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SOME GEOMETRIC PROPERTIES OF THE SUBORDINATION

FUNCTION ASSOCIATED TO AN OPERATOR-VALUED FREE

CONVOLUTION SEMIGROUP

SERBAN TEODOR BELINSCHI

Abstract. In his article On the free convolution with a semicircular distribu-

tion, Biane found very useful characterizations of the boundary values of the
imaginary part of the Cauchy-Stieltjes transform of the free additive convolu-
tion of a probability measure on R with a Wigner (semicircular) distribution.
Biane’s methods were recently extended by Huang to measures which belong
to the partial free convolution semigroups introduced by Nica and Speicher.
The main purpose of this short note is to further extend some of Biane’s meth-
ods and results to free convolution powers of operator-valued distributions and
to free convolutions with operator-valued semicirculars.

1. Introduction

Free probability, introduced by Voiculescu in order to study free group factors,
gained considerable importance after the discovery in [20] of the connection between
freeness and the asymptotic behaviour of large random matrices. One of the most
significant consequences of the main result of [20] is the fact that two independent
selfadjoint random matrices HN , AN - HN being a gaussian matrix - are asymp-
totically free as N → ∞. Thanks to Wigner’s work, it is known since the ’50s that
the asymptotic distribution of HN as N → ∞ is the semicircle law. In particular,
the distribution of AN +HN is modeled by Voiculescu’s free additive convolution
[24] of a standard semicircular distribution with the limiting distribution of AN .
In [7], this convolution is analyzed in great detail: among others, a formula for
the density of the corresponding distribution is provided, and it is shown that this
density is bounded, continuous and analytic wherever positive. However, in order
to study the asymptotic eigenvalue distribution of more general selfadjoint poly-
nomials P (AN , HN ) it is necessary to consider the more general framework of free
convolutions of operator-valued distributions [21, 16, 17, 10, 3]. In the present note,
we find certain operator-valued counterparts of Biane’s results from [7]; necessarily,
several of the conclusion of [7] cannot hold in this more general setup.

As it is shown in [2], there exists an intimate connection between the free ad-
ditive convolution with an operator-valued semicircular distribution and the free
convolution powers of operator-valued distributions. In particular, it turns out that
the analytic tools used in the study of free convolution powers of operator-valued
distributions are a generalization of the analytic tools used in the study of the free
convolution with an operator-valued semicircular distribution. Thus, we write our
proofs in the more general context. This has the advantage of allowing us to draw
several conclusions about more general free additive convolutions of operator-valued
distributions.

1



2 SERBAN TEODOR BELINSCHI

The second section is dedicated to introducing the main concepts and tools we
require. We state and prove our main results in the third and fourth section.

2. Noncommutative functions, distributions and convolutions

2.1. Noncommutative probability spaces and distributions. Following D.
Voiculescu [24, 21], by a non-commutative probability space we understand a pair
(A, τ) where A is a unital ∗-algebra over C and τ : A → C is a positive functional
with τ(1) = 1. Let B be a unital C∗-algebra. A B-valued non-commutative proba-
bility space is a triple (A,EB,B), where A is a unital ∗-algebra containing B as a
∗-subalgebra and EB is a unit-preserving positive conditional expectation from A
onto B (in particular, the units ofA and B coincide). If B ⊂ A is an inclusion of uni-
tal C∗-algebras, then we call (A,EB,B) a B-valued non-commutative C∗-probability
space. For simplicity, we will suppress the subscript of EB whenever there is no risk
of confusion, and denote our conditional expectation by E. Elements X ∈ A are
called random variables or (in the second context) B-valued (or operator-valued)
random variables.

We use the notation B〈X1,X2, . . .Xn〉 for the ∗-algebra freely generated by B and
the noncommuting selfadjoint symbols X1,X2, . . . ,Xn. If X ∈ A is a selfadjoint ele-
ment, then we will also use the notation B〈X〉 for the ∗-algebra generated by X and
B. Following [2] we denote set of all positive, unit preserving, conditional expecta-
tions from B〈X〉 to B by Σ(B). Given µ ∈ Σ(B), its nth moment is the n− 1-linear
map µn : B×· · ·×B → B defined by µn(b1, b2, . . . , bn−1) := µ [X b1X b2 · · · X bn−1X ] .
We define the zeroth moment to be 1 ∈ B and the first moment to be µ [X ] ∈ B. We
also denote Σ0(B) the set of all µ ∈ Σ(B) whose moments do not grow faster than
exponentially, that is there exists some M > 0 such that, for all positive integers
m, all b1, . . . , bn ∈ Mm(B) and Xm = X ⊗ 1m we have that

‖(µ⊗ Idm)(Xmb1Xmb2 · · · XmbnXm)‖ < Mn+1‖b1‖ · · · ‖bn‖.

If (A,E,B) is a B-valued noncommutative probability space and X = X∗ ∈ A, we
define its distribution with respect to E to be the element µX ∈ Σ0(B) satisfying

µX(P (X )) = E(P (X)) for all P (X ) ∈ B〈X〉.

IfX belongs to a B-valued noncommutative C∗-probability space, then µX ∈ Σ0(B).
Conversely, as shown by Voiculescu in [21], if µ ∈ Σ0(B), then there exist a B-valued
C∗-noncommutative probability space containing an element X = X∗ such that
µX = µ. In the simpler case B = C, µX can be identified with a Borel probability
measure supported on the compact set σ(X), the spectrum of X (see [1]).

2.2. Free independence and relevant transforms. We present next the free in-
dependence, and define the relevant analytic transforms, in a C∗-algebraic context,
as this is the context that is considered most often in this paper.

Definition 2.1. Let (A,E,B) be a B-valued noncommutative C∗-probability space
and {Xi}i∈I be a family of selfadjoint elements from A. The family {Xi}i∈I is said
to be freely independent (or just free) over B with respect to E if for any n ∈ N,
E(A1 · · ·An) = 0 whenever Aj ∈ B〈Xι(j)〉 ∩ ker(E), ι(j) ∈ I, ι(k) 6= ι(k + 1) for all
k ∈ {1, . . . , n− 1}.

If X,Y are two freely independent B-valued noncommutative random variables,
then µX+Y depends only on µX and µY and is called the free additive convolution
of µX and µY . We denote µX+Y by µX ⊞ µY .
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It is natural to denote µ⊞ · · ·⊞ µ
︸ ︷︷ ︸

n times

by µ⊞n. Obviously, {µ⊞n|n ∈ N} forms a

discrete semigroup. A remarkable result of Nica and Speicher [12] states that for
any Borel probability measure µ on R, there exists a partial semigroup, i.e. a family
{µ⊞t : t ≥ 1} such that µ⊞1 = µ and µ⊞s+t = µ⊞s

⊞ µ⊞t, s, t ≥ 1. This result has
been extended by Curran [8] to certain operator-valued distributions. However, as it
will be seen below, in the operator-valued context, analytic transforms indicate that
it should be possible - or rather natural - to consider convolution powers indexed
by a subset of the set of completely positive self-maps of B. The main result of [2]
states precisely that: given µ ∈ Σ0(B), there exists a family

{µ⊞α|α : B → B completely positive, α− IdB completely positive} ⊂ Σ0(B)

such that µ⊞IdB = µ and µ⊞α+β = µ⊞α
⊞ µ⊞β.

For the computation of free convolutions, Voiculescu [24, 21] introduced the R-
transform. In order to define it, let

(1) Gµ(b) = µ
[
(b−X )−1

]
, ℑb > 0.

Here we denote ℑb = (b − b∗)/2i, ℜb = (b + b∗)/2, and we write a > 0 if a = a∗

and σ(a) ⊂ (0,+∞). The notation a ≥ 0 is used when we require only that a = a∗

and σ(a) ⊂ [0,+∞). If µ ∈ Σ0(B), then Mµ(b) = µ
[
(1− bX )−1b

]
= Gµ(b

−1) has
an analytic continuation to a neighbourhood of zero and maps 0 to itself. A simple
computation shows that M ′

µ(0) = IdB, so that, by the inverse function theorem for
Banach spaces, Mµ has a unique compositional inverse around zero which maps zero

to itself, which we denote by M
〈−1〉
µ . Thus, both b−1M

〈−1〉
µ (b) and M

〈−1〉
µ (b)b−1 are

analytic around zero and map zero to one. The R-transform of µ is defined via the

formula bRµ(b) = (M
〈−1〉
µ (b)b−1)−1 − 1. We prefer a slightly different form of the

definition of Rµ, namely

(2) Rµ(b) = G〈−1〉
µ (b)− b−1.

This formula is well-defined on an open set which has zero in its closure, and thus
determines Rµ. The essential property of the R-transform, found by Voiculescu, is
that

Rµ(b) +Rν(b) = Rµ⊞ν(b)

on a sufficiently small neighbourhood of zero in B. Clearly then, for any linear
completely positive map α : B → B such that α − IdB is still completely positive,
µ⊞α will be given by

(3) Rµ⊞α(b) = α(Rµ(b)),

on a neighbourhood of zero. It has been shown in [2] that such a µ⊞α ∈ Σ0(B)
exists for any µ ∈ Σ0(B), and that the restriction requiring α − IdB to still be
completely positive is not necessary for infinitely divisible µ. A different, simpler
proof of this result is given in [18], where it is also shown that the requirement that
α− IdB is itself completely positive cannot be generally omitted.

It is quite obvious from (1) that Gµ plays a role similar to that of the Cauchy-
Stieltjes transform in classical probability. However, unlike the classical Cauchy-
Stieltjes transform, Gµ alone does not generally encode all of the distribution µ,
but only its symmetric moments. It has been a crucial insight of Voiculescu that
Gµ is just the first level of a noncommutative function that does encode all of µ:
this will be outlined in the next subsection.
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2.3. Noncommutative functions and transforms. In this subsection we largely
follow [4, 15] in describing the noncommutative extensions of the analytic trans-
forms introduced in the previous subsection, and [11] in the definition of noncom-
mutative sets and functions. We refer to these three articles and [22, 23] for details
on, and proofs of, the statements below.

First a notation: if S is a nonempty set, we denote by Mm×n(S) the set of all
matrices with m rows and n columns having entries from S. For simplicity, we
let Mn(S) := Mn×n(S). Given C∗-algebra B, a noncommutative set is a family
Ω := (Ωn)n∈N such that

(a) for each n ∈ N, Ωn ⊆ Mn(B);
(b) for each m,n ∈ N, we have Ωm ⊕ Ωn ⊆ Ωm+n.

The noncommutative set Ω is called right admissible if in addition the condition (c)
below is satisfied:

(c) for each m,n ∈ N and a ∈ Ωm, b ∈ Ωn, w ∈ Mm×n(B), there is an ǫ > 0

such that

(
a zw
0 b

)

∈ Ωm+n for all z ∈ C, |z| < ǫ.

Given C∗-algebras B, C and a noncommutative set Ω ⊆
∐∞

n=1 Mn(B), a noncom-
mutative function is a family f := (fn)n∈N such that fn : Ωn → Mn(C) and

(1) fm(a)⊕ fn(b) = fm+n(a⊕ b) for all m,n ∈ N, a ∈ Ωm, b ∈ Ωn;
(2) for all n ∈ N, fn(T

−1aT ) = T−1fn(a)T whenever a ∈ Ωn and T ∈ GLn(C)
are such that T−1aT belongs to the domain of definition of fn.

A remarkable result (see [11, Theorem 7.2]) states that, under very mild conditions
on Ω, local boundedness for f implies each fn is analytic as a map between Banach
spaces.

As mentioned in the previous section, the function Gµ encodes only the symmet-
ric part of the distribution µ. It was an extremely important remark of Voiculescu
that Gµ has a noncommutative extension:

(4) G[n]
µ (b) = (µ⊗ Idn)

[
(b−X ⊗ 1n)

−1
]
, n ∈ N.

There are two noncommutative sets which are natural domains of definition for
(G

[n]
µ (b))n∈N and for (G

[n]
µ (b−1))n∈N, respectively: the noncommutative operator

upper half-plane (H+(Mn(B)))n∈N, where H+(Mn(B)) = {b ∈ Mn(B) : ℑb > 0},
and the set of nilpotent matrices with entries from B, respectively. Remarkably,

as shown in [22], G
[n]
µ maps H+(Mn(B)) into H−(Mn(B)) := −H+(Mn(B)) and

G
[n]
µ (b∗) = G

[n]
µ (b)∗. It is clear that the restriction of (G

[n]
µ )n∈N to either of these two

noncommutative sets determines (G
[n]
µ )n∈N. For a description of how to explicitly

recover µ from (G
[n]
µ )n∈N via its moments, we refer to [4, 15].

It follows from its definition that the R-transform has itself a noncommuta-
tive extension, which determines µ uniquely. The level-one relation (3) extends to

R
[n]

µ⊞α
(b) = (α ⊗ Idn)(R

[n]
µ (b)) for b ∈ Mn(B) of small enough norm. From this

formula and the noncommutative extension of (2) we obtain, by adding b−1, the

relation
(

G
[n]

µ⊞α

)〈−1〉

(b) = (α⊗ Idn)

((

G
[n]
µ

)〈−1〉

(b)

)

− (α⊗ Idn− IdB ⊗ Idn)(b
−1).

Replacing b by G
[n]

µ⊞α
(b) provides b = (α⊗ Idn)

(

G
[n]
µ

)〈−1〉 (

G
[n]

µ⊞α
(b)

)

− (α⊗ Idn −
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IdB ⊗ Idn)
(

G
[n]

µ⊞α(b)
−1

)

. With the notations

F [n]
µ (b) = G[n]

µ (b)−1, b ∈ H
+(Mn(B)), n ∈ N,(5)

h[n]
µ (b) = F [n]

µ (b)− b, b ∈ H
+(Mn(B)), n ∈ N,(6)

and

(7) ω[n]
α (b) =

(

G[n]
µ

)〈−1〉 (

G
[n]

µ⊞α
(b)

)

,

we re-write (3) as

(8) ω[n]
α (b) = b+ [(α− IdB)⊗ Idn]h

[n]
µ

(

ω[n]
α (b)

)

, b ∈ H
+(Mn(B)), n ∈ N,

with ω
[n]
α : H+(Mn(B)) → H+(Mn(B)). The above argument for the existence of

(ω
[n]
α )n∈N is obviously not complete: for the rigorous proof, we refer to [2, Theo-

rem 8.4]. This same theorem also states that for any b ∈ H+(Mn(B)), ω
[n]
α (b) ∈

H+(Mn(B)) is the unique attracting fixed point of the map f
[n]
b : H+(Mn(B)) →

H+(Mn(B)), f
[n]
b (w) = b + [(α− IdB)⊗ Idn]h

[n]
µ (w), and the right inverse of the

map H [n] : H+(Mn(B)) → Mn(B), H
[n](w) = w − [(α− IdB)⊗ Idn]h

[n]
µ (w).

Of importance in our analysis will be the following result of Popa and Vinnikov
[15, Theorem 6.6], re-phrased in terms of the noncommutative function h:

Theorem 2.2. Let µ ∈ Σ0(B) be given. Then there exists a linear map ηµ : B〈X〉 →
B and M ∈ (0,+∞) such that for any k ∈ N, x1, . . . , xk ∈ B〈X〉, we have

(
ηµ

[
x∗
jxi

])k

i,j=1
≥ 0 in Mk(B),

‖ηµ [X b1X b2 · · · X bkX ] ‖ < Mn+1‖b1‖‖b2‖ · · · ‖bn‖ for all b1, . . . , bn ∈ B,

and

h[n]
µ (b) = (ηµ⊗Idn)

[
(X ⊗ 1n − b)−1

]
−(µ⊗Idn)(X ⊗1n), b ∈ H

+(Mn(B)), n ∈ N.

In [15] it is shown that under the assumption that µ ∈ Σ0(B), B〈X〉 has a
natural C∗-algebra completion, and then the first statement of the theorem about
the norm-bounded ηµ becomes equivalent to its complete positivity. This will be
very important in our proofs. We finally write (8) as

ω[n]
α (b) = b− [(α− IdB)⊗ Idn] (µ⊗ Idn)(X ⊗ 1n)(9)

+ [(α− IdB)⊗ Idn] (ηµ ⊗ Idn)

[(

X ⊗ 1n − ω[n]
α (b)

)−1
]

,

for b ∈ H+(Mn(B)), n ∈ N. This equation determines (ω
[n]
α )n∈N and thus, via the

relation G
[n]
µ ◦ ω

[n]
α = G

[n]

µ⊞α
,equivalent to (7), determines µ⊞α in terms of µ and α.

We conclude this section with a simple remark in light of [2, 21, 19]: assume
that in equation (9) above, µ(X ) = 0 and ν := ηµ is a conditional expectation.
Denote β := α − IdB, and assume that β is still completely positive. Then the
above equation becomes

ω
[n]
β (b) = b+ (β ⊗ Idn)(ν ⊗ Idn)

[

(X ⊗ 1n − ω
[n]
β (b))−1

]

, b ∈ H
+(Mn(B)), n ∈ N.
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This is precisely the subordination equation generalizing the results of [7, Lemma
4] to the operator-valued context: if γβ is the centered operator-valued semicircular
distribution of variance β, then

(10) G
[n]
ν⊞γβ

= G[n]
ν ◦ ω

[n]
β , n ∈ N.

There are deeper reasons for the similarity between the above formula and (9),
reasons which are explored in [2].

For the purposes of our present study, we specify the object of interest: the
solution in H

+(B) of the functional equation

(11) ω(b) = b+ a+ η
[
(X − ω(b))−1

]
, b ∈ H

+(B),

and its noncommutative extension to the noncommutative operator upper half-
plane, where B is an arbitrary unital C∗-algebra, a = a∗ ∈ B, B〈X〉 has a C∗-algebra
completion, and η : B〈X〉 → B is bounded, completely positive. The function ω is
necessarily the right inverse of

(12) H(w) = w − a− η
[
(X − w)−1

]
, ∈ H

+(B).

These facts were proved in [2] and from now on we will take them for granted.

3. (ℜω(·+ iq),ℑω(·+ iq)) is the graph of a function

Let γt be the semicircular law of variance t ∈ (0,+∞) and let µ be an arbitrary
Borel probability measure on R. In [7, Lemma 2] it is shown that the imaginary
part of the Cauchy-Stieltjes transform of µ⊞ γt is, up to a factor of π−1, equal to
the function vt(u) given as

vt(u) := inf

{

v ≥ 0|t

∫

R

dµ(x)

(u− x)2 + v2
≤ 1

}

,

and moreover, that this infimum is reached (i.e. t
∫

R

dµ(x)
(u−x)2+vt(u)2

= 1) whenever

vt(u) > 0. Our next proposition establishes a slightly weaker (and necessarily
so) operator-valued counterpart of this result. We denote by Bsa the set of all
selfadjoint elements of the C∗-algebra B, by B+ its subset of nonnegative elements,
and by B++ the (open) subset of Bsa of strictly positive (i.e. nonnegative and
invertible in B) elements.

Proposition 3.1. Let B be a C∗-algebra, η be a completely positive map on the
C∗-completion of B〈X〉 and a be a selfadjoint element of B. For any fixed q ∈ B,
q > 0, there exists a function vq : B

sa → B++ such that

vq(u) = q + η
[
((X − u)vq(u)

−1(X − u) + vq(u))
−1

]
,

for all u ∈ Bsa. Moreover, the correspondence u 7→ vq(u) is uniformly bounded
(with a bound depending on q, η) and continuous in the norm topology.

Proof. It is useful to clarify first the relation between our proposition and Equation
(11): taking imaginary part in this equation and recalling that (i) B〈X〉 has a
C∗-algebra structure, (ii) X = X ∗, and (iii) η is positive, provides us with

ℑω(b) = ℑb+ η
[(
(X − ℜω(b))(ℑω(b))−1(X − ℜω(b)) + ℑω(b)

)−1
]

.

We fix ℑb = q > 0: then our proposition states that the imaginary part of ω(b) is
a continuous function of the real part of ω(b). Here, of course, ω(b) is viewed as an
independent variable.
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Thus, let us fix q > 0. Define

gq : B
sa × B++ → B++, gq(u, v) = q + η

[
((X − u)v−1(X − u) + v)−1

]
.

For any ǫ = ǫ∗ ∈ B and v > 0, the relation (v + iǫ)−1 = (v + ǫv−1ǫ)−1 − i(v +
ǫv−1ǫ)−1ǫv−1 implies that

(X − u)(v + iǫ)−1(X − u) + v + iǫ =

(X − u)(v + ǫv−1ǫ)−1(X − u) + v + i
(
ǫ− (X − u)(v + ǫv−1ǫ)−1ǫv−1(X − u)

)

which guarantees that the real part (in the C∗-algebra completion of B〈X〉) of
(X − u)(v + iǫ)−1(X − u) + v + iǫ is greater than v. This makes it invertible for
any ǫ = ǫ∗ ∈ B, allowing the extension of gq to Bsa × (−i)H+(B), and, moreover,
guarantees that ℜgq(u, v + iǫ) ≥ q for any (u, v + iǫ) ∈ Bsa × (−i)H+(B). We
have thus re-written gq(u, ·) as a self-map of the noncommutative operator right
half-plane. Precisely the same argument as the one from the proof of [2, Theorem
8.4] shows that gq(u, ·) maps a bounded subdomain D of {w ∈ (−i)H+(B) : ℜw ≥
q/2}, depending on u and q, strictly inside itself. The Earle-Hamilton theorem
[9, Section 11.1] guarantees that gq(u, ·) has precisely one attracting fixed point
in (−i)H+(B) + q for any u ∈ Bsa, point which we call vq(u). Moreover, the
function w 7→ gq(u,w) is shown in the same reference to be a strict contraction
in the Kobayashi metric, with the contraction coefficient depending continuously
on the distance from gq(u,D) to the complement of D. Thus, the dependence of
the fixed point is necessarily sequentially continuous (recall that the dependence
u 7→ gq(u, v) is smooth - in fact analytic). Since on any (norm)-bounded subset of
H+(B) which is at a strictly positive (norm)-distance from B \H+(B), the topology
generated by the Kobayashi metric coincides with the norm topology, this makes
the correspondence u 7→ vq(u) norm-continuous.

To conclude, observe that gq(u, v) > 0 for all u = u∗, v > 0. Thus, the uniqueness
of the attractinc fixed point of gq(u, ·) implies that it necessarily belongs to B++. �

Remark 3.2.

(1) It should be noted that in the above proposition’s proof, the noncommuta-
tive structure of the functions involved has never come up. In particular,
the requirement of complete positivity of the linear map η can be relaxed
to simple positivity without affecting the conclusion of Proposition 3.1.

(2) The existence of ω(r+iq) for any r = r∗ ∈ B, proved in [2, Theorem 8.4], as
an attracting fixed point of fr+iq(w) = r+iq+a+η

[
(X − w)−1

]
guarantees

that there are pairs of points (ℜω(r+iq),ℑω(r+iq)) ∈ Bsa×B++ such that
gq(ℜω(r+ iq),ℑω(r+ iq)) = ℑω(r+ iq). The uniqueness of the fixed point
of gq(u, ·) guarantees that whenever u is of the form ℜω(r+ iq), vq(ℜω(r+
iq)) = ℑω(r+ iq); in particular, the set {ℜω(r+ iq),ℑω(r+ iq)) : r ∈ Bsa}
is the graph of a function defined on Bsa with values in B++.

(3) It is remarkable in this context that g is the first level of a noncommutative
map having the properties described in Proposition 3.1 at each level n.

Indeed, the noncommutative extension of g is written as g
[n]
q⊗1n

(u, v) =

q⊗1n+(η⊗Idn)
[
((X ⊗ 1n − u)v−1(X ⊗ 1n − u) + v)−1

]
, for u ∈ Mn(B)

sa,

v ∈ (−i)H+(Mn(B)), n ∈ N (it should be noted that Mn(B)
sa, n ∈ N,

is a noncommutative set, but not an admissible one). This necessarily
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implies that the fixed point is itself noncommutative: if un = u⊗ 1n, then

v
[n]
q⊗1n

(u⊗ 1n) = vq(u)⊗ 1n.

(4) When B is finite dimensional (a C∗-algebra of matrices) - the most impor-
tant case for us - it is quite easy to show that u 7→ vq(u) is analytic in the
sense that for any u = u∗, there exists a neighbourhood Vu,q of u in B such
that vq has an analytic extension to Vu,q. Indeed, the fact that vq(u) is an
attracting fixed point for v 7→ gq(u, v) which is in the interior of the domain
of gq(u, ·) implies that all eigenvalues of ∂vgq(u, vq(u)) are of absolute value
strictly less than one. In order to see this, we write

g
[2]
q⊗12

((
u 0
0 u

)

,

(
v c
0 v

))

=

(
gq(u, v) ∂vgq(u, v)(c)

0 gq(u, v)

)

,

and observe that for c ∈ B satisfying (v−1/2cv−1/2)(v−1/2cv−1/2)∗ < 4

(hence for any c ∈ B of sufficiently small norm), the real part of

(
v c
0 v

)

is strictly positive in M2(B). Iterating the map

(
vq(u) c
0 vq(u)

)

7→

g
[2]
q⊗12

((
u 0
0 u

)

,

(
vq(u) c
0 vq(u)

))

provides convergence in the norm

of M2(B) to the fixed point

(
vq(u) 0
0 vq(u)

)

as n → ∞. Direct computa-

tion yields the formula

(
vq(u) ∂vgq(u, vq(u))

◦n(c)
0 vq(u)

)

for the nth iterate

of the map

(
vq(u) c
0 vq(u)

)

7→ g
[2]
q⊗12

((
u 0
0 u

)

,

(
vq(u) c
0 vq(u)

))

,

so we must have limn→∞ ∂vgq(u, vq(u))
◦n(c) = 0 for all c ∈ B. This requires

the spectrum σ(∂vgq(u, vq(u))) ⊂ D (we have denoted by D the open unit
disc in the complex plane). An application of the implicit function theorem
for analytic functions provides the desired result, with a formula for the
derivative of vq given by

∂uvq(u) = [IdB − ∂vgq(u, vq(u))]
−1 ◦ ∂ugq(u, vq(u)).

Note that this argument only required 2-positivity for η. As a side benefit,

note that σ
(

[IdB − ∂vgq(u, vq(u))]
−1

)

⊆ 1
2 − iC+.

The result of Proposition 3.1 can be strenghtened to the same level of strength
as Remark 3.2–(4), i.e. to concluding the analyticity of u 7→ vq(u). We sketch
an argument below. This argument is rather tedious and convoluted, but we feel
it is worth writing it down especially because of the way it uses noncommutative
functions theory. Fix an arbitrary C∗-algebra B. Direct computations show that

g
[2]
q⊗12

can be extended to the set D2 of elements

{((
u1 c
0 u2

)

,

(
w1 d
0 w2

))

: u1, u2 ∈ Bsa, w1, w2 ∈ (−i)H+(B), c, d ∈ B

}

:
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the expressions of the (1, 1) and (2, 2) entries are gq(u1, w1) and gq(u2, w2), respec-
tively, the (2, 1) entry is zero, and the (1, 2) entry is

η
[

((X − u1)w
−1
1 (X − u1) + w1)

−1
[
(X − u1)w

−1
1 c+ cw−1

2 (X − u2)

− d+ (X − u1)w
−1
1 dw−1

2 (X − u2)
]
((X − u2)w

−1
2 (X − u2) + w2)

−1
]

.(13)

This makes g
[2]
q⊗12

into a self-map of D2. For u1, u2, c fixed,

(
w1 d
0 w2

)

7→

g
[2]
q⊗12

((
u1 c
0 u2

)

,

(
w1 d
0 w2

))

maps the set

D1 =

{(
w1 d
0 w2

)

: w1, w2 ∈ (−i)H+(B), d ∈ B

}

into itself. We note that for fixed u1, u2, c, the relations ℜw1,ℜw2 > q/2 imply
uniform norm boundedness for the factors ((X −uj)w

−1
j (X −uj)+wj)

−1, j ∈ {1, 2}

in the C∗-algebra completion of B〈X〉, as well as of (X −uj)w
−1
j etc. However, this

bound might be quite large, making the estimates on (13) uniform, but useless in
terms of mapping a bounded subset of D1 into itself, thus precluding another direct
application of the Earle-Hamilton Theorem. We shall go around this inconvenient
fact.

It is clear that if

(
w1 d
0 w2

)

7→ g
[2]
q⊗12

((
u1 c
0 u2

)

,

(
w1 d
0 w2

))

has a

fixed point in D1, then the (1, 1) and (2, 2) entries of this fixed point must be
vq(u1) and vq(u2), respectively. This puts a very strong restriction on the (1, 2)
entry of the fixed point: it must be of the form

η
[

((X − u1)vq(u1)
−1(X − u1) + vq(u1))

−1

×
[
(X − u1)vq(u1)

−1c+ cvq(u2)
−1(X − u2)

− d+ (X − u1)vq(u1)
−1dvq(u2)

−1(X − u2)
]

× ((X − u2)vq(u2)
−1(X − u2) + vq(u2))

−1
]

,

for some d ∈ B. This fixed point, if existing, must depend linearly on c. Thus,
we are allowed to re-scale c as small (in norm) as we desire. However, we are still
inconvenienced by the (implicit) requirement that the norm of the remaining part
of the expression above (the terms not containing c) is strictly less than ‖d‖. We
shall complicate the problem even more in order to bypass this inconvenience: for
u1, u2, c fixed as above, with the possible proviso that c might be re-scaled (see
equation (14) below), we consider the set

D̃ǫ
1 =

{(
w1 d
m w2

)

∈ M2(B) : ℜ

(
w1 d
m w2

)

> ǫ1⊗ 12

}

.

The defining inequality of D̃ǫ
1 requires ℜwj > ǫ1 and d∗+m

2 (ℜw1 − ǫ1)−1 d+m∗

2 <

(ℜw2 − ǫ1). In order to study g
[2]
q⊗12

, we consider the expression

[(
X − u1 −c

0 X − u2

)(
w1 d
m w2

)−1 (
X − u1 −c

0 X − u2

)

+

(
w1 d
m w2

)]−1
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which appears in under η⊗Id2 the formula of g
[2]
q⊗12

. Under the assumption that our

argument belongs to D̃ǫ
1, we determine under what conditions the element under

the inverse has positive real part, and hence the whole expression above has positive
real part (recall that (−i)H+(B) is invariant under taking inverse). We write

(
X − u1 −c

0 X − u2

)(
w1 d
m w2

)−1 (
X − u1 −c

0 X − u2

)

=

(
X − u1 0

0 X − u2

)(
w1 d
m w2

)−1 (
X − u1 0

0 X − u2

)

−

(
0 c
0 0

)(
w1 d
m w2

)−1 (
X − u1 0

0 X − u2

)

−

(
X − u1 0

0 X − u2

)(
w1 d
m w2

)−1 (
0 c
0 0

)

+

(
0 c
0 0

)(
w1 d
m w2

)−1 (
0 c
0 0

)

,

for

(
w1 d
m w2

)

∈ D̃ǫ
1. It is clear that the first term on the right hand side above

has real part greater than or equal to zero. Since the real part of

(
w1 d
m w2

)

is

greater than ǫ times the unit of M2(B), it follows that the norm of its inverse is no
greater than ǫ−1. Thus, for all c ∈ B with

(14) ‖c‖ < (min{1/2, ǫ})2(2‖X‖+ ‖u1‖+ ‖u2‖+ 39)−2,

the norm of the sum of the real parts of the last three terms is strictly less than
ǫ/2. We conclude that

ℜ

[(
X − u1 −c

0 X − u2

)(
w1 d
m w2

)−1 (
X − u1 −c

0 X − u2

)]

> −
ǫ

2
1⊗ 12.

This guarantees that the real part of

(
X − u1 −c

0 X − u2

)(
w1 d
m w2

)−1 (
X − u1 −c

0 X − u2

)

+

(
w1 d
m w2

)

is strictly greater than ǫ
21 ⊗ 12. If we choose ǫ ∈ (0, 1) sufficiently small so that

q > 2ǫ1 in B, then

(
w1 d
m w2

)

7→ g
[2]
q⊗12

((
u1 c
0 u2

)

,

(
w1 d
m w2

))

maps

D̃ǫ
1 in a bounded subset of itself which is at strictly positive distance from the

complement of D̃ǫ
1. The Earle-Hamilton Theorem [9, Section 11.1] applies to provide

a d = d(u1, u2, c) such that

(
vq(u1) d

0 vq(u2)

)

is the attracting fixed point of the

correspondence given just above. As argued in the proof of Proposition 3.1, the
dependence of the fixed point on the initial data (u1, u2, c) is norm-continuous.
With the notation d(u1, u2, c) = ∆vq(u1, u2)(c), justified by [11, Section 2], we
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obtain

η
[

((X − u1)vq(u1)
−1(X − u1) + vq(u1))

−1

×
[
(X − u1)vq(u1)

−1c+ cvq(u2)
−1(X − u2)

−∆vq(u1, u2)(c) + (X − u1)vq(u1)
−1∆vq(u1, u2)(c)vq(u2)

−1(X − u2)
]

× ((X − u2)vq(u2)
−1(X − u2) + vq(u2))

−1
]

= ∆vq(u1, u2)(c),(15)

for all c ∈ B of sufficiently small norm (estimated in (14)), and, by linearity, for all
c ∈ B. Moreover, this same norm estimate (14) is seen to be uniform for u1, u2 uni-
formly bounded. We conclude that the correspondence (u1, u2, c) 7→ ∆vq(u1, u2)(c)
is not only continuous, but also locally uniformly bounded when the norm topolo-
gies are considered on Bsa ×Bsa ×B and B. As shown in the same [11, Section 2],
∆vq(u, u)(c) = ∂uvq(c). We conclude that the correspondence u 7→ vq(u) is in fact
C1 in the Fréchet sense on B.

We use next the property of ∆vq(u1, u2)(c) to be an attracting fixed point for
the map in (15). More precisely, we write the left hand side of (15) as the sum of
two linear maps (one of them is applied in (15) to c, the other to ∆vq(u1, u2)(c)):

∆1gq(u1, u2; vq(u1), vq(u2))(c) =(16)

η
[
((X − u1)vq(u1)

−1(X − u1) + vq(u1))
−1

×
[
(X − u1)vq(u1)

−1c+ cvq(u2)
−1(X − u2)

]

× ((X − u2)vq(u2)
−1(X − u2) + vq(u2))

−1
]
,

and

∆2gq(u1, u2; vq(u1), vq(u2))(d) =(17)

η
[
((X − u1)vq(u1)

−1(X − u1) + vq(u1))
−1

[
(X − u1)vq(u1)

−1dvq(u2)
−1(X − u2)− d

]

× ((X − u2)vq(u2)
−1(X − u2) + vq(u2))

−1
]
.

The correspondence that we iterate is

(18)

(
vq(u1) d

0 vq(u2)

)

7→ g
[2]
q⊗12

((
u1 c
0 u2

)

,

(
vq(u1) d

0 vq(u2)

))

.

The right-hand side of this correspondence is
(

vq(u1) ∆1gq(u1, u2; vq(u1), vq(u2))(c) + ∆2gq(u1, u2; vq(u1), vq(u2))(d)
0 vq(u2)

)

(recall that gq(uj , vq(uj)) = vq(uj) by the proof of Proposition 3.1). For rea-
sons of space, we denote just here S(·) = ∆1gq(u1, u2; vq(u1), vq(u2))(·), T (·) =
∆2gq(u1, u2; vq(u1), vq(u2))(·). This expression makes clear that the nth iteration

of g[2] will provide in the (1, 2) entry T n(d) +
∑n−1

j=0 T j(S(c)). We conclude from
the existence of the limit as n → ∞ of this expression for any c, d in a ball of small

enough diameter (see (14)) that
∥
∥
∥T n(d) +

∑n−1
j=0 T j(S(c))−∆vq(u1, u2)(c)

∥
∥
∥ → 0

as n → ∞. In particular, ‖T n(d)‖ → 0 as n → ∞.
Now we use again the essential property of the map (18) to be a strict contraction

in the Kobayashi metric, with the contraction coefficient uniformly bounded away
from one when u1, u2, c vary very little in norm. This makes the above convergence
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to zero uniform in c and d for c, d in small enough norm-balls around zero in B. In
particular, ‖T n‖ → 0 as n → ∞, imposing σ(T ) ⊂ D. We obtain

Remark 3.3. Under the hypotheses of Proposition 3.1, the correspondence u 7→
vq(u) is analytic on Bsa. Moreover, the difference-differential operator associated
to vq is continuous, in the sense that

Bsa × Bsa × B ∋ (u1, u2, c) 7→ ∆vq(u1, u2)(c) ∈ B

is norm continuous, and the linear map ∆2gq(u1, u2; vq(u1), vq(u2)) defined above
has its spectrum included in D for all u1, u2 ∈ Bsa.

4. The derivative of ω

For the case of B = C, it is shown in [5, Theorem 4.6] that the difference quotient
of ω satisfies the inequality

∣
∣
∣
∣

ω(z1)− ω(z2)

z1 − z2

∣
∣
∣
∣
≤

1

2
, z1, z2 ∈ C

+ ∪ R.

This is shown by proving that ℜω′(α) > 1/2 for all α ∈ C+. The operator-valued
counterpart of this statement has the following form:

Proposition 4.1. Let B be a unital C∗-algebra and let H and ω be defined as in
(12) and (11). For any b1, b2 ∈ H+(B), the spectrum of ∆ω(b1, b2) as a linear
operator from B to itself is included in {z ∈ C : ℜz > 1/2}.

Proof. The proof is very similar in spirit to the proof of [5, Theorem 4.6]. Con-

sider b1, b2 ∈ H+(B) and c ∈ B of sufficiently small norm so that

(
b1 c
0 b2

)

∈

H+(M2(B)). as usual, we evaluate ω on this matrix in order to obtain
(

b1 c
0 b2

)

= H [2]

(

ω[2]

(
b1 c
0 b2

))

=

(
H(ω(b1)) ∆H(ω(b1), ω(b2))∆ω(b1, b2)(c)

0 H(ω(b2))

)

.

This indicates that ∆H(ω(b1), ω(b2)) ◦∆ω(b1, b2) = IdB. As shown in the proof of

[2, Theorem 8.4], the point ω[2]

(
b1 c
0 b2

)

∈ H+(M2(B)) is the unique attracting

fixed point of the self-map

g[2] : w 7→

(
b1 c
0 b2

)

+

(
a 0
0 a

)

+ (η ⊗ IdM2(C))

[((
X 0
0 X

)

− w

)−1
]

of H
+(M2(B)). The methods used in the proof of Remark 3.3 apply to show

that this map is a strict contraction in the Kobayashi metric. We conclude that
the spectrum of ∆g(ω(b1), ω(b2)) is included in the open unit disc D. However,
∆H(ω(b1), ω(b2)) − IdB = ∆g(ω(b1), ω(b2)), which implies by the definition of the
spectrum that σ(∆H(ω(b1), ω(b2))) ⊂ D + 1. Analytic functional calculus rules
provide

σ(∆ω(b1, b2)) = σ
(
∆H(ω(b1), ω(b2))

−1
)
⊂ {z ∈ C : ℜz > 1/2}.

�
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As before, the proof of the above proposition only requires η to be 2-positive.
We note a significant element: if we consider a b0 in the boundary of H+(B) and

we try to apply the implicit function theorem to the function f(b, w) = b + a +
η
[
(X − w)−1

]
−w around a point (b0, w0), where w0 is a point in H+(B)∩C(ω, b0)

(where C(ω, b0) denotes the set of limit points of ω at b0), it turns out that this is
possible whenever 0 6∈ σ(∆H(w0, w0)). If B is finite dimensional, the set of points
w0 with positive imaginary part that satisfy such a condition is an analytic set.
It turns out that this analytic set has several properties of interest, which become
quite evident when one considers rather the map (w1, w2) 7→ ∆H(w1, w2), and
which will be investigated later.
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