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Abstract 

A model is developed to evaluate the thermal conductivity of composites made of a dielectric 

matrix material containing randomly oriented and aligned carbon nanofibers coated with a 

metallic layer. The effect of the metallic coating on the phonon thermal conductivity of the 

matrix material and the electron-phonon coupling inside the metallic coating are both taken into 

account in this model. It is shown that: 1) the metallic coating has an extraordinary effect on the 

enhancement of the composite thermal conductivity. For a volume fraction of 30% of fibers with 

radius of 50 nm and 10 nm-coating of copper, the thermal conductivity increase is as high as 

27%, which increases significantly with the radius of the fibers, their volume fraction, and the 

thickness of the coating. 2) Although the thermal conductivity of silver is 453% as that of 

indium, the composite thermal conductivity is only increased slightly by changing an indium 

coating to a much more expensive silver coating, due to the relatively high thermal conductivity 

of these metals in comparison with the one of the matrix. 3) The composite thermal conductivity 

increases with the volume fraction of the fibers when their radius and radial thermal conductivity 

are greater than the matrix-coating Kapitza radius and the effective thermal conductivity of the 

matrix, respectively. The obtained theoretical results match well experimental data reported in 
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the literature for the thermal conductivities in the directions parallel and perpendicular to the axis 

of aligned carbon fibers. This model is expected to be valid for composites in the absence of 

percolation with the length-to-radius aspect ratio of fibers in the range of 10 to 100, and it 

provides theoretical guides for optimizing cost-efficient high thermal conductivity composites. 

Keywords: Composites; Carbon fiber; Metallic coating; Thermal conductivity. 

PACS: 61.46.-w, 65.80.+n, 65.60.+a. 

*Corresponding author 

Telephone: +33 684 107141 

Email: jose.ordonez@ecp.fr 

I. INTRODUCTION 

Nanostructured carbon materials such as carbon nanotubes (CNTs), graphene and carbon 

nanofibers (CNFs) are widely used as reinforcement materials for composites because of their 

outstanding mechanical, thermal and electrical properties, which can significantly improve the 

performance of materials for industrial applications [1-3]. It is very common to optimize 

conflicting requirements on the material properties by combining the most useful properties of 

two or more phases, which does not ordinarily appear together in nature. Especially, carbon-

fiber-reinforced polymers have become essential nowadays in aerospace and automobile 

industry. For example, using CNFs instead of steel can lower the weight of the involved 

components by up to 50%, which can improve fuel economy by as much as 40% [2, 4]. Typical 

aspect ratios (length/diameter) of these fibers are on the order of tens to hundreds, which 

facilitate the control on their random or aligned distribution inside the matrix, and the 

understanding and prediction of the physical properties of CNFs-based composites.  
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Significant research efforts have been dedicated to improve the thermal conductivity of 

composites made up of CNFs embedded in a dielectric matrix for thermal management 

applications [5-7]. The poor thermal conductivity of the CNFs along their radial direction, which 

can be as low as three orders of magnitude smaller than the one along their axial direction, has 

limited the improvement. Metallic Coating of the CNFs with a metallic layer has been proposed 

recently to overcome this problem, with production techniques developed [8, 9]. Taking into 

account the relatively high thermal conductivity of metals, the surface metallization of CNFs is 

expected to enhance the overall thermal conductivity of these composites and therefore 

extending their applications. However, the thermal performance of these composites is still not 

well understood. Given that the thickness of the coating layer can be of the order of the mean 

free path of the energy carriers (electron and phonons), which is typically of a few nanometers 

for metals at room temperature, the thermal conductivity of these fibers and therefore of the 

whole composite is expected to depends strongly on interactions of energy carriers and their 

scattering processes with interfaces [10-15]. Currently there are no theoretical models that can 

provide design guidelines. 

The objective of this work is to develop a theoretical model to quantify the thermal 

conductivity of composites consisting of a dielectric matrix embedded with randomly oriented 

CNFs that are coated with a metallic layer. The effect of the metallic coating is determined by 

comparing the enhancement of the thermal conductivity of composites as a function of coating 

thickness for different metallic coatings. This work could shed some light on the design of high 

thermal conductivity CNF-dielectric composites. 
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II. THEORETICAL MODEL 

Figure 1(a) shows a composite consisting of CNFs with a metallic coating, embedded in a 

dielectric matrix. The effective thermal conductivity of these fibers is anisotropic and it has the 

values ||k  and k⊥  in the axial and radial directions, respectively. The coating and the matrix are 

assume to have the isotropic thermal conductivities ck  and mk , respectively. Starting with the 

our previous thermal conductivity model valid in the dilute limit of particles (Section II.A) [11], 

the theoretical model for the composite thermal conductivity is developed here, by taking into 

account the fiber-fiber interaction at the non-dilute limit (Section II.B) and the size effect on the 

thermal conductivity of the matrix and the coating, due to the small sizes of the coating and the 

CNFs (Section II.C). 

The modeling of the composite thermal conductivity is done by assuming that: 1) the aspect 

ratio (length/diameter) of the fibers is small enough to warrantee their randomness inside the 

matrix and in the absence of percolation, at least within a wide range of volume fractions of the 

fibers. This could be easily achieved for aspect ratio on the order of or smaller than 100. 2) The 

aspect ratio of the fibers is big enough (much greater than the unity) to make sure that they can 

provide a preferential direction of conduction along their axis. The lower bound of this aspect 

ratio can be accurately determined through the geometrical factors, which define the geometry 

effect of particles [16]. Figure 2 shows these factors along the major ( ||L ) and minor ( L⊥ )  axes 

of an ellipsoidal particle. Note that as the aspect ratio of the ellipsoid increases, the geometrical 

factors ||( , ) (1/ 2,0)L L⊥ = , which are the values for a very long cylindrical fiber of circular cross 

section. For an aspect ratio of || / 10a a⊥ = , the geometrical factors deviate from their 

corresponding values for an infinite fiber by just about 2%, and this deviation reduces for higher 
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aspect ratios. This indicates that a fiber with an aspect radio equal or greater than 10 has a very 

similar geometrical effect than another with an infinite aspect ratio. Thus, it is clear that our 

assumptions for the composite under consideration can be fulfilled when the aspect ratio of the 

fibers is greater than 10 but smaller than 100. 

A. Tri-Phase Thermal Conductivity Model under the Dilute Limit 

The description of the effective thermal conductivity of a tri-phase composite shown in Fig. 

1(a) requires capturing the effects of the thermal and geometrical properties of the CNFs, its 

metallic coating, and the dielectric matrix. Based on the temperature profile inside a composite 

exposed to a constant heat flux and assuming that the volume fraction f  of coated spheroidal 

particles is small enough ( 1f << , dilute limit) to neglect their interactions, Ordonez-Miranda et 

al.[11] have derived a model for the effective thermal conductivity k  of a tri-phase composite.  

For cylindrical particles with random and aligned spatial distributions, as is the case of CNFs 

shown in Fig. 1(a), Ordonez-miranda et al. results reduces to [11]  
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where k ma Rk=  is the Kapitza radius at the coating-matrix interface, R  is the corresponding 

interfacial thermal resistance, and ( )22a aν δ= +  is the volume fraction of the CNFs relative to 

their total volume with coating of thickness δ  (see Fig 1(b)). Note that Eqs. (1) depend on the 

axial  ( ||k ) and radial ( k⊥ ) thermal conductivities of the CNFs, such that the coating effect 

vanishes for || ck k k⊥= = . Within the metallic coating, the heat conduction is determined by the 

electron-electron, phonon-phonon, and electron-phonon scattering mechanisms, as shown in Fig. 

1(b). The effect of electron-phonon coupling is expected to increases as δ  is scaled down to 

values comparable or smaller than the electron and phonon mean free paths, due to the lack of 

equilibrium between the electron and phonon gases at these scales. In this case, the effect of the 

electron-phonon interactions within the metallic coating can be approximately described through 

the electron-phonon coupling factor G , [11] which is defined in the two-temperature model of 

heat conduction.[17, 18] According to this model, the thermal conductivity ck  of the coating is 

given by [11]  

,e p
c

k k
k

χ
+

=                                                      (3a) 

( )
( )

1
´
1

1 ,e

p

i a dk d
k a i a d

χ = +                                           (3b) 



7 
 

  

d =
kekp

G ke + kp( ) ,                                                (3c) 

where d  is the electron-phonon coupling length, 1i  the modified spherical Bessel function of the 

first kind and order 1, and the prime (‘) indicates derivative of 1i  with respect to its argument. 

Given that 1χ > , Eq.(3a) introduces a reduction to the thermal conductivity e pk k+  of the 

coating and therefore on the composite thermal conductivity, due to the electron-phonon 

coupling. For common metals such as copper, silver, and others at room temperature; 

100 nmd ≈ [17], which indicates that for nanoparticles with radius a d<< , the factor 

1 e pk kχ → + .  

Equation (1) along with Eqs. (2) and (3) generalize many previous models reported in the 

literature under the dilute limit ( 1f << ), in which the interactions among CNFs are 

negligible[19-21]. For higher concentrations of CNFs, however, the fiber-fiber interactions need 

to be considered. Furthermore, when the size (thickness) of the CNFs (coating) is comparable to 

or smaller than the phonon (electron and/or phonon) MFP inside the dielectric matrix (metallic 

coating), the thermal conductivity of these components has to be adjusted in Eq. (1) to take into 

account the size effects [22, 23]. The effect of fiber-fiber interactions under the non-dilute limit 

and the size effect on the matrix are going to be addressed in what follows. 

B. Effect of Fiber-Fiber Interaction 

At high concentrations of CNFs, the heat transport through a CNF is strongly affected by the 

presence of its neighbors. Based on this fact, Ordonez-Miranda et al.[24] have recently shown 

that the effect of the fiber-fiber interactions on the thermal conductivity of composites can be 

described by means of a crowding factor defined as the effective volume fraction of the CNFs. 
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This crowding factor model establishes that the effective thermal conductivity of a composite 

made up of particles with a volume fraction f  up to their maximum packing fraction 0f  

( 0f f≤ ), is given by ( )( )exp 1 ,mk k Cf fγψ= −  where C  and γ  are constants, and 

( )0
2
0

1
1 .

f f
f

ψ
−

= +                                                               (4) 

Equation (4) shows that the effect of 0f  on the thermal conductivity of the composite appears 

for high concentrations ( 0f f→ ), and it becomes negligible for 0f f<<  (dilute limit). For 

randomly oriented cylindrical particles, as is the case of the CNFs in Fig. 1(a), the maximum 

packing fraction is 0 52%f = [25]. In the dilute limit, the first-order approximation of the 

crowding factor model reduces to ( ) ( )1 ( ) 1 ,mk k C f fγ γ= + − − which by comparison with Eqs. 

(1a) and (1b) yields 13γ β=  and 1 33 2C β β= + , for fibers with random distribution, and  2γ = β1  

and   C = β1 , for aligned fibers. The composite thermal conductivity for any volume fraction 

within the interval 0f f≤  is then determined by 
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and Eq. (1c) does not change due to the absence of crowding of fibers along their axial direction 

[24]. Equations (5a) and (5b) extends not only the range of application of Eqs. (1a) and (1b) to 

high CNF concentrations, but also generalizes many models reported in the literature, from the 

pioneer work of Maxwell[26] to recent works by Nielsen [25] and Nan et al.[19] Taking into 
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account that 1 1β < (Eq. 2a)), Eq. (5a) establishes that the composite thermal conductivity is 

greater than the one of the matrix ( mk k> ) for 1 32 0β β+ > . Considering that the axial thermal 

conductivity of the CNFs is greater than that of the matrix ( 3 mk k> ) and according to Eqs. (2a) 

and (2b), this condition is satisfied when 

1

1,m kk a
k a δ

+ <
+

                                                             (6) 

which is the condition for the enhancement of the thermal conductivity of the matrix ( mk k> ), 

and depends on the fiber radius, matrix-coating Kapitza radius, and the size effects through the 

thermal conductivity of the matrix mk , as shown in Eq. (7a) below. In this way, Eqs. (6) 

represents the “golden rule” for the design and fabrication of composites with thermal 

conductivities higher than the one of their matrix. If Eq. (6) is not fulfilled, the composite 

thermal conductivity will be smaller than the one of the matrix ( mk k< ), which could happen 

when the interface thermal resistance between the coating and matrix is large enough to satisfy 

the condition ka a δ>> + . 

C. Size Effects on the Effective Thermal Conductivity 

Due to the relatively small size of the CNFs, their thermal conductivity in both the axial ( ||k ) 

and radial ( k⊥ ) directions could be size-dependent. These thermal conductivities are often 

reported as effective measured values, which should be directly used as the inputs for Eq. (2c). 

The size effects of the metallic coating on the thermal conductivities of the coating and matrix, 

are also taken into account as follows:  
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• As a result of the phonon-phonon and phonon-coating scattering processes within the matrix, 

the (phonon) thermal conductivity mk  of the dielectric matrix is reduced with respect to its bulk 

values mK , according to [22, 23] 

( ) ,1 2
m

m
m

Kk
l f aπ δ

=
+ +

                                          (7a) 

where ml  is the mean free path (MFP) of phonons in the matrix.  

• Similarly, the interfacial scattering of the electrons and phonons inside the metallic coating at 

the coating-matrix interface alters the effective thermal conductivity of both the electronic (ke) 

and phononic (kp) components. Such effective thermal conductivities can be written in parallel as 

reduced bulk electron ( eK ) and phonon ( pK ) thermal conductivities, [22, 23] 

,
1

j
j

j

K
k

l L
=

+
                                                        (7b) 

where jl  for j e=  ( j p= ) is the intrinsic electron (phonon) MFP of the metallic coating 

material and L  is the average distance traveled by these energy carriers due to the scattering 

with the boundaries of the coating. Equations (7a) and (7b) have been derived by assuming that 

the intrinsic carrier scattering and the carrier-boundary scattering are independent with each 

other, and therefore the Matthiessen’s rule is valid.  

As shown in Fig. 1(b), the energy carriers may undergo multiple reflections at the inner 

( r a= ) and outer ( r a δ= + ) surfaces of the coating. The average value of L  can then be 

defined as follows 

( ) ,
2

i oaL a L
L

a
δ
δ

+ +
=

+                                                        (8) 



11 
 

where iL and oL  are the mean distances travelled by an energy carrier reflected from the inner 

and outer surfaces of the coating, respectively. To calculate these two distances, the energy 

carriers are assumed to undergo diffusive scattering at the interfaces of the coating, i.e, the 

electrons and phonons are reflected from the boundary surfaces with equal probability to any 

direction. Let iL  be the modulus of a vector connecting two arbitrary points from the inner to the 

outer surfaces of the cylindrical coating, then according to the geometry considerations shown in 

Fig. 3(a), its projection over the cross section (plane xy) of the coating is given by 

2 2sin 2 cos ,iL a b abθ φ= + −                                                     (9) 

where b a δ= +  and θ  is the usual polar angle of spherical coordinates, between the axis of the 

tube and the vector of modulus iL . The average of this length over all possible directions is 

determined by its weighted average over the differential of solid angle sind d dθ θ φΩ = , as 

follows 

2

0 0

1 sin ,
i

i i
i

L d L d
φ π

φ θ θ
φ

= ∫ ∫                                                      (10) 

where cos i a bφ =  with 2iφ π<  (see Fig. 3(a)), and the range of integration over the polar 

angle has been reduced to 0 2θ π≤ ≤ , because of the symmetry of the problem. By combining 

Eqs. (9) and (10), one finds 

( )
, , ,
2 2

i
i

i

a b
L E E

π π φπ ξ ξ
φ
+ ⎡ ⎤−⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                            (11) 

where 2 ( )ab a bξ = +  and (, )E  is the incomplete elliptic integral of second kind [27]. 
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By applying the law of cosines and basic trigonometry, Fig. 3(b) shows that the modulus oL  

of a vector connecting two arbitrary points from the outer to the inner surfaces of the cylindrical 

coating is determined by 

2 2 2cos sin  ,    sin ,
2 cos                           ,    

o
o

o

b a bL
b

φ φ φ φθ
φ φ φ

⎧ − − ≤⎪= ⎨
>⎪⎩

                       (12) 

where sin o a bφ =  with 0 2φ π< . Similarly to the previous case, the average of oL  over all 

possible directions is found to be  

( )02 , .oL b a aE b aφ= − −                                               (13) 

Finally, the exact value of the carrier-boundary mean free path L is obtained by substituting 

Eqs. (11) and (13) into Eq. (8). Based on the asymptotic values of the involved elliptic integrals 

for a thin coating ( bδ << ) [27], Eq.(8) reduces to 

  
L ≈ δ

π
2(1+ ln2)+ ln 1+ 2a δ( )⎡⎣ ⎤⎦.                                              (14) 

Equation (14) indeed represents an accurate estimation of the exact value of L, for a wide 

range of the ratio aδ . The deviation on L from its exact value is just about 5% for 1aδ = , and 

it takes lower values for smaller ratios aδ . 

Equation (5) along with Eqs. (2)-(4), (7), (8) and (14) represent our model for describing the 

effective thermal conductivity of composites made up a dielectric matrix embedded with 

metallic-coated CNFs. Our results take into account the anisotropy of the thermal conductivity of 

the CNFs (Eqs. (2a)-(2d)), the thermal resistance of the coating-matrix interface (Eq. (2a) and 

(2b)), the electron-phonon interactions inside the metallic coating (Eq. (3)), the interaction 

between fibers(Eq. (4)), and the size effects of the coating (Eqs. (7), (8), and (14)); and therefore 

it is expected to provide an accurate description of the thermal conductivity of the composites 
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shown in Fig. 1(a). In absence of coating ( 0δ = ), Eqs. (2c) and (2d) reduces to 1k k⊥=  and 

3 ||k k=  and therefore Eqs. (2a) and (2b) take the form 

  
β1 = 2

1− ak a − km k⊥

1+ ak a + km k⊥

,                                             (15a) 

   
β3 = k! km −1,                                                       (15b) 

where the effective thermal conductivity mk  of the matrix is given by Eq. (7a). It is therefore 

clear that for 0δ = , the effective thermal conductivity of the composite is still given by Eq. (5), 

with the parameters 1β  and 2β  defined by Eqs. (15a) and (15b). 

III. APPLICATIONS AND DISCUSSIONS 

In this section, we present the comparison of the effective thermal conductivity of CNF- 

polymer nanocomposite with and without a metallic coating. Based on the input data 

summarized in table I, the effect of different metallic coatings is analyzed as a function of their 

thickness. We note here that the effective thermal conductivity of CNFs reported as experimental 

data can be different for different sizes due to the size effects of phonon transport. However, for 

simplicity and without losing the generality, we use an explicit and constant value when 

changing the size of the CNFs.  

Figures 4(a) and 4(b) show the normalized thermal conductivity of a composite as a function 

of the volume fraction of CNFs coated with a copper layer and embedded in a polyester resin, for 

different radii and coating thicknesses, respectively. Given that the thermal conductivity of the 

CNFs and their metallic coating is much higher than the one of the matrix, the effective thermal 

conductivity of the composites k  increases not only with the volume fractions of the coated 

CNFs but also with the radius of the CNFs and the thickness of their coating. The comparison of 

Figs. 4(a) and 4(b) shows that the effective thermal conductivity k is more sensitive to the 
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changes of the CNFs radius than to the thickness of their metallic coating. This is due to the 

strong effect of electron-phonon coupling that reduces the effective thermal conductivity of the 

coating, which indicates that the enhancement of the effective thermal conductivity of the 

composites can been better maximized by increasing the radius of the fibers instead of widening 

the relatively expensive metallic coating. For the volume fraction 30%f =  of CNFs with 

( , ) (50,10) nma δ = , Fig. 4(a) shows that the enhancement of the thermal conductivity of the 

polymeric matrix is about 32%, which is similar to the increase of 31% for ( , ) (20,50) nma δ =  

and the same volume fraction, as shown in Fig. 4(b). Keeping the volume fraction fixed at 

30%f = , however, this enhancement is just about 5% when the thickness of the coating widens 

from 10 nmδ =  to 50 nmδ = , which is small compared with the corresponding increase of 

13%, when the fiber radius increases from 10 nma =  to 50 nma = . 

The normalized thermal conductivity of a polyester matrix composite as a function of the 

volume fraction of CNFs coated with different metallic is shown in Fig. 5. The composites made 

up of CNFs coated with metallic layers have a thermal conductivity k  much larger than the 

corresponding one for uncoated CNFs. At the volume fraction 30%f = , this increase is about 

27% for the case of copper, and it takes higher values when the concentration of CNFs increases. 

This extraordinary enhancement generated by the metallic coating is due to its high thermal 

conductivity and the predominance of the surface effects over the volumetric ones at nanoscales.   

Note that the curves of k  for the coatings of silver and copper, and nickel and indium are 

almost overlapped, which is because of the similar bulk thermal conductivities for each pair of 

these materials, as reported in Table I. Furthermore, by changing the metallic coating from silver 

or copper to nickel or indium, the composite thermal conductivity does not change remarkably in 

the whole range of volume fractions of CNFs. For instance, at 30%f = , the increase on the 
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composite thermal conductivity is just about 2% when the thermal conductivity of the coating 

changes 453%, from indium to silver. This weak sensitivity of k  to the thermal conductivity of 

the metallic coating is consistent with the relatively small variation of k  with the coating 

thickness (Fig. 4(b)), and it is due to the reduction of the effective electron and phonon thermal 

conductivity of the metallic coating as a result of the strong electron-phonon interactions at 

nanoscales, as established by the parameter χ  in Eq. (3b). For a 50 nm-thick coating of silver, 

40χ ≈ , which reduces its bulk thermal conductivity of from 430 W/m.K to 10.8 W/m.K, that is 

still two orders of magnitude larger than the one of the matrix (Km=0.3 W/m.K). It is therefore 

clear that expensive metallic coatings could be replaced by other much cheaper, without reducing 

significantly the enhancement of the thermal conductivity of the composite. Furthermore, Fig. 

5(b) shows that this enhancement reduces as the thermal conductivity of the matrix increases, 

such that values high enough (Km = 10 W/m.K), the composite thermal conductivity can even 

decreases as the volume fraction of the CNFs increases. This is due to the increasing effect of the 

interface thermal resistance, through the Kapitza radius ( k ma Rk= ), which is proportional to the 

thermal conductivity of the matrix and leads to the nonfulfillment of the “golden rule” (Eq. (6)) 

for the enhancement of the composite thermal conductivity. To fulfill Eq. (6) and therefore to 

optimize the enhancement of the thermal conductivity of the matrix with coated CNFs, their total 

radius and radial thermal conductivity should be greater than the Kapitza radius ( ka aδ+ > ) and 

the effective thermal conductivity of the matrix ( 1 mk k> ), respectively.  

The experimental data [28] for the thermal conductivity of a composite made up of aligned 

carbon fibers with a copper coating and embedded in a epoxy matrix are shown in Fig. 6, as a 

function of the volume fraction of the coating and in comparison with the theoretical predictions 
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of Eqs. (1c) and (5b). Given that the volume fractions of the fibers ( 
f p ) and their coating ( fc ) 

are related by   
fc f p = (b a)2 −1 , the volume fraction ( f ) of the coated fibers is given by 

  
f = f p + fc = fc 1− (a / b)2( ) . Note that the thermal conductivities along the directions parallel 

and perpendicular to the axis of the aligned fibers increase with copper content, and they are both 

in fairly good agreement with the predictions of the proposed theoretical model. The relatively 

small difference between the experimental and theoretical results is reasonable due to the fact 

that the model assumes that the fibers are uni-directionally aligned, while in the prepared 

samples they were slight twisted [28]. The composite with 12% of copper content has an along-

fibers axis thermal conductivity of 47.2 W/m.K, which is 12 times larger than that perpendicular 

to the axis of the fibers. This is expected due to two facts: (i) the thermal conductivity of the 

carbon fibers along their axis is one order of magnitude larger than that in the perpendicular 

direction   
(k|| ,k⊥ ) = (8.04,0.84)  W m ⋅K , and (ii) the fibers and their coating represent paths of 

heat conduction along the fibers axis, which enhances the overall thermal conductivity of the 

composite in that direction. It is therefore clear that the thermal conductivity of these composites 

can be enhanced not only by increasing the content of the metallic coating of the fibers, but also 

by tuning their alignment.  

IV. CONCLUSIONS 

The thermal conductivity of composites made up of randomly oriented and aligned carbon 

nanofibers coated with a metallic layer and embedded in a dielectric matrix has been modeled 

and analyzed, by taking into account the coating-size effects and the different scattering 

processes of the energy carriers inside the coating and matrix. It has been shown that: 1) the 

metallic coating has an extraordinary effect on the enhancement of the composite thermal 
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conductivity with respect to its values for uncoated fibers. For a volume fraction of 30% of fibers 

coated with copper, this increase is as high as 27%, which increases significantly with the radius 

of the fiber, their volume fraction, and the thickness of the coating. 2) A remarkable change on 

the thermal conductivity of the coating of 453%, between indium and silver, modified the 

thermal conductivity of the composite by just 2%, for a concentration of coated fibers of 30%. 3) 

The enhancement of the composite thermal conductivity occurs when the radius and radial 

thermal conductivity of the fibers are greater than the matrix-coating Kapitza radius and the 

effective thermal conductivity of the matrix, respectively. The predictions of the proposed model 

are in fairly good agreement with experimental data reported in the literature for aligned carbon 

fibers and they can be useful to optimize the thermal performance of new cost-efficient 

composite materials. 
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Table I: Material properties at room temperature used in the calculations [18, 29-34]. 

Material 
Thermal conductivity 

           (W/m.K)          

MFP 

(nm) 

Coupling factor 

(1016W/m3.K) 

ITR* 

 (10-9m2K/W) 

 Electron Phonon Electron Phonon   

CNF --- 
20-500 (||) 

0.1 (⊥) 
--- 600 --- --- 

Silver 420 10 4 6.5 2.5 3.6 

Copper 383 15 2.7 8.2 2.7 5.2 

Nickel 83 8 0.5 9.3 4.3 8.7 

Indium 76 6 0.38 7.1 5.8 9.4 

Polyester 

resin 
--- 0.3 --- 5 --- --- 

    * The value of the interfacial thermal resistance (ITR) between the metal and the resin.   
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(a)                                                                            (b) 
Fig. 1. (a) The phonon scattering processes inside the matrix, (b) the electron and phonon 

scattering processes in the δ-thickness metallic coating of a CNF with radius a (cross-section). 
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Fig. 2. Geometrical factors of an ellipsoidal particle as a function of its aspect ratio. 
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      (a)                         (b) 

Figure 3. Cross section of the cylindrical coating and parameters to calculate the carrier-

boundary mean distance from the (a) inner and (b) outer interfaces. 
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    (a)                                                                            (b) 
Figure 4. Normalized thermal conductivity of a composite as a function of the volume fraction 

of CNFs coated with a copper layer and embedded in a polyester resin, for three different (a) 

radii and (b) coating thicknesses. Calculations were performed with || 20  W m.Kk =  and the 

data in Table I. 

 

    (a)             (b) 

Figure 5: Normalized thermal conductivity of a composite as a function of the volume fraction 

of CNFs coated with (a) different metallic materials and embedded in a polyester resin, and (b) a 

copper layer and embedded in polyester resins of different thermal conductivities. Calculations 

were performed with || 20  W m.Kk =  and with the data in Table I. 
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Figure 6: Thermal conductivity of a composite made up of aligned carbon fibers coated with 

copper and embedded in an epoxy matrix (bisphenol A diglycidyl ether), as a function of the 

volume fraction of the coating. Calculations were performed with   
(k|| ,k⊥ ) = (8.04,0.84)  W m ⋅K  

and the experimental data reported by Yu et al.[28] 

 


