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8 Past convergence in (2+1)-anti de Sitter space-times

Introduction

Space-times of constant curvature occupy an important place in Lorentzian geometry. Despite their trivial local geometry, these spaces have a very rich global geometry and constitute an important family of space-times in which we hope to understand many fundamental questions. The existence of time functions with levels of prescribed geometry constitutes one of these questions both from the geometrical and the physical point of view. We refer to these functions as geometric time functions. This question was amply studied in the literature in the works of Andersson, Barbot, Béguin, Benedetti, Bonsante, Fillastre, Galloway, Guadignini, Howard, Moncrief, Seppi, Zeghib (we cite for example [START_REF] Andersson | The cosmological time function[END_REF], [START_REF] Andersson | On the global evolution problem in 2 + 1 gravity[END_REF], [START_REF] Andersson | Constant mean curvature foliations of flat space-times[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], [START_REF] Barbot | Prescribing Gauss curvature of surfaces in 3dimensional spacetimes, Application to the Minkowski problem in the Minkowski space[END_REF], [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF], [START_REF] Benedetti | Cosmological time in (2 + 1)-gravity[END_REF], [START_REF] Bonsante | The equivariant minkowski problem in minkowski space[END_REF], [START_REF] Bonsante | On codazzi tensors on a hyperbolic surface and flat lorentzian geometry[END_REF]). The main object of this article is to study the asymptotic behavior of geometric time functions levels.

Recall that a Lorentzian manifold is a differentiable manifold endowed with a pseudo-Riemannian metric of signature (-, +, ..., +). A space-time is an oriented and chronologically oriented Lorentzian manifold. A space-time is said to be globally hyperbolic (GH) if it possesses a function, called Cauchy time function, which is strictly increasing along causal curves (curves for which the norms of the tangent vectors are non positive) and surjective on inextensible causal curves. The levels of such function are called Cauchy hypersurfaces. If in addition the Cauchy time function is proper then we say that the space-time is globally hyperbolic spatially compact and we write GHC. By a classical result of Geroch [START_REF] Geroch | Domain of dependence[END_REF], every GH space-time is diffeomorphic to the product of a Cauchy hypersurface S by an interval I of R. A globally hyperbolic spatially compact space-time, solution of the Einstein equation, is said to be maximal if it doesn't extend to a constant curvature GHC space-time which is also solution of the Einstein equation. A maximal globally hyperbolic spatially compact space-time is denoted by M GHC. A space-time is said to be of constant curvature if it is endowed with a (G, X) structure where X is a constant model space and G his isometry group. Recall that the models of constant curvature space-times are the Minkowski space R 1,n , the anti de Sitter space AdS n and the de Sitter space dS n .

In [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF], Mess gives a full classification of M GHC space-times in the 2 + 1 flat and anti de Sitter cases giving rise in the same time to a particular interest for M GHC space-times of constant curvature. Following Mess work's Scannell, Barbot, Béguin, Bonsante and Zeghib ( [START_REF] Scannell | Flat conformal structures and the classification of de Sitter manifolds[END_REF], [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF], [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF]) complete this classification in all constant curvature and all dimension cases. In the 2 + 1 special case Mess [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF], Benedetti and Bonsante [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF] proved that there is a one to one correspondence between measured geodesic laminations on a given closed hyperbolic surface S and M GHC constant curvature space-times admitting a Cauchy surface diffeomorphic to S.

The M GHC space-times of constant curvature have the particularity to possess remarkable geometric time functions: 1) The cosmological time, which is defined at a point p as the supremum of length of past causal curves starting at p. It gives a simple and important first example of quasi-concave time functions i.e those which the levels are convex, to which all other time functions can be compared (see [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], [START_REF] Scannell | Flat conformal structures and the classification of de Sitter manifolds[END_REF]).

2) The CM C time function i.e a time function where the levels have constant mean curvature. The existence and uniqueness of such function in a given space-time was studied by Andersson, Barbot, Béguin and Zeghib in the flat, de Sitter and anti de Sitter cases [START_REF] Barbot | Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante[END_REF], [START_REF] Barbot | Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS 3[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF]. These functions define a regular foliation and play an important role in physics. In the flat case they have the particularity to be quasi-concave.

3) The k-time (dimension 2 + 1) i.e a time function where the levels have constant Gauss curvature. The existence and uniqueness of such function in a given space-time was done by Barbot, Béguin and Zeghib [START_REF] Barbot | Prescribing Gauss curvature of surfaces in 3dimensional spacetimes, Application to the Minkowski problem in the Minkowski space[END_REF]. They are by definition quasi-concaves.

Up to inversion of time orientation, these space-times have also the particularity to be geodesically complete in the future (or in the past), but on the other hand often incomplete in the past (or in the future); we say that they admit an initial singularity. Giving a mathematical sense to this notion constitutes an important problem in general relativity (see [START_REF] Penrose | Gravitational collapse and space-time singularities[END_REF], [START_REF] Hawking | The occurrence of singularities in cosmology[END_REF], [START_REF] Hawking | The occurrence of singularities in cosmology[END_REF], [START_REF] Hawking | The singularities of gravitational collapse and cosmology[END_REF], [START_REF] Hawking | The large scale structure of space-time[END_REF], [START_REF] O'neill | Semi-Riemannian Geometry: With Applications to Relativity[END_REF]). There are in the literature different ways to attach a boundary to a space-time; we cite for example the Penrose boundary [START_REF] Geroch | Ideal points in space-time[END_REF], the b-boundary [START_REF] Schmidt | A new definition of singular points in general relativity[END_REF]. However, these constructions are not unique in general and all have disadvantages. We hope, through the study of asymptotic behavior of Cauchy hypersurfaces, to give a more intrinsic meaning to this notion of initial singularity.

Let M be a M GHC space-time of constant curvature. A Cauchy time function T : M → R defines naturally a 1-parameter family (T -1 (a), g a ) a∈R of Riemannian manifolds or equivalently a 1-parameter family (T -1 (a), d a ) a∈R of metric spaces. One can ask the natural important question of asymptotic behavior of this family with respect to the time in the following two cases: when time goes to 0 and when it goes towards infinity. In our case we consider the equivalent equivariant problem: the asymptotic behavior of the π 1 (M )equivariant family (π 1 (M ), T -1 (a), da ) a∈R . Several notions of topology appear when we deal with the convergence of equivariant metric spaces. In this article our favorite convergences will be the compact open convergence and the Gromov equivariant convergence [START_REF] Paulin | The Gromov topology on R-trees[END_REF], [START_REF] Paulin | Topologie de Gromov équivariante, structures hyperboliques et arbres réels[END_REF].

The study of such problem was first initiated by Benedetti-Guadagnini [START_REF] Benedetti | Cosmological time in (2 + 1)-gravity[END_REF]. They noticed that the cosmological levels of M GHC flat space-times converge, when time goes to 0, to the real tree dual to the measured geodesic lamination associated to M . This problem was finally treated by Bonsante, Benedetti in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF]. In the case of the CM C time Benedetti-Guadagnini [START_REF] Benedetti | Cosmological time in (2 + 1)-gravity[END_REF] conjectured that in a flat globally hyperbolic spatially compact non elementary maximal space-time M of dimension 2 + 1, the level sets of the CM C time converge when time goes to 0 to the real tree dual to the measured geodesic lamination associated to M and when time goes to the infinity to the hyperbolic structure associated to M . In [START_REF] Andersson | Constant mean curvature foliations of simplicial flat spacetimes[END_REF] Andersson gives a positive answer to the Benedetti-Guadagnini conjecture in the case of simplicial flat space-time. A complete positive answer to this conjecture is given in [START_REF] Belraouti | Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques[END_REF].

In the 2 + 1 case, one can formulate the asymptotic problem in the Teichmüller space. Let S be a closed hyperbolic surface and M be a constant curvature M GHC space-time admitting a Cauchy surface diffeomorphic to S. A Cauchy time function T : M →]0, +∞[ defines naturally a curve (S, g T a ) a in the space Met(S) of Riemannian metrics of S. This allows us to study the behavior of the projection curve (S, [g T a ]) a of (S, g T a ) a in the Teichmüller space Teich(S) which is, as a topological space, much more pleasant to study than Met(S). In the flat case and thanks to the work of Benedetti and Bonsante [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF], one can identify the curve (S, [g Tcos a ]) a in Teich(S) associated to the cosmological time T cos . It corresponds to the grafting curve (gra λ a (S)) a defined by the measured geodesic lamination (λ, µ) associated to M . The curve (gra λ a (S)) a is real analytic and converges when time goes to 0 to the point, in the Thurston boundary of the Teichmüller space Teich(S), corresponding to the measured geodesic lamination (λ, µ), and when time goes to +∞, to the hyperbolic structure H 2 /π 1 (M ).

In the case of the CM C time T cmc , Moncrief [START_REF] Moncrief | Reduction of the Einstein equations in 2 + 1 dimensions to a Hamiltonian system over Teichmüller space[END_REF] proved that the curve (S, [g T a ]) a is the projection in Teich(S) of a trajectory of an non-autonomous Hamiltonian flow on T * Teich(S): we call this flow the Moncrief flow, and the curves the Moncrief lines. It is natural to ask whether the curve defined by the CM C time converges when time goes to 0 to the point, in the Thurston boundary of the Teichmüller space Teich(S), corresponding to the measured geodesic lamination, and when time goes to +∞, to the hyperbolic structure H 2 /π 1 (M ). One also can ask this question for the curve defined by the k-time.

2 Backgrounds and statement of results

Generalities on geometric metric spaces

Let (X, d) be a metric space. The length L d (α) of a path α : [a, b] → X is defined to be the supremum, on finite subdivion of [a, b], of d(α(t i ), α(t i+1 )). The length distance d L (x, y) between two points x and y is the infimum of the length of paths joining x and y. The metric space (X, d L ) is then called a length metric space. A path α joining two points x and y is a geodesic of the length metric space (X, d L ) if L d (α) = d L (x, y). A length metric space such that every two points are joined by a geodesic is called geodesic metric space.

Let (X, d) be a geodesic metric space. Let ∆(x, y, z) be a geodesic triangle in

X. A comparison triangle of ∆(x, y, z) in the model space (R 2 , d R 2 ) is the unique (up to isome- try) triangle ∆(x, ȳ, z) of (R 2 , d R 2 ) such that d(x, y) = d euc (x, ȳ), d(y, z) = d euc (ȳ, z) and d(x, z) = d euc (x, z
). The comparison map from ∆(x, y, z) to ∆(x, ȳ, z) is the unique map which sends the points x, y, z to the points x, ȳ, z and the geodesic segments

[x, y], [x, z], [y, z] to the geodesic segments [x, ȳ], [x, z], [ȳ, z]. Definition 2.1. A geodesic metric space (X, d) is CAT(0) if every comparison map is 1- Lipschitz.
A length metric space (X, d) is said to possess the approximative midpoints property if: for every x, y in X and ǫ > 0 there exists z in X such that d(x, z) ≤ 1 2 d(x, y) + ǫ and d(y, z) ≤ 1 2 d(x, y) + ǫ. The length metric space X satisfies the CAT(0) 4-points condition if for any 4-tuple of points (x 1 , y 1 , x 2 , y 2 ) there exists a 4-tuple of points (

x 1 , ȳ1 , x2 , ȳ2 ) in R 2 such that: d(x i , y j ) = d(x i , ȳj ) for i, j ∈ {1, 2}, and d(x 1 , x 2 ) ≤ d(x 1 , x2 ), d(y 1 , y 2 ) ≤ d(ȳ 1 , ȳ2
). Note that a CAT(0) metric space satisfies the CAT(0) 4-points condition and have the approximative midpoints property. The converse is true in the complete case: Proposition 2.1. ([17, Proposition II.1.11]) Let (X, d) be a complete metric space. The following conditions are equivalent:

• 1) X is a CAT(0) metric space;

• 2) X possesses the approximative midpoints property and satisfies the CAT(0) 4-points condition.

A geodesic metric space (X, d) is a real tree if any two points are joined by a unique path. Clearly a real tree is a CAT(0) metric space. An important example of real tree is the one given by a measured geodesic lamination (see for example [START_REF] Morgan | Valuations, trees, and degenerations of hyperbolic structures[END_REF], [START_REF] Otal | Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3[END_REF]).

Flat Regular domain, initial Singularity and Horizon

Let R 1,n be the Minkowski space. An hyperplane P is said to be lightlike if it is orthogonal to a lightlike direction. Let P be the space of all lightlike hyperplanes in R 1,n . Let Λ be a closed subset of P and consider Ω := P ∈Λ I + (P ). By [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF], the subset Ω is an open convex domain of R 1,n . It is non empty as soon as Λ is compact. If Λ contains more than two elements, then the open convex domain Ω, if not empty, is called a future complete regular domain. In the same way one can define a past complete regular domain.

Let Ω be a future complete regular domain. The boundary ∂Ω of Ω is convex. By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], it is the graph of a 1-Lipschitz convex function f : R n → R.

Let L be the set of Lipschitz curves contained in ∂Ω. For every α ∈ L, consider l(α) := | α(t)| dt the Lorentzian length of α. Let d be the pseudo-distance defined on ∂Ω by: d ∂Ω (p, q) = inf {l(α), where α is a curve in L joining p and q } . The cleaning (∂Ω/ ∼, d∂Ω ) i.e the quotient of the pseudo metric space (∂Ω + , d ∂Ω ) by the equivalence relation p ∼ q if and only if d ∂Ω (p, q) = 0, is a length metric space (see for instance [START_REF] Belraouti | Convergence asymptotique des niveaux de temps quasi-concave dans un espace temps à courbure constante[END_REF]Corollaire 2.2.14] ).

Definition 2.2. The metric space (∂Ω/ ∼, d∂Ω ) is the Horizon associated to Ω.

An hyperplane P is a support hyperplane of Ω if Ω ⊂ J + (P ). Note that if Ω admits two lightlike support hyperplanes then it admits a spacelike support hyperplane. Let Σ be the set of points p ∈ ∂Ω such that Ω have a spacelike support hyperplane passing through p. By a result of Bonsante (see [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]Proposition 7.8] ), the restriction of the pseudo-distance d ∂Ω to Σ is a distance denoted by d Σ .

Definition 2.3. The metric space (Σ, d Σ ) is the initial Singularity associated to Ω.

Example 2.1. The solid cone C is a typical example of regular domain. In this case the metric spaces (∂C/ ∼, d∂C ) and (Σ, d Σ ) are identified with the trivial metric space ({0}, d = 0).

In [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], Bonsante shows that to each point p in Ω corresponds a unique point r(p) in ∂Ω realizing the cosmological time i.e such that T cos (p) = |p -r(p)|

2 . He proved also that the application r : Ω → ∂Ω, called retraction map, is continuous and that r(Ω) = Σ. Moreover, the cosmological time T cos of Ω is a C 1,1 regular Cauchy time whose Lorentzian gradient is given by N p = -∇ p T cos = 1 Tcos(p) (p -r(p)). By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]Lemma 4.15] and [14, Lemma 3.12, Corollary 4.5], the normal application N : Ω → H n , when restricted to each cosmological level S Tcos a , is a surjective proper function. Every point p in Ω can be decomposed as

p = r(p) + T cos (p)N p .
Actually all this remain true in any future complete convex domain of R 1,n .

Flat space-times and flat regular domains

Let Γ be a torsion free uniform lattice of SO + (1, n). A cocycle of Γ is an application τ : Γ → R 1,n such that τ (γ 1 .γ 2 ) = γ 1 τ (γ 2 ) + τ (γ 1 ). An affine deformation of Γ associated to τ is the morphism ρ τ : Γ → SO + (1, n)⋉R 1,n defined by ρ τ (γ).x = γ.x+τ (γ) for every γ ∈ Γ and x ∈ R 1,n . By a result of Bonsante [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF], to every affine deformation of Γ corresponds a unique (up to reorientation) flat future complete regular domain Ω on which Γ τ = ρ τ (Γ) acts freely properly discontinuously. In this case, the cosmological normal application N and the retraction map r of Ω are equivariant under the action of Γ. This means that N γτ .p = γ.N p and r(γ τ .p) = γ τ .r(p) for every p in Ω and γ in Γ. The space-time M [τ ] := Ω/Γ τ is then called a standard flat space-time. In the special case of the trivial cocycle the space-time M [0] := C/Γ is the static flat space-time.

A future complete M GHC flat space-time M is said to be non elementary if 

L(π 1 (M )) is a non elementary subgroup of SO + (1, n), where L : π 1 (M ) → SO + (1, n) is the linear part of the holonomy morphism ρ : π 1 (M ) → SO + (1, n) ⋉ R

(2+1)-de Sitter space-times

Let S be a simply connected Möbius manifold. That is a manifold equipped with a (G, X)structure, where G = O + (1, n) and X = S n is the Riemannian sphere. A Möbius manifold is elliptic (respectively parabolic) if it is conformally equivalent to S n (respectively S n minus a point). A non elliptic neither parabolic Möbius manifold is called hyperbolic Möbius manifold.

Let d : S → S n be a developing map of S. A round ball of S is an open convex set U of S on which d is an homeomorphism. It is said to be proper if d( Ū ) is a closed round ball of S n . Let B(S) be the space of proper round ball of S. By a result of [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], there is a natural topology on B(S) making it locally homeomorphic to DS n+1 . By [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], the space B(S) endowed with the pull back metric of DS n+1 is a simply connected future complete globally hyperbolic locally de Sitter space-time called dS-standard space-time.

In general B(S) is not isometric to a part of DS n+1 . However, there are some regions in B(S) which embedd isometrically in DS n+1 . Indeed, let x in S and let U (x) be the union of all round containing x. Then by [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], the dS-standard spacetime B(U (x)) is isometric to an open domain of DS n+1 . Moreover, for every proper round ball V containing x, the causal past of V in B(S) is contained in B(U (x)).

In the case of dS-standard space-time of hyperbolic type, the cosmological time is regular (see [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF]). One can attach to each hyperbolic type dS-standard space-time B(S) a past boundary ∂B(S), which can be seen locally as a convex hypersurface of DS n+1 . Moreover, to every point p in B(S) corresponds a unique point r(p) on ∂B(S) realizing the cosmological time. Actually the point r(p) is the limit point in B(S) ∪ ∂B(S) of the past timelike geodesique starting at p with initial velocity -N p , where N p is the future oriented cosmological normal vector at p. The application N is the cosmological normal application and r is the retraction map.

We have the following classification theorem:

Theorem 2.3. ([32, Theorem 1.1]
) Every M GHC future complete de Sitter space-time is, up to reorientation, the quotient of a standard dS space-time by a free torsion discret subgroup of SO + (1, n + 1).

Definition 2.4. Let M be a differentiable manifold endowed with two Lorentzian metrics g and g. Let ξ be a vector fields everywhere non zero. The Lorentzian metric g is obtained by a Wick rotation from the Lorentzian metric g along the vector fields ξ if:

• 1) For every p in M , the sub-spaces g-orthogonal and g-orthogonal to ξ p are the same;

• 2) there exists a positive function f such that g = f g on the sub-space spanned by ξ p ;

• 3) There exists a positive function h such that : g = hg on ξ ⊥ p .

Let Ω be a flat future complete regular domain of dimension 2 + 1. Consider Ω 1 the past in Ω of the cosmological level S Tcos 1 and g its induced Lorentzian metric. By [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF], there exists a C 1 local diffeomorphism D : Ω 1 → DS 3 such that the pullback by D of the de Sitter metric is the Lorentzian metric g obtained from g by a Wick rotation along the cosmological gradient with g =

1 (1-T 2 cos ) 2 g on Rξ Tcos and g = 1 1-T 2 cos g on ξ Tcos ⊥ . The space (Ω 1 , g)
is a dS-standard spacetime of hyperbolic type i.e associated to some hyperbolic projective structure (given also by the canonical Wick rotation) on S Tcos

1

. In fact, this Wick rotation provides us a one to one correspondence between standard 2 + 1 de Sitter space-times of hyperbolic type and flat future complete regular domains of dimension 2 + 1. Moreover, this construction can be done in an equivariant way giving hence a one to one correspondence between future complete flat M GHC non elementary space-times of dimension 2 + 1 and future complete M GHC de Sitter space-times of hyperbolic type of dimension 2 + 1.

Proposition 2.4. ([12, Proposition 5.2.1]) The cosmological time T cos of (Ω 1 , g) is a Cauchy time. Moreover, T cos = argth(T cos ),
where T cos is the cosmological time of (Ω 1 , g).

(2+1)-anti de Sitter space-times

Let M be a M GHC anti de Sitter space-time of dimension n + 1. By [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], the universal cover M of M is isometric to an open convex domain, called regular domain, of the anti de Sitter space. Denote by M -the tight past of M i.e the strict past in M of the cosmological level S Tcos π 2

.

By [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF], the cosmological time of a M -is regular. One can attach a past boundary ∂ M - to M -which can be seen as a convex hypersurface of ADS n+1 . Moreover, to every point p in M -corresponds a unique point r(p) on ∂ M -realizing the cosmological time. the point r(p) is the limit point in M -∪ ∂ M -of the past timelike geodesique starting at p with initial velocity -N p , where N p is the future oriented cosmological normal vector at p. The application N is the cosmological normal application and r is the retraction map.

Let Ω be a flat future complete regular domain of dimension 2 + 1 and let g be its induced Lorentzian metric. By [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF] there exists a C 1 local diffeomorphism D : Ω → ADS 3 such that the pullback by D of the anti de Sitter metric is the Lorentzian metric g obtained from g by a Wick rotation along the cosmological gradient with g =

1 (1+T 2 cos ) 2 g on Rξ Tcos and g = 1 (1+T 2 cos ) g on ξ Tcos
⊥ . In fact (Ω, g) is the tight past region of its maximal anti de Sitter extension. Moreover, this Wick rotation provide us a one to one correspondence between 2 + 1 anti de Sitter regular domains and flat future complete regular domains of dimension 2 + 1. This construction can be done in an equivariant way giving hence a one to one correspondence between future complete flat M GHC non elementary space-times of dimension 2 + 1 and future complete M GHC anti de Sitter space-times of dimension 2 + 1.

Proposition 2.5. ([12, Proposition 6.2.2]) The cosmological time T cos of (Ω, g) is a Cauchy time. Moreover,

T cos = arctan(T cos ),
where T cos is the cosmological time of (Ω, g).

Statement of results

Let M be a future complete M GHC space-time of constant curvature. Let T : M → R be a π 1 (M )-invariant quasi-concave Cauchy time. Up to reparametrization we can suppose that T takes its values in R * + . Consider the family of

π 1 (M )-inveriant metric spaces (π 1 (M ), S T a , d T a ) a∈R * + associated to T . Let γ ∈ π 1 (M ) and a > 0, denote by l T a (γ) := inf x∈S T a d T a (x, γ.x) the marked spectrum of d T a .
Benedetti and Guadignini [START_REF] Benedetti | Cosmological time in (2 + 1)-gravity[END_REF] conjectured that: Conjecture 1. Let M be a future complete M GHC non elementary flat space-time of dimension 2 + 1 and let T cmc be the associated CM C time. Then: [START_REF] Andersson | Constant mean curvature foliations of simplicial flat spacetimes[END_REF] gives a positive answer to the first part of this conjecture in the case of simplicial space-times. In [START_REF] Belraouti | Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques[END_REF] we studied the past asymptotic behavior of quasi-concave Cauchy times in a 2 + 1 flat space-times. We gave in particular a positive answer to the first part of the Benedetti-Guadignini conjecture.

• 1) lim a→0 l T a (γ) = l Σ (γ) • 2) lim a→+∞ a -1 l T a (γ) = l H 2 (γ) Andersson
Theorem 2.6. ([11, Theorem 1.1]) Let M be a future complete M GHC non elementary flat space-time of dimension 2 + 1. Let T be a C 2 quasi-concave Cauchy time function on M . Then the levels (π 1 (M ), S T a , d T a ) a∈R * + converge in the Gromov equivariant topology, when a goes to 0, to the real tree dual to the measured geodesic lamination associated to M . In particular this limit does not depend on the time function T .

Our two first results concern the asymptotic behavior in the flat n + 1 dimensional case. In dimension bigger than 3, the situation is more complicated. The initial singularity is no longer a real tree in general (see [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]). However, we have the following partial result which is a generalization of 2.6 to the n + 1-dimensional flat case: Theorem 2.7. Let M ≃ Ω/Γ be a future complete M GHC flat non elementary space-time of dimension n + 1, where Ω is a future complete regular domain and Γ a discrete subgroup of

SO + (1, n) ⋉ R 1,n . Denote by (Σ, d Σ ), (Σ ⋆ , d ⋆ Σ
) and (∂Ω/ ∼, d∂Ω ) respectively the initial Singularity, its completion and the Horizon associated to M . Let T be a C 2 quasi-concave Cauchy time on M . Then:

• (Σ, d Σ ) embeds isometrically in (∂Ω/ ∼, d∂Ω ) which embeds isometrically in (Σ ⋆ , d ⋆
Σ ); • For every x and y in Σ there exists a unique geodesic α of (∂Ω + / ∼, d∂Ω + ) joining x and y;

• The metric space (Σ ⋆ , d ⋆ Σ ) is a CAT (0) metric space; • The levels (π 1 (M ), S T a , d T a ) a∈R *
+ converge in the Gromov equivariant topology, when a goes to 0, to the completion metric space (π 1 (M ), Σ ⋆ , d ⋆ Σ ) of the initial singularity (π 1 (M ), Σ, d Σ ). In particular the limit does not depend on the time function T .

Near the infinity we obtain the following result: Theorem 2.8. Let M be a future complete M GHC flat non elementary space-time of dimension n + 1. Then,

• 1) There exists a constant C(M ) such that for every C ′ > C and every quasi-concave Cauchy time T on M , the renormalized T -levels (π 1 (M ), S T a , (sup

S T a T cos ) -1 d T a ) a∈R * + are, for a big enough, C ′ -quasi-isometric to (π 1 (M ), H n , d H n ).
In particular all the limit points, for the Gromov equivariant topology, of (π 1 (M ), S T a , (sup

S T a T cos ) -1 d T a ) a∈R * + are C-bi-Lipschitz to (π 1 (M ), H n , d H n );
• 2) In dimension 2 + 1, the renormalized CM C-levels (respectively k-levels) converge in the Gromov equivariant topology, when time goes to +∞, to (π

1 (M ), H n , d H n ).
Remark 2.9. 1) The constant C in Theorem 2.8 depends actually only on π 1 (M ).

2) In fact Theorem 2.8 is the best result we can get in this generality. Indeed, in a static flat space-time (Γ, C), consider a Γ-invariant complete convex surface S different than the cosmological ones. The family (aS) a>0 constitutes a foliation of C. The associated renormalized family of metric spaces converges in the Gromov equivariant topology, when a goes to +∞, to (Γ, S, d S ). Now focus on the 2 + 1 dimensional case. In this article we obtain the analogue of Theorem 2.6 in the de Sitter and anti de Sitter cases. More precisely: Theorem 2.10. Let M be M GHC de Sitter (or anti de Sitter) space-time of dimension 2 + 1. Let T be a C 2 quasi-concave Cauchy time on M . Then the levels (π 1 (M ), S T a , d T a ) a∈R * + converge in the Gromov equivariant topology, when a goes to 0, to the real tree dual to the measured geodesic lamination associated to M . In particular this limit does not depend on the time function T . Now look to the asymptotic behavior in the Teichmüller space. Our fourth result concern the future behavior of the curve associated to the k-time. Let S be a closed hyperbolic surface and let (λ, µ) be a measured geodesic lamination on S. Let M be the M GHC space-time of constant curvature associated to (λ, µ). • In the de Sitter case: The curve ([g T k a ]) a>0 in the Teichmüller space Teich(S) of S stays at a bounded Teichmüller distance, when time goes to +∞, from the grafting metric gra λ (S).
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3 Quasi-concave times and there expansive Character Let M be a M GHC space-time of constant curvature. Let S be a C 2 complete π 1 (M )invariant spacelike hypersurface of M . Let Π S be its second fundamental form. Recall that the mean curvature H S at a point p of S is defined by H S = tr(Π) n i.e H S = λ1+λ2+...+λn n , where λ i are the principal curvatures of S. Recall that in the case of dimension 2, the Gauss curvature k S at a point p of S is defined by

k S = -det(Π) i.e k S = -λ 1 λ 2 .
Definition 3.1. The hypersurface S is said to be quasi-concave if its second fundamental form is positive-definite.

The convexity of S is equivalent to the geodesic convexity of J + (S). Thus using this last characterisation one can generalise the notion of convexity to non smooth hypersurfaces.

A where the supremum is taken over all the past causal curves starting at p.

In the flat case the cosmological time is a concave (and hence quasi-concave) Cauchy time (see [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]). By [START_REF] Scannell | Flat conformal structures and the classification of de Sitter manifolds[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF] the cosmological time is a regular quasi-concave time in the de Sitter case. In the anti de Sitter case it false to be quasi-concave. However, by [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF] the cosmological levels are convex near the initial singularity.

Definition 3.3. The CM C time is a π 1 (M )-invariant Cauchy time T : M → R such that every level T -1 (t), if not empty, is of constant mean curvature t.
The existence and uniqueness of such time was studied in [START_REF] Andersson | Constant mean curvature foliations of flat space-times[END_REF], [START_REF] Andersson | On the global evolution problem in 2 + 1 gravity[END_REF], [START_REF] Barbot | Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante[END_REF], [START_REF] Barbot | Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS 3[END_REF], [START_REF] Andersson | Cosmological time versus cmc time in spacetimes of constant curvature[END_REF]. In the flat case and by a result of Treibergs [START_REF] Andrejs | Entire spacelike hypersurfaces of constant mean curvature in Minkowski space[END_REF] the CM C time is quasi-concave. It is no more true in the anti de Sitter case. Unfortunately we don't now if it is the case in the de Sitter case.

In the flat case, the CM C time takes its values over R * -. Up to the reparametrization b → -1 b , we will consider that the CM C time takes its values in R * + . In other words: for every b > 0, the CM C level S Tcmc b is of constant mean curvature -1 b . Definition 3.4. Suppose that M is of the dimension 2 + 1. The k time is a Cauchy time T : M → R such that every level T -1 (t), if not empty, is of constant Gauss curvature t.

Barbot, Béguin and Zeghib [START_REF] Barbot | Prescribing Gauss curvature of surfaces in 3dimensional spacetimes, Application to the Minkowski problem in the Minkowski space[END_REF] proved the existence and uniqueness of such time in the flat and de Sitter case. In the anti de Sitter case there is no globally defined k-time. However, the two connected components of the convex core admit a unique k-time. By definition, the k-time is quasi-concave.

In the flat and the anti de Sitter cases, the k-time is defined over R * -. Up to the reparametrization b → √ -b -1 , we will consider that the k-time takes its values over R * + . In the de Sitter case, the k-time is defined over ] -∞, -1[. So we will consider it defined over Proof. We proved this proposition in the 2+1 flat case [11, 

Quasi-concave times versus Cosmological time

Let M be a positive constant curvature M GHC space-time of dimension n + 1 and let T cos be the cosmological time of M . The purpose of this section is to highlight the comparability between the cosmological time and the other quasi-concave times.

The flat case

Let us start with the following proposition which gives an estimation on the cosmological barriers in the flat n + 1 dimensional case.

Proposition 4.1. Let M ≃ Ω/Γ τ be a standard flat space-time, where Ω is a future complete flat regular domain, Γ a torsion free uniform lattice of SO + (1, n) and Γ τ its affine deformation in SO + (1, n) ⋉ R 1,n . Let S be a convex complete Γ-invariant Cauchy hypersurface of Ω. There is a constant C depending only on Γ such that for every

C ′ > C sup S T cos inf S T cos ≤ C ′ ,
for inf S T cos big enough.

Proof. Fix an origin of the Minkowski space R 1,n . Let N and r be respectively the normal application and the retraction map of Ω.

For simplicity denote by a = sup S T cos and by b = inf S T cos . Let F ⊂ H n be a compact fundamental domain for the action of Γ on H n . Note that F ′ = r(N -1 (F ′ )) is a fundamental domain for the action of Γ τ on Σ. The closure of F ′ in R 1,n is compact. Denote then by

C 1 = sup F ′ ×F ′ ×F | r 1 -r 2 , n |.
Now let p ∈ S such that T cos (p) = a. Up to isometry we can suppose that N p ∈ F and r(p) ∈ F ′ . The convexity of S implies that the tangent hyperplane P p to S at p is the tangent hyperplane to S Tcos a at p. Thus for every γ in Γ, γ τ .P p is the tangent hyperplane of S and S Tcos a at γ τ .p. Hence, we obtain that for every x in S and every γ in Γ:

γ τ p -x, γ.N p ≥ 0 But γ τ p = γ.p + τ (γ), x = r(x) + T cos (x)N x and p = r(p) + T cos (p)N p , so T cos (x) N x , γ.N p ≤ p, N p -γ -1 r(x) + τ (γ -1 ), N p Therefore 1 γ -1 .N x , N p - 1 a r(p) -r(γ -1 τ x), N p | γ -1 .N x , N p | ≤ T cos (x) a
On the other hand, for every x in S, there exists a γ x in Γ such that γ -1

x .N x ∈ F and r((

γ x ) -1 τ x) ∈ F ′ . Thus, 1 C - 1 a C 1 ≤ T cos (x) a ,
where

C = sup F ×F | n, n ′ |
Since the last inequality is true for every x in S, we obtain that

1 C - 1 a C 1 ≤ b a
And this finishes the proof.

As a direct consequence of this proposition we obtain: For the proof we need the following Maximum Principle. where k

S T ′ cos a is the Gauss curvature of S T ′ cos a .
On the one hand we have

k S T ′ cos a (p) = - 1 1 -2H S T k 1 (r ′ (p))a + a 2 Hence a ≥ H 0 + H 2 1 -1 + b 2 But inf S T k b T cos ≥ inf S T ′ cos a T cos ≥ a So inf S T k b T cos ≥ H 0 + H 2 1 -1 + b 2
On the other hand and by applying the Maximum Principle to the hypersurfaces S For every a > 0, let Ω a be the regular domain defined by Ω a := 1 a Ω. Note that Ω a is the regular domain associated to the cocycle τ a . The regular domain Ω a converge when a goes to ∞ to the cone C. Denote by T a cos , T a k and T a cmc respectively the cosmological time, the k-time and the CM C time of Ω a . It is not hard to see that aT a (x) = T 1 (ax) for each of the three times.

Corollary 4.7. The Cauchy times T a k (respectively T a cmc ) converge in the compact open topology, when a goes to +∞, to the cosmological time of C. That is for every compact F of C and for a big enough, the Cauchy time T a k (respectively T a cmc ) converge uniformly on F to the cosmological time of C.

Proof. Let F be a compact in C. Note that for a big enough F ⊂ Ω a . By [14, Proposition 6.2], the cosmological time T a cos converge uniformly on F to the cosmological time of C. So to proof that T a k (respectively T a cmc ) converge unifomly on F to the cosmological time of C, it is sufficent to proof that sup F |T a k (x) -T a cos (x)| (respectively sup F |T a cmc (x) -T a cos (x)|) goes to 0, when a goes to +∞.

1) The k-time case. We have sup

F |T a k (x) -T a cos (x)| ≤ 1 -inf F T 1 cos (ax) T 1 k (ax) sup F T a k (x)
Using Proposition 4.4, one can see that T a k (x) is bounded on F and inf F T 1 cos (ax) T 1 k (ax) goes to 1 when a goes to +∞. Thus we get that sup F |T a k (x) -T a cos (x)| goes to 0 when a goes to +∞.

2) The CM C-time case. We have sup

F |T a cmc (x) -T a cos (x)| ≤ sup F T 1 cos (ax) T 1 cmc (ax) -1 sup K T a cmc (x)
Then by Corollary 4.6, we have that sup F |T a cmc (x) -T a cos (x)| goes to 0 when a goes to +∞.

The de Sitter case

Let M ≃ B(S)/Γ be a 2 + 1-dimensional M GHC de Sitter space-time of hyperbolic type. Let T k be the k-time of B(S). = 1;

• 2) There exists a constant C > 0 such that lim b→+∞ sup

S T k b T cos -inf S T k b T cos ≤ C.
Proof. The proof is similar to the flat case. The k-level S

T k 1 is of constant Gauss curvature -2. Let H 0 = inf H S T k 1 and H 1 = sup H S T k 1 , where H S T k 1 is the CM C curvature of S T k 1 .
Denote respectively by T ′ cos , r ′ the cosmological time and retraction map of the Γinvariant future complete convex domain

A := J + (S T k 1 ) of B(S). For every b > 1, let p ∈ S T k b such that inf S T k b T ′ cos = T ′ cos (p) := a. By the Maximum Principle we have k S T ′ cos a (p) ≥ - 1 b 2 -1. But k S T ′ cos a (p) = - 2 -2H S T k 1 (r ′ (p)) tanh(a) + tanh 2 (a) 1 -2H S T k 1 (r ′ (p)) tanh(a) + 2 tanh 2 (a)
Thus inf

S T k b T cos ≥ argth( H 0 b 2 + 2 + 1 b 2 + 2 H 2 1 + (b 2 -1)(b 2 + 2))
On the other hand and by the Maximum Principle we have sup

S T k b T cos ≤ argcoth( b 2 + 1 b 2 ) Hence 1 ≥ sup S T k b T cos argcoth( b 2 +1 b 2 ) ≥ inf S T k b T cos argcoth( b 2 +1 b 2 ) ≥ argth( H0 b 2 +2 + 1 b 2 +2 H 2 1 + (b 2 -1)(b 2 + 2)) argcoth( b 2 +1 b 2 )
Then a simple computation shows that:

• lim b→+∞ inf S T k b Tcos argcoth( b 2 +1 b 2 ) = lim b→+∞ sup S T k b Tcos argcoth( b 2 +1 b 2 ) = 1 • lim b→+∞ sup S T k b T cos -inf S T k b T cos ≤ 1 2 log(3 -H 0 ).

Bilipschitz control of convex hypersurfaces

Let us consider M to be a n + 1-dimensional

• future complete flat standard M GHC space-time;

• or a future complete M GHC de Sitter space-time of hyperbolic type;

• or the tight past of a M GHC anti de Sitter space-time.

Our next proposition shows that the geometry of a convex spacelike surface can be compared uniformly to the cosmological one. More precisely:

Proposition 5.1. Let S ⊂ M be a π 1 (M )-invariant convex Cauchy hypersurface of M . Let n its Gauss application and N the cosmological normal application. Then for every p in S we have,

• | N p , n p | ≤ (sup S T cos )(inf S T cos ) -1 if M is flat; • | N p , n p | ≤ (sinh(sup S T cos ))(sinh(inf S T cos )) -1 if M is locally de Sitter; • | N p , n p | ≤ (tan(sup S T cos ))(tan(inf S T cos )) -1 if M is locally anti de Sitter.
For the proof we need the following lemma: and every unitary future oriented timelike tangent vector x ∈ T p M such that S Tcos a ⊂ J + (P p ), where P p = x ⊥ ⊂ T p M , we have: 

• | N p , x | ≤ (a)(b) -1 if M is flat; • | N p , x | ≤ (sinh(a))(sinh(b)) -1 if M is locally de Sitter; • | N p , x | ≤ (tan(a))(tan(b)) -1 if M is locally anti de Sitter.
S a = y ∈ J + (r(p)) ⊂ R 1,n such that |y -r(p)| 2 = -a 2 .
Remark that S a is in the future of S Tcos a . Thus for every y in S a we have : y, x ≤ p, x and so y -r(p), x ≤ b N p , x . Then it is sufficient to take y such that y -r(p) = ax Proof of Lemma 5.2 in the de Sitter case. Fix an origin of R 1,n+1 . Let M ≃ B(S)/Γ be a M GHC de Sitter space-time of hyperbolic type. Let p in S Tcos b and let x be a unitary future oriented timelike tangent vector in T p M such that S Tcos a ⊂ J + (P p ), where P p = x ⊥ ⊂ T p B(S). The proof is similar to the one of Remark 5.3 which depends only on J + (r(p)). Note that J + (r(p)) is isometric to a domain of DS n+1 . So we can, without losing generality, restric ourselves and work in dS n+1 .

For every y in the hypersurface S a = {y ∈ J + (r(p)) ⊂ dS n+1 such that d Lor (y, r(p)) = a}. We have,

x, p -y ≥ 0, where ., . is the scalar product of R 1,n+1 . Thus 0 = x, p ≥ x, y

Let us write:

• r(p) = -r(p), x x + u ′ , where u ′ ∈ x ⊥ ;

• p = cosh(b)r(p) + sinh(b)N r(p) , where N r(p) ∈ H n+1 ∩ T r(p) dS n+1 is the cosmological normal vector;

• y = cosh(a)r(p) + sinh(a)v y , where

v y ∈ H n+1 ∩ T r(p) dS n+1 . Now take v y = ( 1 + r(p), x 2 )x -r(p),x |u ′ | u ′ . On the one hand x, p = 0 so, x, N p = - 1 sinh(b)
x, r(p)

On the other hand x, y ≤ 0 and hence,

x, r(p) ≤ sinh(a) Thus | x, N p | ≤ sinh(a) sinh(b)
Proof of Lemma 5.2 in the anti de Sitter case. Fix an origin of R 2,n . Let M be the tight past of a M GHC anti de Sitter space-time. Note that M is isometric to a domain of ADS n+1 . Let p in S Tcos b and let x ∈ AdS n+1 ⊂ R 2,n such that P p = x ⊥ ⊂ T p M , x is future oriented (with respect to the orientation of ADS n+1 ) and S Tcos a ⊂ J + (P p ). Let S a = {y ∈ J + (r(p)) ⊂ AdS n+1 such that d Lor (y, r(p)) = a}. For every y in S a we have,

x, p -y ≥ 0, where ., . is the scalar product of R 2,n . Thus 0 = x, p ≥ x, y Let us write:

• r(p) = -r(p), x x -p, r(p) p + u ′ , where u ′ ∈ V ect(x, p) ⊥ ; • p = cos(b)r(p) + sin(b)N r(p)
, where N r(p) ∈ AdS n+1 ∩ T r(p) AdS n+1 is the cosmological normal vector;

• y = cos(a)r(p) + sin(a)v y , where v y ∈ AdS n+1 ∩ T r(p) AdS n+1 is future oriented.

We get then:

• x, N p = -1 sin(b) x, r(p) ; • x, r(p) ≤ -tan(a) x, v y ; For every β ∈ R let, v(β) = (-p, r(p) )x + βp + p, r(p) 2 + β 2 -1 |u ′ | u ′ .
Note that there exists β such that: |v(β)| 2 = -1 and v(β), r(q) = 0. In this case v(β) is future oriented. Indeed, if not then v y = -v(β) is future oriented and hence y = cos and this concludes the proof.

The (n+1)-flat case

Let M ≃ Ω/Γ be a future complete M GHC flat non elementary space-time of dimension n + 1.

Proposition 5.4. Let S ⊂ Ω be a convex Γ invariant Cauchy hypersurface and let g S be the Riemannian metric defined on S by the restriction of the ambient Lorentzian metric of the Minkowski space R 1,n . Then (S, g S ) is K 4 -bi-Lipschitz to (S Tcos sup S Tcos , g Tcos sup S Tcos ), where K = sup S Tcos infS Tcos .

Remark 5.5. The fact that (S, g S ) is bi-Lipschitz to (Σ Tcos sup S Tcos , g Tcos sup S Tcos ) is a direct consequence of the cocompactness of the Γ-action. What we are proving here is that the bi-Lipschitz constant K depend only on the cosmological barrier and not on the hypersurface S.

Let us start with the following proposition due to Bonsante: Let α : [0, 1] → S be a Lipschitz curve in S. For almost every s in [0, 1], we have

α(s) = ṙ(s) + Ṫcos (s)N s + T cos (s) Ṅ (s) And hence | α(s)| 2 = ṙ(s) + T cos (s) Ṅ (s) 2 -Ṫcos (s) 2
Thus by Proposition 5.6

| α(s)| 2 ≥ ṙ(s) + b Ṅ (s) 2 -Ṫcos (s) 2 .
Note that Ṫcos (s) = d α(s) T cos . α(s) = N (α(s)), α(s) .

Let us write N (α(s)) = h(s)n α(s) + v(s), where n is the normal map of S and v(s) is in n(α(s)) ⊥ . By Proposition 5.1:

N α(s) , n(α(s)) ≤ a b and hence |v(s)| 2 ≤ ( a b ) 2 -1. But Ṫcos (s) = | v(s), α(s) | ≤ |v(s)| | α(s)| Thus Ṫcos (s) 2 ≤ (( a b ) 2 -1) | α(s)| 2 .
Which proves that

( b a ) 2 ṙ(s) + b Ṅ (s) 2 ≤ | α(s)| 2 
On the other hand and by Proposition 5.6 we have Proof. The corollary follows from Remark 4.3 and Proposition 5.4.

| α(s)| 2 ≤ ṙ(s) + a Ṅ (s) 2 ≤ ( a b ) 2 ṙ(s) + b Ṅ (s) 2 Thus ( b a ) 4 ṙ(s) + a Ṅ (s) 2 ≤ | α(s)| 2 ≤ ṙ(s) + a Ṅ (s)

The (2+1)-de Sitter case

Suppose now that M ≃ B(S)/Γ is a M GHC de Sitter space-time of hyperbolic type and of dimension 2 + 1. Let (Ω 1 , g) be the hyperbolic dS-standard space-time of dimension 2 + 1 associated to M obtained by a Wick rotation from a flat regular domain (Ω 1 , g). Let T cos and T cos be respectively the cosmological time of (Ω, g) and (Ω 1 , g). Proposition 5.9. Let S ⊂ B(S) be a convex Γ invariant Cauchy hypersurface and let g S be the metric of S. Then, (S, g S ) is K 4 -bi-Lipschitz to (S Tcos sup S Tcos , g Tcos sup S Tcos ), where K = sinh(sup S Tcos) sinh(infS Tcos) . Proof. Let us denote for simplicity by a = sup S T cos , by b = inf S T cos and by |.| 1 the de Sitter norm of Ω 1 . Let α : [0, 1] → S be a Lipschitz curve in Ω 1 . For almost every s in [0, 1] we have,

| α(s)| 2 1 = 1 1 -T 2 cos (s) ṙ(s) + T cos (s) Ṅ (s) 2 - 1 (1 -T 2 cos (s)) 2 Ṫ 2 cos (s)
Thus by Proposition 5.8,

ṙ(s) + tanh(b) Ṅ (s) 2 1 -Ṫ 2 cos (s) ≤ | α(s)| 2 1 ≤ ṙ(s) + tanh(a) Ṅ (s) 2 1
Using the same arguments as in the flat case we get that, Remark 5.10. Actually in Proposition 5.9 we proved that if α is a spacelike curve contained in the past of the cosmological level S Tcos a , then the length l(α) of α is less than the length of Φ a-Tcos(α) Tcos

Ṫ 2 cos (s) ≤ (( sinh(a) sinh(b) ) 2 -1) | α(s)| 2 1 Hence | α(s)| 2 1 ≥ ( sinh(b) sinh(a) ) 2 ṙ(s) + tanh(b) Ṅ (s)
, where Φ Tcos is the cosmological flow.

The (2+1)-anti de Sitter case

Let M be the tight past of a M GHC anti de Sitter space-time of dimension 2 + 1. Recall that M ≃ (Ω, g), where (Ω, g) is obtained by a Wick rotation from a flat regular domain (Ω, g). Let T cos and T cos be respectively the cosmological time of (Ω, g) and (Ω, g). Proposition 5.12. Let S ⊂ M be a convex Γ invariant Cauchy surface and let g S be the metric of S. Then (S, g S ) is K 4 -bi-Lipschitz to (S Tcos sup S Tcos , g Tcos sup S Tcos ), where K = tan(sup S Tcos) tan(infS Tcos)

Proof. Let us denote for simplicity by a = sup S T cos , by b = inf S T cos and by |.| 1 the anti de Sitter norm of Ω. Let α : [0, 1] → S be a Lipschitz curve in S. For almost every s in [0, 1] we have,

| α(s)| 2 1 = 1 1 + T 2 cos (s) ṙ(s) + T cos (s) Ṅ (s) 2 - 1 (1 + T 2 cos (s)) 2 Ṫ 2 cos (s)
Thus by Proposition 5.11,

( cos(a) cos(b) ) 2 ṙ(s) + tan(b) Ṅ (s) 2 1 -Ṫ 2 cos (s) ≤ | α(s)| 2 1 ≤ ( cos(b) cos(a) ) 2 ṙ(s) + tan(a) Ṅ (s) 2 1
Using the same arguments as in the flat and the de Sitter case we get that,

Ṫ 2 cos (s) ≤ (( tan(a) tan(b) ) 2 -1) | α(s)| And hence ||v|| 2 = 1 + 2 v, n 1 2 ,
where ||.|| is the euclidean norm of R n+1 . Thus if we want to proof that v stays in a compact, we need to proof that v, n 1 is bounded independently of v.

In the same way we can write

n 2 = -n 1 , n 2 n 1 + u 1 , where u 1 is in n ⊥ 1 . Thus -( n 2 , n 1 ) 2 + |u 1 | 2 = -1. But v, n 2 ≤ 0, so -n 1 , n 2 n 1 , v + v 1 , u 1 ≤ 0, Hence 0 ≤ v, n 1 ≤ v 1 , u 1 n 1 , n 2 . Let's write v 1 = -v 1 , u 1 u 1 + v ′ 1 , where v ′ 1 is in n ⊥ 1 ∩ u ⊥ 1 . Thus -v, n 1 2 + v 1 , u 1 2 + |v ′ 1 | 2 = 1, Then v 1 , u 1 2 ≤ n 1 , n 2 2 n 1 , n 2 2 -1
And this proves that

0 ≤ v, n 1 ≤ 1 n 1 , n 2 2 -1 .
Proposition 6.4. Let α : [0, l] → S Tcos a be the geodesic joining two point p and q of S Tcos a . Then for every s in [0, l] we have α(s), N p 0 and α(s), N q ≥ 0, where N p and N q are the normal vectors of S Tcos a at p and q respectively. Proof. Let (x 0 , x 1 , ..., x n ) be a coordinate system of R 1,n such that p = (0, ..., 0) and N p = (1, 0, ..., 0). The hypersurface S Tcos a is the graph of 1-Lipschitz convex C 1 function φ : R n → R. We have α(s), N p = -φ(s). By [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]Lemma 7.7], φ is increasing, hence α(s), N p ≤ 0. In the same way we prove that α(s), N p ≥ 0. Let T cos the cosmological time of Ω and consider X Tcos the space of gradient lines of T cos . Note that the normal application and the retraction map of Ω can be seen as maps on X Tcos .

Proof of Proposition 6.2. Let π : ∂Ω → ∂Ω/ ∼ be the projection of ∂Ω in ∂Ω/ ∼. Note that if F is a compact of ∂Ω ⊂ R 1,n , then π(F ) is a compact of (Ω/ ∼, d∂Ω ). Let d euc be the euclidean metric of R n+1 and L euc its associated euclidean length structure. Denote by L the length structure defined on ∂Ω/ ∼ by the distance d∂Ω + and by L the one induced by the Minkowski metric.

We want to proof that for every p and q in X Tcos , there is a geodesic in (∂Ω + / ∼, d∂Ω + ) joining r(p) and r(q). There are two distinct cases:

1) If N p = N q . Then by Proposition [14, Proposition 4.14], r(p) + s(r(p) -r(q)) is contained in ∂Ω for every s in [0, 1]. Clearly r(p) + s(r(p) -r(q)) is a geodesic in (∂Ω/ ∼, d∂Ω ) joining r(p) and r(q).

2) If N p = N q . For every 0 < a < 1, let α a : [0, l a ] → S Tcos a be the geodesic joining p and q i.e joining the intersection point of p and S Tcos a with the intersection point of q and S Tcos a . By Proposition 6.4 we have αa (s), N p ≤ 0 and αa (s), N q ≥ 0, for every s in [0, l a ]. Therefore, by Lemma 6.3, there is a compact F ⊂ dS n ⊂ R n+1 such that αa (s) ∈ F for every 0 < a < 1 and every s in [0, l a ]. There is hence a constant C > 0 such that L euc (α a ) ≤ C for every 0 < a < 1. This means that the geodesics α a are contained in a compact F ′ of Ω.

On the one hand, as J -(F ′ )∩∂Ω is compact in ∂Ω, the curves π •r •α a stay in a compact of (∂Ω/ ∼, d∂Ω ).

On the other hand, every 0 < a < 1 and every s 1 , s 2 in [0, l a ] we have, d∂Ω (π(r(α a (s 1 ))), π(r(α a (s 2 )))) = d Σ (r(α a (s 1 )), r(α a (s 2 ))).

But by [14, Lemma 7.4, Proposition 7.8],

d Σ (r(α a (s 1 )), r(α a (s 2 ))) ≤ d Tcos a (α a (s 1 )), α a (s 2 )))
And hence, d∂Ω (π(r(α a (s 1 ))), π(r(α a (s 2 )))

) ≤ |s 1 -s 2 | .
This proves that the family (π • r • α a ) 0<a<1 is an equicontinuous family of curves. Thus by the Ascoli-Arzéla Theorem we deduce that π • r • α a converges uniformly in (∂Ω/ ∼, d∂Ω ) to a curve α joining r(p) and r(q). Since L(π • r • α a ) ≤ L(π • r • α a ) and lim a→0 L(π • r • α a ) = d∂Ω (r(p), r(q)), we have that lim a→0 L(π•r•α a ) = d∂Ω (r(p), r(q)). But the length structure L is lower semi continuous, thus L(α) = d∂Ω (r(p), r(q)). Proof. We are first going to proof that (Σ ⋆ , d ⋆ Σ ) possesses the approximative midpoints property. For that, it is sufficient to proof it for (Σ, d Σ ).

Let p, q two points of X Tcos the space of gradient lines of the cosmological time T cos and let ǫ > 0. For every a > 0, denote by p a (respectively q a ) the intersection point of p and S Tcos a (respectively the intersection point of q and S Tcos ) is geodesic, it possesses the midpoints property. So for every a > 0, let z a be the point in S Tcos a such that d a (p a , z a ) = d a (q a , z a ) = 1 2 d a (p a , q a ) . For every a > 0, let us denote by z a the cosmological gradient line passing through z a .

By [14, Proposition 7.6, Proposition 7.8], the distances d Tcos a (p a , q a ) converge, when a goes to 0, to d Σ (r(p), r(q)). Then let,

• a 0 > 0 such that for every 0 < a ≤ a 0 we have |d Σ (r(p), r(q)) -d a (p a , q a )| < ǫ;

• a 1 > 0 so that for every 0 < a ≤ a 1 we have |d Σ (r(p), r(z a0 )) -d a (p a , z a0 )| < ǫ 2 . For every 0 < a < min(a 0 , a 1 ) we have,

d Σ (r(p), r(z a0 )) ≤ d a (p a , z a0 ) + ǫ 2 .
But d a (p a , z a0 ) ≤ d a0 (p a0 , z a0 ), for 0 < a < min(a 0 , a 1 ). Hence

d Σ (r(p), r(z a0 )) ≤ 1 2 d a0 (p a0 , q a0 ) + ǫ 2 ≤ 1 2 d Σ (r(p), r(q)) + ǫ.
In the same way we show that d Σ (r(q), r(z a0 )) ≤ 1 2 d Σ (r(p), r(q)) + ǫ.

We obtain in this way an ǫ-approximative midpoint r(z a0 ). 

Asymptotic convergence in the past

In this part we will prove the last point of Theorem 2.7. Let M ≃ Ω/Γ be a future complete M GHC flat non elementary space-time of dimension n + 1, where Ω is a future complete regular domain and Γ a discrete subgroup of

SO + (1, n) ⋉ R 1,n .
Let T cos be the cosmological time of Ω and let and T be a quasi-concave Γ-invariant Cauchy time of Ω. Denote respectively by X Tcos , X T the space of gradient lines of T cos and the space of gradient lines of T . The gradient lines of T cos (respectively T ) being inextensible temporal curves, they intersect every level set of T cos (respectively every level set of T ), which are Cauchy hypersurfaces, at a unique point. It follows that every level set of T cos and every level set of T is identified with the space X Tcos and the space X T respectively. Denote by d Tcos ) define the same topology on X Tcos (respectively on X T ). The three following results were proved in [START_REF] Belraouti | Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques[END_REF] (see for instance [START_REF] Belraouti | Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques[END_REF]Remark 1.2]). Proposition 6.7. The distances d T a defined on X T converge in the compact open topology to a pseudo-distance d T 0 .

In the case of the cosmological time, the cleaning of the pseudo-metric space (X Tcos , d Tcos . Let (δ T ai ) i∈N a subsequence of (δ T a ) a>0 converging to δ T 0 . Let p and q in X Tcos . For every i ∈ N, denote respectively by p i , q i the intersection points of S T ai and p, q. Note that J -(p i ) ∩ Ω (respectively J -(q i ) ∩ Ω ) is a decreasing sequence of compacts which converge to r(p) (respectively r(q)).

Let i ∈ N, there exists f (a i ) such that the hypersurface S Tcos f (ai) is in the past of the hypersurface S T ai . Denote respectively by x i , y i the gradient lines of T passing through the points p i , q i of S T ai . Let us denote again by x f (ai) , y f (ai) respectively the intersection points of x i and y i with S Tcos f (ai) . We get then:

d Tcos f (ai) (p, q) ≤ δ Tcos f (ai) (x i , y i ) + d Tcos f (ai) (p, x i ) + d Tcos f (ai) (q, y i ).
But by Proposition 3.1, we have,

δ Tcos f (ai) (x i , y i ) ≤ d T ai (x i , y i ) = δ T ai (p, q) Hence d Tcos f (ai) (p, q) ≤ δ T ai (p, q) + d Tcos f (ai) (p, x i ) + d Tcos f (ai) (q, y i ).
On the one hand we have that d Tcos f (ai) (p, x i ) (respectively d Tcos f (ai) (q, y i )) is bounded from above by p f (ai) -x i (respectively q f (ai) -y i ), where ||.|| is the euclidean norm of R n+1 . But x i , p f (ai) (respectively y i , q f (ai) ) converge when i goes ton ∞ to the same point which is r(p) (respectively r(q)). This proves that d Tcos f (ai) (p, x i ) and d Tcos f (ai) (q, y i ) converge to 0 when i goes toward ∞.

On the other hand, the distances d Tcos f (ai) and δ T ai converge respectively, when i goes to ∞, to d Tcos This proposition proves that the Γ-metric spaces (Γ, S T a , d T a ) a>0 converge in the compact open topology, when a goes to 0, to the initial singularity (Γ, Σ, d Σ ). Thus the Γ-metric spaces (Γ, S T a , d T a ) a>0 converge in the Gromov equivariant topology, when a goes to 0 to the initial singularity (Γ, Σ, d Σ ) and hence to its completion (Σ ⋆ , d ⋆ Σ ).

Asymptotic convergence in the future

The object of this part is to proof Theorem 2.8. We use the same notation of the previous part. Let T : Ω → R + be a quasi-concave Γ-invariant Cauchy time.

Proposition 6.11. There exists a constant C > 0 (depending only on Γ) such that:

• 1) for every C ′ > C , the renormalized distances Proof. Let a > 0. Denote by a + = sup S T a T cos and by a -= inf S T a T cos . By Proposition 5.4 we have that for every x and y in X Tcos ,

a - a + d Tcos a-(x, y) ≤ δ T a (x, y) ≤ d Tcos a+ (x, y) So ( a - a + ) 2 d Tcos a-(x, y) a - ≤ δ T a (x, y) a + ≤ d Tcos a+ (x, y) a +
1) The general case: by Proposition 4.1, there exists a constant C ′ such that a+ a-≤ C ′ for a big enough. Together with Proposition [14, Proposition 7.1] we conclude that for a big enough the distance δ T a is C ′ -quasi-isometric to the hyperbolic hyperbolic d H n . In particular, all the limit points (for the compact open topology) of the family (δ T a ) a>0 are C-bi-Lipschitz to the hyperbolic distance d H n where C is the constant depending only on Γ given in Proposition 4.1.

2) In the 2 + 1 case: if T is the CM C time or the k-time then by Proposition 4.4 and the Corollary 4.6, the constant C is equal to one and hence the family (δ T a ) a>0 converges in the compact open topology, when a goes to infinity, to d H 2 . This last proposition together with the fact that compact open convergence of Γ-metric spaces is stronger than the Gromov equivariant convergence conclude the proof of Theorem 2.8.

Past convergence in (2+1)-de Sitter space-times

In this section we will proof Theorem 2.10 in de Sitter case. Let M ≃ B(S)/Γ be a 2 + 1 dimensional M GHC future complete de Sitter space-time of hyperbolic type, where B(S) ≃ (Ω 1 , g) is the associated hyperbolic dS-standard spacetime of dimension obtained by a Wick rotation from a flat regular domain (Ω, g). Let (λ, µ) be the measured geodesic lamination on H 2 associated to (Ω, g). Let's denote respectively by T cos and T cos the cosmological time of (Ω, g) and (Ω 1 , g). Proof. Note that the space of cosmological gradient lines of (Ω 1 , g) is the same as the space of cosmological gradient lines of (Ω 1 , g). Let's denote it by X cos . For every a > 0, the distance d Tcos 8 Past convergence in (2+1)-anti de Sitter space-times

In this section we will proof Theorem 2.10 in the anti de Sitter case. Let M ≃ M /Γ be the tight past of a 2 + 1 dimensional M GHC anti de Sitter space-time, where M ≃ (Ω, g) is obtained by a Wick rotation from a flat regular domain (Ω, g). Let (λ, µ) be the measured geodesic lamination on H 2 associated to (Ω, g). Let's denote respectively by T cos and T cos the cosmological time of (Ω, g) and (Ω, g). Proof. Note that the space of cosmological gradient lines of (Ω 1 , g) is the same as the space of cosmological gradient lines of (Ω 1 , g). Let's denote it by X cos . For every a > 0, the distance d Tcos 

Theorem 2 . 11 .

 211 Let T k and T cmc be respectively the k-time and the CM C time of M . Then, • In the flat case: the curves ([g T k a ]) a>0 and ([g T k a ]) a>0 in the Teichmüller space Teich(S) of S converge, when time goes to +∞, to the hyperbolic structure of S.

  π 1 (M )-invariant Cauchy time function T : M → R * + is quasi-concave if its levels are convex. The cosmological time, the CM C time and the K time provide us important examples of quasi-concave times. Definition 3.2. The cosmological time T cos is defined by: T cos (p) = sup α -| α(s)| 2

Proposition 3 . 1 .

 31 R * + up to the reparametrization b → -(b + 1) -1 . Let T : M → R * + be a π 1 (M )-invariant C 2 quasi-concave Cauchy time. Denote by ξ T = ∇T |∇T | 2 , where ∇T is the Lorentzian gradient of T and let Φ t T be the corresponding flow generated by ξ T . Denote by S T 1 the level set T -1 (1) of T . Let α : [a, b] → M be a spacelike curve contained in the past of S T 1 . Then the length of α is less than the length of α 1 where α 1 (s) = Φ 1-T (α(s)) T (α(s)) is the projection of α on S T 1 along the lines of Φ T .

Corollary 4 . 2 .Remark 4 . 3 .Proposition 4 . 4 .

 424344 Let T : Ω →]0, +∞[ be a Γ-invariant quasi-concave Cauchy time. Then lim b→∞ sup S T b T cos inf S T b T cos ≤ C By a result of Andersson, Barbot, Béguin and Zeghib [3] we have that in the particular case of the CM C time : Let M ≃ Ω/Γ be a non elementary future complete M GHC flat spacetime of dimension 2 + 1 and let T k : Ω →]0, +∞[ be the k-time of Ω. The cosmological time and the k-time are comparable near the infinity. Moreover

Lemma 4 . 5 . 1 ,

 451 Let S and S ′ two spacelike hypersurfaces in a space-time M such that S ′ is in the future of S and S ∩ S ′ = ∅. For every p ∈ S ∩ S ′ we have that the principal curvatures of S at p are bigger than the principal curvatures of S ′ at p. In particular the Gauss curvature of S is bigger than the Gauss curvature of S ′ .Proof ofProposition 4.4. Let S T k 1 be the k-level of constant Gauss curvature -1. Let H 0 = inf H S T k 1 and H 1 = sup H S T k where H S T k 1 is the CM C curvature of S T k 1 . Consider the Γ-invariant future complete convex domain A := J + (S T k 1 ). Denote respectively by T ′ cos , r ′ the associated cosmological time and retraction map. For every b > 1, the Γ-invariant k-level S T k b is entirely contained in A. As the action of Γ on S T k b is cocompact, the cosmological time T ′ cos of A achieve its minimum on S T k b . Let p ∈ S T k b such that inf S T k b T ′ cos = T ′ cos (p) := a. By applying the Maximum Principle to the hypersurfaces S

  C level of constant mean curvature -1 b . We have k S T b ≥ -1 b 2 . Then by [7, Remark 10.3], S Tcmc b is in the future of the k-level S T k b . We conclude using Proposition 4.4 and Remark 4.3.

Proposition 4 . 8 .

 48 We have:

Lemma 5 . 2 .

 52 Let S Tcos a et S Tcos b be two cosmological levels of M with b < a. Then for every p in S Tcos b

Remark 5 . 3 .

 53 Proof of Lemma 5.2 in the flat case. Fix an origin of R 1,n and let M ≃ Ω/Γ τ be a flat standard future complete space-time. Let p in S Tcos b and let x ∈ H n such that S Tcos a ⊂ J + (p + x ⊥ ). For every y in S Tcos a we have:y, x ≤ p, x Then a N y , x ≤ b N p , x + r(p) -r(y), x .The normal application N : Σ Tcos a → H n is surjective. So to conclude it is sufficient to take y in S Tcos a such that N y = x. We restrict ourselves to standard space-times to get the surjectivity of the normal cosmological application. However, it still true in any future regular domain. Indeed, consider two cosmological levels S Tcos a and S Tcos b with b < a. Let p in S Tcos b and let S a be the hyperboloid defined by:

1 .

 1 (a)r(p)+ sin(a)v y belongs to S a . But r(p), x ≤ tan(a) v(β), x = -cos(b) tan(a) ≤ 0 and r(p), x = -sin(b) N p , x ≥ 0 which is a contradiction. Thus y = cos(a)r(p) + sin(a)v β belongs to S a and hence | N p , x | ≤ (tan(a))(tan(b)) -Proof of Proposition 5.1 Denote by a = sup S T cos and b = inf S T cos . The hypersurface S is in the past of S Tcos a and in the future of S Tcos b . Let p in S and let P p = n ⊥ p the tangent hyperplane to S at p. As S is convex, we have that S Tcos a ⊂ J + (P p ). By Lemma 5.2 we have: • | N p , n p | ≤ a Tcos(p) ≤ a b in the flat case; • | N p , n p | ≤ sinh(a) sinh(Tcos(p)) ≤ sinh(a) sinh(b) in the de Sitter case; • | N p , n p | ≤ sin(a) sin(Tcos(p)) ≤ tan(a) tan(b) in the anti de Sitter case.

Proposition 5 . 6 .

 56 ([14, Lemme 7.4]). The cosmological levels S Tcos a and S Tcos b are ( a b ) 2 -bi-Lipschitz one to the other. More precisely, g b ≤ g a ≤ ( a b ) 2 g b Proof of Proposition 5.4. Let S be a convex Γ invariant Cauchy hypersurface of Ω and let g S its induced Riemannian metric. Denote by a = sup S T cos and by b = inf S T cos .

2Corollary 5 . 7 .

 57 This proves that the cosmological flow induces a ( b a ) 4 -bi-Lipschitz identification between (S, g S ) and (S Tcos a , g Tcos a ). Let M be a M GHC flat future complete non elementary space-time. Let T cmc : M → R + its associated Cauchy time. Then for every a > 0, the hypersurface (S Tcmc a , g Tcmc a ) is n 4 -bi-Lipschitz to the hypersurface (S Tcos a

Proposition 5 . 8 . 1 ( 1 - 6 g

 58116 The cosmological levels S Tcos a and S Tcos b of B(S) are ( sinh(a) sinh(b) ) 2 -bi-Lipschitz one to the other. More precisely, Tcos b Proof. Suppose that b < a. We have g Tcos a = tanh 2 (a)) g Tcos tanh(a) But by Proposition 5.Tcos tanh(b) ≤ g Tcos tanh(a)

Proposition 5 . 11 .

 511 The cosmological levels S Tcos a and S Tcos b of M are ( tan(a) tan(b) ) 2 -bi-Lipschitz one to the other. More precisely, Tcos b Proof. Suppose that b < a. We have

Proposition 6 . 5 .Proposition 6 . 6 .

 6566 For every a > 0, the cosmological level (S Tcos a , d Tcos a ) is a CAT (0) metric space. Proof. The cosmological hypersurface S Tcos a is the graph of a C 1 convex function φ : R n → R. Using convolution, one can get a uniform C 1 approximation of φ by smooth convex functions ψ i : R n → R. The proposition follows then from [17, Theorem II.1A.6]. The completion (Σ ⋆ , d ⋆ Σ ) of the initial singularity (Σ, d Σ ) is a CAT (0) metric space.

a).

  Since every (S Tcos a , d Tcos a

By [ 14 ,

 14 Proposition 7.6, Proposition 7.8], the CAT (0) metric spaces (S Tcos a , d Tcos a ) converge in the compact open topology to (Σ, d Σ ). Thus the metric spaces (Σ, d Σ ) and (Σ ⋆ , d ⋆ Σ ) satisfy the CAT (0) 4-points condition. As (Σ ⋆ , d ⋆ Σ ) is complete, by Proposition 2.1 it is CAT (0).

a(

  respectively δ Tcos a ) the distance of S Tcos a transported on X Tcos (respectively on X T ). In the same way we define the distances d T a on X T and δ T a on X Tcos . Since the Cauchy hypersurfaces are homeomorphic one to each other, the distances d Tcos a and δ T a (respectively d T a and δ Tcos a

0 ) 0 .Corollary 6 . 9 .Proposition 6 . 10 .

 0069610 is isometric to the Initial Singularity (Σ, d Σ ). Proposition 6.8. Up to a subsequence, the sequence (δ Tcos an ) n≥0 (respectively (δ T an ) n≥0 ) converge in the compact open topology to a pseudo-distance δ Tcos 0 (respectively δ T 0 ) when n goes to ∞. Moreover, The marked spectrum of d Tcos a , d T a , δ Tcos 0 and δ T 0 are two by two equals. The next proposition gives a more precise description of the behavior of the distances δ T a near the initial singularity. The distances δ T a , converge in the compact open topology to the pseudodistance d Tcos 0 . Proof. By Proposition 6.8, it is sufficient to proof that every compact-open limit point δ T 0 of (δ T a ) a>0 verifies δ T 0 ≥ d Tcos 0

aa• 2 )

 2 Tcos are, near the infinity, C ′quasi-isometric to the hyperbolic metric d H n . In particular, the limit points, for the compact open topology, of the family ( Tcos ) a are all C-bi-Lipschitz to d H n ; In the 2 + 1 case, the renormalized CM C distances (respectively k distances) converge for the compact open topology, when times goes to infinity, to the hyperbolic distance d H 2 .

Proposition 7 . 1 .

 71 The cosmological level (Γ, S Tcos a , d Tcos a ) a>0 converge in the compact open topology, when a goes to 0, to (Γ, Σ, d Σ ) the real tree dual to the measured geodesic lamination (λ, µ).

a.

  of S Tcos a transported to X cos is also denoted by d Tcos a . On the one hand, by Proposition 6.7 the distances d Tcos a and d Tcos tanh(a) converge respectively in the compact open topology to the pseudo-distances d Tcos 0 and d Tcos 0 on X cos . On the other hand and for every a > 0 we have: d Tcos a (x, y) = 1 1-tanh 2 (a) d Tcos tanh(a) (x, y). Thus, the distances d Tcos a converge in the compact open topology, when a goes to 0, to the pseudo-distances d Tcos 0 But the cleaning of (X Tcos , d Tcos 0 ) is isometric to (Σ, d Σ ), which is by [12, Proposition 3.7.2] isometric to the real tree dual to the measured geodesic lamination (λ, µ). So the Γ metric spaces (Γ, S Tcos a , d Tcos a ) a>0 converge, when a goes to 0, in the compact open topology to the real tree (Γ, Σ, d Σ ). Then the Γ metric spaces (Γ, S Tcos a , d Tcos a ) a>0 converge, when a goes to 0, in the Gromov equivariant topology to the real tree (Γ, Σ, d Σ ). Proof of Theorem 2.10 in the Sitter case. Thanks to Proposition 3.1, Proposition 7.1 and Remark 5.10, one can reproduce the proof of Theorem 2.6 without any modification and proves Theorem 2.10 in the de Sitter case.

Proposition 8 . 1 .

 81 The cosmological level (Γ, S Tcos a , d Tcos a ) a>0 converge in the compact open topology, when a goes to 0, to (Γ, Σ, d Σ ) the real tree dual to the measured geodesic lamination (λ, µ).

a 1 1+tan 2 .Proposition 9 . 1 .

 1291 of S Tcos a transported to X cos is also denoted by d Tcos a . On the one hand, by Proposition 6.7 the distances d Tcos a and d Tcos tanh(a) converge respectively in the compact open topology to the pseudo-distances d Tcos 0 and d Tcos 0 on X cos . On the other hand and for every a > 0 we have: d Tcos a (x, y) = (a) d Tcos tanh(a) (x, y). Thus, the distances d Tcos a converge in the compact open topology, when a goes to 0, to the pseudo-distances d Tcos 0 So the Γ metric spaces (Γ, S Tcos a , d Tcos a ) a>0 converge, when a goes to 0, in the Gromov equivariant topology to the real tree (Γ, Σ, d Σ ) Proof of Theorem 2.10 in the anti Sitter case. Thanks to Proposition 3.1, Proposition 8.1 and Remark 5.13, one can reproduce the proof of Theorem 2.6 without any modification and proves Theorem 2.10 in the anti de Sitter case.9 Asymptotic behavior in the Teichmüller spaceThe aim object of this part is to proof Theorem 2.11. Let S ≃ H 2 /Γ be a closed hyperbolic surface. Denote by Teich(S) the Teichmüller space of S. On Teich(S) consider the Teichmüller metric d Teich . Let g 1 and g 2 two Riemmannian metric on S such that (S,g 1 ) is Kbilipchitz to (S, g 2 ). Then d Teich ([g 1 ] , [g 2 ]) ≤ log K Let (λ,µ) be a measured geodesic lamination on S. Let M be the unique flat (or de Sitter, or the tight past of anti de Sitter) M GHC space-time of dimension 2 + 1 associated to (λ, µ). Let T cmc and T k be respectively the CM C time and the k time of M . For each of the cosmological time, the k time and the CM C time, let us consider respectively the associated curves a → g Tcos a , a → g T k a and a → g Tcmc a in the Teichmüller space Teich(S) of S. Proposition 9.2. The flat case. The curves a → g T k a and a → g Tcmc a converge when a goes to infinity to the hyperbolic structure H 2 /Γ.

  1,n of M . The following theorem gives a full classification of M GHC flat non elementary space-times.

	Theorem 2.2. ([6, Theorem 4.11]) Every future complete M GHC flat non elementary
	space-time M is up to finite cover the quotient of a future complete regular domain by a
	discrete subgroup of SO + (1, n) ⋉ R 1,n .

  Proposition 4.2]. The proof does not use the fact that space-time is flat of dimension 2 + 1 and remains true in our case (see[START_REF] Belraouti | Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques[END_REF] Remark 1.2]). Even if in Proposition 3.1 we restrict ourselves to C 2 quasi-concave times, one can prove analogue Propositions for the cosmological time, which is just C 1,1 , in the Sitter and anti de Sitter cases (see Remark 5.10 and Remark 5.13).

	Remark 3.2.

Asymptotic behavior in the Teichmüller space

1

), where Φ Tcos is the cosmological flow.

6 Asymptotic behavior in flat (n+1)-space-times

Geometric properties of the initial singularity

In this part we will prove the three first points of Theorem 2.7. Let Ω be a flat future complete regular domain and let (Σ, d Σ ), (∂Ω/ ∼, d∂Ω ) be the Initial Singularity and the Horizon associated to Ω. Denote by (Σ ⋆ , d ⋆ Σ ) the completion of (Σ, d Σ ). By a result of Bonsante [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF] the metric space (Σ, d Σ ) embed isometrically in (∂Ω/ ∼, d∂Ω ). Proposition 6.1. The Horizon (∂Ω/ ∼, d∂Ω ) embeds isometrically in (Σ ⋆ , d ⋆ Σ ). Proof. Let Σ ∞ be the set of Cauchy sequences of (Σ, d Σ ) and let d ∞ the pseudo-distance defined by: if (x i ) i∈N and (y i ) i∈N are two Cauchy sequences of (Σ,

Let x in ∂Ω \ Σ and let (p i ) i∈N be a sequence of Ω converging to x and such that T cos (p i+1 ) < T cos (p i ), for every i in N. Note that the sequence r(p i ) stays in a compact of ∂Ω. Thus extract a subsequence if necessary, we can suppose that r(p i ) converges to y in ∂Ω. Then the vector x -y is a causal vector. But ∂Ω is achronal so x -y is lightlike. Hence y should belongs to the lightlike ray passing through x which is unique by Lemma [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surfaces[END_REF]Lemma 4.11]. Thus for every x in ∂Ω, there exists a sequence (x i ) i∈N of Σ converging to a point y ∈ Σ such that d ∂Ω (x, y) = 0. Now let f : ∂Ω → Σ ⋆ be the function which associates to each x in ∂Ω the image by π ′ of a sequence (x i ) i∈N in Σ converging to a point y of Σ such that d ∂Ω (x, y) = 0. This function is well defined and induces an isometric embedding from (∂Ω/ ∼, d∂Ω ) to (Σ ⋆ , d ⋆ Σ ). Proposition 6.2. For every x and y in Σ, there exists a geodesic in (∂Ω + / ∼, d∂Ω + ) joining x and y.

We will need the following lemma: Lemma 6.3. Consider the Lorentzian model H n of the hyperbolic space. For every n 1 = n 2 in H n , the subset defined by F = {v ∈ dS n such that v, n 1 ≥ 0 and v, n 2 ≤ 0} is precompact.

Proof. Fix an origin of the Minkowski space R 1,n . Let n 1 and n 2 in H n and v in R 1,n such that |v| 2 = 1, v, n 1 ≥ 0 and v, n 2 ≤ 0. One can write v = -v, n 1 n 1 + v 1 , where v 1 is in n ⊥ 1 . We have then