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Abstract. Stochastic watershed is an image segmentation technique
based on mathematical morphology which produces a probability density
function of image contours. Estimated probabilities depend mainly on lo-
cal distances between pixels. This paper introduces a variant of stochas-
tic watershed where the probabilities of contours are computed from a
gaussian model of image regions. In this framework, the basic ingredi-
ent is the distance between pairs of regions, hence a distance between
normal distributions. Hence several alternatives of statistical distances
for normal distributions are compared, namely Bhattacharyya distance,
Hellinger metric distance and Wasserstein metric distance.

1 Introduction

Image segmentation is one of the most studied and relevant problems in low
level computer vision. Indeed, the state-of-the-art is vast and rich in multiple
paradigms. We are interested here on approaches based on statistical modeling
of pixels and regions. Examples of methods fitting in such a paradigm and having
excellent performance are mean shift [9] and statistical region merging [15]. Hier-
archical contour detection is another successful paradigm with approaches based
for instance on machine learned edge detection [4] or on watershed transform [6].

Instead of dealing with a determinist set of contours, the idea of the stochastic
watershed [2] (SW) is to estimate a probability density function (pdf) of contours
by MonteCarlo simulations. Some variants included multiscale framework [3],
bagging framework [11], robust framework [5], etc. It was shown in [16] that
the corresponding pdf obtained by SW can be calculated in closed form without
simulation by using graph algorithms, for more recent results see also [17]. Nev-
ertheless, we focuss here on an approach working on simulations. In particular,
our contribution is in the line of [12], where the estimation of the probability of
each contour is based on a regional model of each region, the model being in [12]
the mean color. In the present work, the approach is pushed forward such that
each region should be modeled as a multivariate normal distribution. The basic
ingredient will be a distance between pairs of regions, hence a distance between
normal distributions. In this context, several alternatives of statistical distances
for normal distributions are compared.



The rest of the paper is organized as follows. In Section 2, we remind the
MonteCarlo framework of stochastic watershed and in particular the simulation
of regionalized random germs. Section 3 introduces the contribution of the paper:
first, distances between multivariate normal distributions are reviewed; second,
computation of probability density of contours based on a normal region model
is formulated. Results are discussed and compared to statistical region merging
segmentation [15].

2 Remind on Stochastic Watershed

Regionalized Poisson points. We first consider the notion regionalized ran-
dom points as well as the algorithm used to simulate a realization of N random
germs associated to a spatial density.

A rather natural way to introduce uniform random germs is to generate
realizations of a Poisson point process with a constant intensity 6 (i.e., average
number of points per unit area). It is well known that the random number
of points N (D) falling in a domain D, which is considered a bounded Borel
set, with area |D|, follows a Poisson distribution with parameter 6|D|, i.e.,
Pr{N(D) = n} = e*Q‘D‘% In addition, conditionally to the fact that
N(D) = n, the n points are 1ndependently and uniformly distributed over D,
and the average number of points in D is 8| D| (i.e., the mean and variance of a
Poisson distribution is its parameter).

More generally, we can suppose that the density 6 is not constant; but consid-
ered as measurable function defined in R?, with positive values. For simplicity,
let us write #(D) = [6(x)dx. It is also known [13] that the number of points
falling in a Borel set B according to a regionalized density function € follows a
Poisson distribution of parameter 6(D), i.e., Pr{N(D) = n} = ¢~ 0(P) 0DI",
In such a case, if N(D) = n, the n are 1ndependent1y distributed over D with the
probability density function 6(x) = 6(x)/0(D). In practice, in order to simulate
a realization of IV independent random germs distributed over the image with
the pdf 7, (x) we propose to use an inverse transform sampling method. More
precisely, the algorithm to generate N random germs in an image m : E — {0,1}
according to density tz)\(sc) is as follows:

1. Initialization: m(z;) = 0 Va; € E; P = Card(E)

2. Compute cumulative distribution function: cdf(z;) = %
k=1"\Tk

3. forj=1to N

4. ~ULLP)

5 Find the value s; such that r; < cdf (xs,) .

6 m(zs;) =1

Marker-driven watershed transform. Let g(z) and mrk(z) be respec-
tively a (norm of) gradient image and a marker image. Intuitively, the associated
watershed transformation [6], WS(g, mrk)(x), produces a binary image with
the contours of regions “marked” by the image mrk according to the strength
of contour given by the gradient image ¢g. The classical paradigm of watershed



Fig. 1. Stochastic watershed segmentation of “Custard” image: (a) color image f, (b)
its color gradient g, (c) top, three realizations of random markers mrk, regionalized
from g, bottom, corresponding watershed lines W.S(g, mrky), (d) estimated density of
contours pdf, (e) segmentation from d. In (c) and (d) images in negative for better
visualization.

segmentation lays on the appropriate choice of markers, which are the seeds to
initiate the flooding procedure.

Probability density of contours using MonteCarlo simulations of
watershed. In the stochastic watershed (SW) approach [2], an opposite di-
rection is followed, by spreading random germs for markers on the watershed
segmentation. This arbitrary choice will be balanced by the use of a given num-
ber M of realizations, in order to filter out non significant fluctuations. Each
piece of contour may then be assigned the number of times it appears during the
various simulations in order to estimate a probability density function (pdf) of
contours. In the case of uniformly distributed random germs, large regions will
be sampled more frequently than smaller regions and will be selected more often.
Using g(x) as density for regionalization of random germs involves sampling high
contrasted image areas and it has been proved to be an appropriate choice [2].
In this case, the probability of selecting a contour will offer a trade-off between
strength of the contours and size of the adjacent regions.

More precisely, given a color image f the associated SW pdf of contours
is obtained as follows. Let {mrk,(z)}) , be a series of M realizations of N
spatially distributed random markers according to its gradient image g. Each
realization of random germs is considered as the marker image for a watershed



segmentation of gradient image ¢ in order to obtain the binary image

1 if € Watershed lines
WS(g, mrkn)(z) = {O if x ¢ Watershed lines

Consequently, a set of M realizations of segmentation is computed, i.e.,
{WS(g,mrkn)}1<n<n. Note that in each realization the number of points de-
termines the number of regions obtained (i.e., essential property of watershed
transformation). Then, the probability density function of contours is computed
by the kernel density estimation method as follows:

1 M
pif(2) = < S WS (g, mrk,)(x) = Ko (x). (1)
n=1

Typically, the kernel K,(x) is a spatial Gaussian function of width o, which
determines the smoothing effect.

Then, the image pdf (z) can be segmented by selecting the contours of prob-
ability higher than a given contrast [2]. Fig. 1 depicts an example of color image
segmentation using SW. As we can note from this example, which includes large
homogenous areas, well contrasted objects as well as textured zones, the pdf
and corresponding segmentation produces relatively satisfactory results. How-
ever, large homogeneous areas are oversegmented and textured zones are not
always well contoured. Obviously, low contrasted areas (e.g., boundary between
dog head and wall) are not properly segmented. All those are well known draw-
backs of SW which have been addressed by the robust stochastic watershed
(RSW) [5] or by the regional regularized stochastic watershed [12]. We adopt
here an approach related to the latter one, based on a statistical model of re-
gions.

Let us remind the principle of the RSW [5] since it will be also used in the
results of next section. The fundamental property of watershed is the insensitivity
to the placement of seed points, which usually enables the SW segmentation to
find reliably relevant boundaries, but, in the case of “false boundaries” it works to
our disadvantage. The idea of RSW is to introduce a perturbation ¢, (i.e., small
amount of noise) into the flooding function ¢ (i.e., gradient) at each realization
n, in order to reduce the number of times that a “false boundary” will appear.
More precisely, the kernel density estimator (1) becomes now

M
pdf(z) = % > WS(g+ en, mrky)(x) * Ko (x), (2)

n=1

where €,(x) is in our experiments a zero-mean Gaussian white noise with an
intensity-dependent variance from g(z).

3 Multivariate Gaussian Model of Regions in SW

As we just discussed, the watershed segmentation of g from N markers (imposed
minima) produces a set of thin lines dividing the image domain F into N disjoint
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Fig. 2. Tessellation 7 of E from watershed WS(z).

regions, denoted {R,},.,..y. This structure is called tessellation 7 of E, see
Fig. 2, defined as a (finite) family of disjoint open sets (or classes, or regions)

T = {RT}IST§N7 with ¢ # j = R; ﬂRj =0,
such that
E =U.R. | JWS(z) & WS(z) = E\ U, R, = Ul ;.

The watershed lines W S(x) can be decomposed into the curves that separates
the regions. More precisely, let us denote by I; ; the curve (or irregular arc
segment) defined as the boundary between regions R; and R;, i.e.,

li,j = 8R¢ N 8Rj.

We obviously have W.S = Ul; ;, but we also note that in the case of three (or
more adjacent) regions, their boundary segments intersect at their junctions (or
triple points).

The color image values restricted to each region of the partition, P; = f(R;),
can be modeled by different statistical distributions. Here we focuss on a multi-
variate normal model.

3.1 Distances for multivariate normal distributions

Let us consider a family of multivariate normal distributions P; of mean p; and
covariance matrix X, i.e., P, ~ N(u;, X;). Different distances are defined in
the space of P;.

Bhattacharyya distance and Hellinger metric distance. The Bhattacha-
ryya distance Dg(P;, Py) measures the similarity of two discrete or continuous
probability distributions P; and P,. More precisely, it computes the amount of
overlap between the two statistical populations, i.e.,

Dp (P, P,) = —log [ /Pi(z)Ps(z)dx.
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Fig. 3. Given the “Custard” color image (a), (b1)-(b3) are, on the top, three realizations
of SW lines WS(z,n), at the bottom, the corresponding probability maps Pr(z,n)
using the Bhattacharyya distance.

For multivariate normal distributions the Bhattacharyya distance Dg(Py, Ps)
is given by

1 1 det X
Dp(P o) = (g — 1) 57 (g — o) S log (=0 ) (3
B(P1, %) 8(“1 K2) (1 = po) + 5 108 ( dot 3, det)?z)’ (3)

where
X+ 3

2

Note that the first term in the Bhattacharyya distance is related to the Maha-
lanobis distance, both are the same when the covariance of both distributions is
the same.

We have 0 < Dp < oo and it is symmetric Dg(Py, P2), it is not a metric.
But Dp does not obey the triangle inequality and therefore it is not a metric.
Nevertheless, it can be metrized by transforming it into to the following Hellinger
metric distance Dy (Pr, P2) given by Dy (P, Py) = \/1 —exp (—Dp(Py, Py)),
such that

> =

—1/2
Dy (Py,Py) = /1 — < det & > e(m i (1 —p2) T (Z14+22) "L (a1 —p2)) (4)
vdet X'y det 35

Hellinger distance is an a-divergence [1], which corresponds to the case o = 0
and it is the solely being a metric distance. Hellinger distance can be related to
measure theory and asymptotic statistics. For more details on Bhattacharyya
and Hellinger distances, see for instance [14].

Wasserstein metric distance. The Wasserstein metric is a distance function
defined between probability measures on a given metric space based on the
notion optimal transport [20]. Namely, the W5 Wasserstein distance between
probability measures y and v on R” is Wy (u,v) = inf E(| X — Y?)*/2, where



the infimum runs over all random vectors (X,Y) € R® x R" with X ~ p and
Y ~ v. For the case of discrete distributions, it corresponds to the well-known
earth mover’s distance [18].

In the case of two multivariate normal distributions, the Wasserstein metric
distance is obtained in a closed form as [10,19]:

Diy(Pr, Po) = /[l — piall? + Tr (B4 + 22— 251 ), (5)

where
1/2

1/2 1/2
Y= (21/ 5,5 )
We note in particular that in the commutative case X1 Yo = Y5 3'; we have

1/2 1/2
Dw(P1, Po)? = ||y — mol® + 12177 = 53773

3.2 Probability density function estimation

We have now the ingredients to compute by MonteCarlo simulations the proba-
bility density function from a color image. The idea is to assign to each piece of
contour /; ; between regions R; and R; the statistical distance between the color
gaussian distributions P; and P;:

D(P;, P;)
Zlk,LEWS D(Pk’ 'F)l) )
where D(P;, P;) is any of the distances discussed above. Thus, for any realization

n of SW, denoted WS (z,n), one can compute the following image of weighted
contours:

(6)

Tij =

)iy lf.’EGZZJ
Pr(m’”)_{ 0 if z ¢ 17

where [}!; is the boundary between regions R; and R; from WS(z, n). Fig. 3 gives
an example of three realizations of SW lines WS(z,n) and the corresponding
probability maps Pr(z,n) using the Bhattacharyya distance.

Finally, integrating across the M realizations, the MonteCarlo estimate of
the probability density function of contours is given by

1 M
pif(z) = = Pr(e,n) « Ko (). (7)

n=1

Obviously, this approach is compatible with the robust stochastic watershed
(RSW) variant discussed in previous section, since each realization n of the RSW
produces also a tessellation of F since the image of weighted contours Pr(z,n)
can be computed.

In Fig. 4 is depicted a comparison of image segmentation of “Custard” using
gaussian region model SW and gaussian model RSW. In particular, the pdf(x)



for the three considered distances (Bhattacharyya distance, Hellinger metric dis-
tance and Wasserstein metric distance) is provided, as well as the obtained seg-
mentation by taking a probability contrast value which provides a similar degree
of segmentation. It is also included the result obtained using only the color mean
as the model proposed in [12]. From this example, and similar ones obtained from
more experiments, Bhattacharyya distance produces good results and a better
selectivity of contours than Hellinger metric distance. The results obtained by
Wasserstein metric distance are also relevant but the influence of the covariance
matrix is less significant, thus being closer to the results obtained using the dis-
tance between only the mean colors. Concerning the comparison between the
standard SW and the RSW paradigm, it is visually observed that the gaussian
model RSW produces improvements on the obtained segmentation with respect
to SW.

We have also included in the figure the results obtained for this example by
statistical region merging (SRM) [15], computed using MATLAB code provided
in [8]. Using the scale parameter @), we have computed nine segmentations, such
that the sum of contours from the nine images can be viewed as a contours
saliency function. Then, we have selected two values of @) giving segmentation
similar to those of the gaussian region model SW. We observe that the detected
regions are quite similar, however, the precision of contours in SW-approaches
is qualitatively better for such kind of images.

4 Perspectives

Besides a more quantitative assessment of the performance of the proposed algo-
rithms, other related perspectives can be considered in ongoing research. First,
in addition to color information, texture at each pixel z can be described also
by its structure tensor T'(z) € SPD(2). Thus, texture at each region R; can be
described by a zero-mean gaussian distribution A(0, X;), where the covariance
matrix is given by X; = |R;|7' Y . T(z). Hence, the approach presented in
the paper can be also used to estimate pdf of contours from texture information
or from color + texture. Second, the use of some available prior knowledge, typ-
ically represented by training images of annotated contours, could be considered
in order to have a (semi-)supervised segmentation. In our framework, this goal
can be formulated as a problem of distance learning in the space of multivariate
normal distributions.
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Fig. 4. Top, image segmentation of “Custard” using gaussian region model SW, where
the first row is pdf (z) and second row the segmentation obtained at a given probability
contrast; middle, gaussian region model RSW: (a) using only color mean [12], (b)
Bhattacharyya distance, (¢) Hellinger metric distance, (d) Wasserstein metric distance.
The number of realization is M = 50 and the number of random markers at each
realization is N = 200 germs. Bottom, image segmentation of “Custard” using statistical
region merging (SRM) [15]: (e) sum of contours obtained from SRM using nine values
of @ (256, 128, 64, 32, 16, 8, 4, 2, 1), (f) segmentation for @ = 128 and (g) for Q = 32.
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