Fridays most likely have a dynamics distinctly
different from the other days. Thus we fit all pairs Tuesdays-Wednesdays, and Wednesdays-Thursdays, which amounts
to 26 fits (2 points per week, 13 weeks). Before proceeding, it is important to keep in mind that Figure 7 forewarns
that the daily variations of activity at various times of the day are ample, particularly at about 4pm, the time of the
daily fixing. This may also prevent a single kernel to hold for several days in a row, the composition of the reaction
times of the population of traders being potentially subject to similar fluctuations between two days.

Kemnel| ¢ | ¢ | oa | o®" [ ot | e | e | ot ]
n 0.80 0.87 0.88 0.82 0.84 0.98 0.97 0.91
pKS 0.02 0.04 0.06 1x1072[3%x107%% | 1x107% |3x 1071 0.04
pED 0.04 0.46 0.54 0.50 0.35 0.59 0.44 0.58
pLB 0.010 0.008 0.011 | 2x107%|4%x107%|3%x107%|4x107% | 0.001

log £, | 119666.0 | 119819.2 | 119814.5 | 119094.1 | 119221.6 | 119086.8 | 119207.4 | 119656.4
AIC, |—239303.5|—239605.7 | —239592.4| —238161.7| —238416.7| —238147.1 | —238388.2| —239282.2

€ NA NA NA 0.08 0.11 0.13 0.15 0.10
w 0 0.34 0.40 0 0 0 0 0.26
Nmag 0 9 10 0 0 0 0 7

Table IV: Kernel comparison of two-days fits. 26 points.
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Table IV compares the performance of all kernels. Kernel ¢o performs poorly, while ¢3, ¢4 and ¢75* are the best

ones according to AIC), criterion. No kernel can pass the three tests at the same time (¢3 does for a single pair of
days). The timescales of ¢3 are stable and similar to those of single-day fits ( (1) ~ 0.15s, (73) ~ 10.6s, (13) ~
178s), while ¢4 sometimes manages to find a fourth timescale. For the record, we tried to use 5 exponentials, but
never found a fifth timescale. It is noteworthy that ¢4 has an acceptable average pKS. The free exponential of ¢]5*

has a timescale of 0.13s.
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’ ‘3 timescales ‘ 4 timescales ‘

(m)| 0.15s 0.15s
(12) 13.5s 7.1s
(73) 2268 33s
()| NA 295

Table V: Average timescales when three or four timescales are found by fitting ¢4 to two consecutive days.

V. DISCUSSION AND CONCLUSIONS

Our results are mostly positive: Hawkes processes can indeed be fitted in a statistically significant way according
to three tests to a whole day of data. This means that they describe very precisely a large number of events (around
on average 15000). This is all the more remarkable because the fitted timescales are quite small. This shows that the
endogenous part, which account for about 80% of the events, is limited to short time self-reactions in FX markets.
This also means that at these time horizons, the instantaneous distribution of reaction time scales of the traders
influences much the fitted kernels, as shown by the lunch lull in endogeneity. This is one reason why fitting more than
one day with the same kernel is very hard since nothing guarantees that the composition of the trader population will
be the same for several days in a row.

Fitting longer and longer time periods requires more and more exponentials. Fitting sums of exponentials with
free parameters yields successive timescales whose ratios are not constant, which contrasts with the assumption of
kernels that approximate power-laws. This is why the kernel ¢}5*, which adds one free exponential to the latter,
has an overall better performance than pure approximations of power-laws. Longer time periods also leads to larger
endogeneity factors, which makes sense since measuring long memory by definition requires long time series. As it
clearly appears in all the tables, the use of power law-like kernels mechanically increases the apparent endogeneity
factor, some of them being dangerously close to 1 (e.g ¢55° and ¢%55). That said, and quite importantly, the best
kernels are never those with the largest endogeneity factors.

One may wonder if significance could be much improved by using data with a much better time resolution. It would
certainly help, but only to a limited extent. As shown in Appendix A, only the KS test is affected by introduction of
limited time resolution. Since the fits also fail to pass the the LB test for two consecutive days that is not affected
by a limited time resolution, it is safe to assume that this failure has deeper reasons. The main problem resides in
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the difficulties caused by the non-stationarities of both exogeneity and endogeneity. The example of the lunch lull
is striking: assuming a constant kernel shape for all times of the day, while a good approximation, cannot lead to
statistical significance of fits over many days. In this precise case, one could add a daily seasonality on some weights.

Our results may well be specific to FX markets. In particular, the endogeneity is never close to 1, in contrast with
studies on futures on equity indices. However given the nightly closure of equities markets (for example) and their
short opening times, and given the difficulties encountered for FX data, it seems difficult to envisage a statistically
satisfying comparison.

Appendix A: Simulations

We simulate a Hawkes process with a ¢o kernel with parameters similar to those of hourly fits on real data: we set
w=0.05n; =0.37, ny = 0.42, 75 =215 and vary 7; from 0.05s to 1.5s. For each value of 7 we perform 50 simulations
of 22 hours. Then, on each simulated time-series, we artificially reduce the data resolution to 0.1s, introducing time
slicing as in our data set, and then randomize the timestamps within each time slice in order to mimic the procedure
applied on empirical data (see Sec. IIIB). We fit each resulting time-series and average the results over the 50 runs
with two- and three-exponential kernels.

Figure 11 reports the fitted smallest time scale as a function of the original time scale and shows that the shuffling
of time stamps within an interval leads artifically increases the apparent smallest time scale, particularly (and quite

expectedly) for small Tlsim. Nevertheless, this increase is small, of the order of 15%. In addition, shuffling does not
introduce a spurious third time scale, as fits with kernels with three exponentials did not yield any third time scale.

fit
1

0.1-

0.1 02
sim
2

Figure 11: Fitted short timescale (black points) versus simulated short timescale. In red, the y = z line. Right plot is a zoom
on the critical region (close to 0.1s). Blue points are the fitted values without the slicing procedure. Small distortion in the
short timescale determination. Error bars set at two standard deviations..
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Figure 12: Fits p-values for Kolmogorov-Smirnov test (black), Ljung-Box test (red) and Excess-Dispersion test (blue). Left
plot: with time stamp shuffling within a time slice. Right plot: without shuffling. Only the Kolmogorov-Smirnov p-value is
affected by the data bundling. Error bars set at two standard deviations.
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Finally, Fig. 12 shows that only the Kolmogorov-Smirnov p-values are affected by the time slicing and time stamp
shuffling within a time slice. Nevertheless, at Tlflt = 0.15s , pK S is still larger than 0.05. This is consistent with fits
on real data: significance is possible, but limited time resolution does not help.
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