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An extremal eigenvalue problem arising in heat conduction∗†

Grégoire Nadin‡ Yannick Privat§

Abstract

This article is devoted to the study of two extremal problems arising naturally in heat
conduction processes. We look for optimal configurations of thermal axisymmetric fins and
model this problem as the issue of (i) minimizing (for the worst shape) or (ii) maximizing
(for the best shape) the first eigenvalue of a selfadjoint operator having a compact inverse.
We impose a pointwise lower bound on the radius of the fin, as well as a lateral surface
constraint. Using particular perturbations and under a smallness assumption on the pointwise
lower bound, one shows that the only solution is the cylinder in the first case whereas there is
no solution in the second case. We moreover construct a maximizing sequence and provide the
optimal value of the eigenvalue in this case. As a byproduct of this result, and to propose a
remedy to the non-existence in the second case, we also investigate the well-posedness character
of another optimal design problem set in a class enjoying good compactness properties.

Keywords: extremal problem, calculus of variation, Sturm-Liouville eigenvalue, Lebesgue density
theorem, lateral surface constraint, parabolic equation.

AMS classification: 49J15, 49K15, 34E05.

1 Introduction

The current work is inspired and motivated by [1], where the authors considered the problem of
maximizing, with respect to the cross sectional area, the rate of heat transfer through a bar of given
mass. For the sake of clarity, we first state the extremal problem we will investigate in Section 1.1
and we will thus provide several explanations on the physical frame of our study in Section 1.2.

1.1 Setting of the extremal problems

Let us introduce the extremal problems we will deal with. Let a0 > 0. For the reasons evoked in
Section 1.2, the admissible set will consist of radii a(·) belonging to W 1,∞(0, `) such that

(H1) Pointwise constraint. There holds a(x) > a0 for every x ∈ [0, `];
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§CNRS, Université Pierre et Marie Curie (Univ. Paris 6), UMR 7598, Laboratoire Jacques-Louis Lions, F-75005,

Paris, France (yannick.privat@upmc.fr).

1



(H2) Lateral surface constraint. There holds∫ `

0

a(x)
√

1 + a′(x)2 dx 6 S0.

Let us thus introduce the class of admissible functions defined by

Sa0,`,S0
=
{
a ∈W 1,∞(0, `) satisfying (H1) and (H2)

}
,

where S0 > a0` is given, so that the class Sa0,`,S0
be non-empty.

According to Section 1.2, the functional we aim at optimizing is a 7→ λ1(a), where λ1(a) stands
for the first eigenvalue of the inverse of a compact operator (that we will denote by La in the
sequel), defined by

λ1(a) = min
ϕ∈H1(0,`)

ϕ6=0

<[a, ϕ] (1)

with

<[a, ϕ] =
α
∫ `

0
a(x)2ϕ′(x)2 dx+ β

∫ `
0
a(x)

√
1 + a′(x)2ϕ(x)2 dx+ σa(`)2ϕ(`)2∫ `

0
a(x)2ϕ(x)2 dx+ δϕ(0)2

, (2)

where α, β, δ, σ denote positive real numbers.
Note that, according to the Sturm-Liouville eigenfunctions theory, it is standard that λ1(a) is

simple (see e.g. [6, 7]) and that its associated normalized eigenfunction denoted ϕ1,a solves the
ordinary differential system

−α
(
a(x)2ϕ′1,a(x)

)′
+ βa(x)

√
1 + a′(x)2ϕ1,a(x) = λ1(a)a(x)2ϕ1,a(x), x ∈ (0, `)

γa(0)2ϕ′1,a(0) = −λ1(a)ϕ1,a(0)
ϕ′1,a(`) = −σ

αϕ1,a(`),

(3)

with γ = α/δ.
This quantity λ1(a) can be viewed as the exponential cooling rate of decay of an axisymmetric

bar (or fin) of length ` with radius a(·). This will be clarified in Section 1.2 below. We are thus
led to investigate the two following extremal problems:

• Minimization of λ1(a) (worst shape of a fin).

inf {λ1(a), a ∈ Sa0,`,S0
} . (4)

• Maximization of λ1(a) (best shape of a fin).

sup {λ1(a), a ∈ Sa0,`,S0
} , (5)

Remark 1. The issue of optimizing eigenvalues of Sturm-Liouville operators is a long story. For a
survey of such problems, one refers for instance to [10]. Moreover, one also mentions [11, 16] where
the authors deal with a “lateral surface” constraint similar to the one considered in this article.
Nevertheless, to the opinion of the authors, the technics, based on the standard change of variable
for Sturm-Liouville equation y =

∫ x
0

dt
a(t)2 with the notations of the paper, cannot be adapted in a

simple way to solve the problems investigated in this article. Indeed, this change of variable was
used to introduce an auxiliary problem for which one showed that the optimal value coincided with
the one of the initial optimal design problem. It also allowed to construct minimizing/maximizing
sequences. Unfortunately, such technic does not provide a sharp estimate of the optimal value,
and we have to use another approach.
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1.2 Motivations in convection-conduction theory

State of the art about shape optimization in convection-conduction theory. Among
many applications of the optimal design problem we will investigate, let us mention the strong
importance in the computer industry of finding cooling fins in microprocessors having good per-
formances.

Many engineering works focused on modeling the direct problem in order to assess the efficiency
of different fin shapes. Notice that these studies are mainly numerical and no mathematical
approach is used to determine the optimal profiles of fins (see for instance [3, 4, 9, 15]).

In a more general context, let us mention several studies dealing essentially with numerical
aspects of conduction/convection problems in shape optimization. The model used combines a
Fluid Mechanics partial differential equation with a parabolic equation involving a transport term
(see e.g. [8, 14]).

In [1], the authors investigate the problem of maximizing λ1(a) under a volume constraint,

namely
∫ `

0
a = V0, for a given V0 > 0, and under the simplified assumptions β = 0 and σ = +∞

(in other words, ϕ(`) = 0). By writing and analyzing the Euler-Lagrange equation, they provide
an explicit characterization of the maximizing shape with the help of a symmetrization argument.
They find a(x) = C/ cosh2(x − `), where C is a normalizing constant. The main difference with
the present work comes from the fact that the lateral convective heat transfers are not neglected
anymore here, leading to a different behavior of the maximizing sequences, as it will be highlighted
in the sequel. It is interesting to notice that, in some sense, their study can be interpreted as a
limit case of the problem investigated in the present article.

In [2], a similar problem is investigated, where the lateral convection term βa(x)
√

1 + a′(x)2

is replaced by a given function βP (x), independent of a. The authors then minimize the quantity∫ `
0
a(x) dx for a given decay rate λ1. They show that, when β = 0 (equivalently, P ≡ 0), the

minimizing shape a is the same as for the “dual problem” studied in [1]. When β 6= 0, they provide
an algorithm enabling to determine the solution.

In [13], the authors dealt with a simplified one-dimensional stationary model of axisymmetric fin
taking into account the lateral heat transfers of the fin. They analyzed the optimal design problem
and in particular the existence issues as well as the determination of maximizing sequences.

In this work, we will consider a more accurate model of one-dimensional thermal bar in non-
stationary regime, where convective phenomena from the side of the fin are considered. According
to our main theorems (see Theorems 2 and 3 in Section 3), we show in this article that this term
plays a crucial role for determining the optimal shape of the fin.

Modeling of the problem Let us consider an axisymmetric fin represented by a domain Ωa
of length ` > 0 and radius a(x) at abscissa x, as displayed in Figure 1, defined in a Cartesian
coordinate system by

Ωa = {(r cos θ, r sin θ, x) | r ∈ [0, a(x)), θ ∈ S1, x ∈ (0, `)}, (6)

where a ∈W 1,∞(0, `) is such that a(x) > a0 for every x ∈ [0, `] with a0 a positive constant.
Figure 1 sums-up the situation and the notations we will use throughout this article. According

to the approach and the model described in [1, Sections 1, 2 and 6], we make the two following
assumptions:

(i) the convective coefficient h, modeling the heat transfer between the fin surface and the fluid
flow, does not depend on the variable x and θ. This hypothesis allows to reduce the three-
dimensional problem to an axisymmetric one, which justifies that the temperature T along
the fin can be considered as a function of t (the time), r and x only.
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(ii) the fin can be viewed as thermally thin along the r-axis. As a consequence, its radial thermal
resistance is low enough in comparison with the convective heat transfer h and it is relevant
to claim that ∂T/∂r ' 0 almost everywhere in Ωa. This is why we will impose from now on
that the temperature T is a function of the variables t (the time) and x only.

For instance, if the convective heat transfer coefficient h modeling the heat transfer between the
fin surface and the fluid flow, and hr the convective coefficient characterizing the heat transfer over
the tip are small enough, then the fin can be viewed as thermally thin along the r-axis. Therefore,
the radial Biot number Bir determining whether or not the temperaturea inside a body will vary
significantly with respect to the variable r will be small enough (< 0.1 in practice) to consider the
one-dimensional conduction model as significant. We refer to [3] for more details on these modeling
issues.

x

r

h,T∞

Td

fluid flow

fin

wall

hr,T∞

dS

0

x

φ(x) φ(x+dx)

φs(x)
a(x+dx)

a(x)

0 x+dx !

Ωa

r

Figure 1: Scheme of the axisymmetric fin

The inlet of the fin, as well as the fluid surrounding the fin are assumed to be at a constant
temperatures, denoted respectively Td and T∞. Considering processes where the fin aims at cooling
a thermal system, i.e. where the heat flows from its basis towards the fluid, we will assume that
0 < T∞ < Td(·) almost everywhere in (0, `). Moreover, we will consider a base mass M0 attached
at the end point x = 0.

Let Td ∈ L2(0, `). The temperature T is then solution of the following parabolic partial differ-
ential equation

a(x)2 ∂T
∂t = k

ρc
∂
∂x

(
a(x)2 ∂T

∂x

)
− h

ρca(x)
√

1 + a′(x)2(T − T∞) t > 0, x ∈ (0, `)

cM0
∂T
∂t (0, t) = ka(0)2 ∂T

∂x (0, t) t > 0
∂T
∂x (`, t) = −hrk (T (`, t)− T∞) t > 0
T (x, 0) = Td(x) x ∈ (0, `)

(7)

where k denotes the thermal conductivity of the fin, ρ its density, c its specific heat capacity. We
will assume in the sequel that the real numbers k, M0, ρ, c, h and hr are positive. Some physical
explanations about the derivation of the temperature model may be found in [3, 18].
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From now on, we will rather use the notations

α =
k

ρc
, β =

h

ρc
, γ =

k

cM0
and σ =

hr
ρc
, (8)

for the sake of readability. It can be proved using standard semigroups arguments and since a > a0

on [0, `], that the solution T of the partial differential equation (7) belongs to L2(0, T,H1(0, `)).
As did the authors of [1], it is convenient to represent the solution T in terms of series of

eigenfunctions. For that purpose, let us introduce the operator

La : C0([0, `]) −→ H1(0, `)
f 7−→ ϕa

, (9)

where ϕa denotes the unique solution of the o.d.e.

α
(
a(x)2ϕ′a(x)

)′ − βa(x)
√

1 + a′(x)2ϕa(x) = a(x)2f(x), x ∈ (0, `)
γa(0)2ϕ′a(0) = f(0)
ϕ′a(`) = −σ

αϕa(`)

(10)

According to Lax-Milgram’s theorem and since a ∈ W 1,∞(0, `) and a > a0 on [0, `], this system
has a unique solution that belongs to H1(0, `). Let us introduce the inner-product 〈·, ·〉a in the
space C0([0, `]) defined by

〈f, g〉a =

∫ `

0

a(x)2f(x)g(x) dx+
α

γ
f(0)g(0),

for every (f, g) ∈ (C0([0, `]))2. The completion of C0([0, `]) for the topology inherited from the
inner-product 〈·, ·〉a is a Hilbert space, and the definition of 〈·, ·〉a extends clearly to elements of
that space. We denote it by Ca. We also define the norm ‖ · ‖a induced by the inner produit 〈·, ·〉a.

With a slight abuse of notation, let us still denote by La this extension. One has thus the
following result, whose proof is postponed to Appendix A.

Lemma 1. The operator La is selfadjoint and compact in Ca.

As a consequence of Lemma 1, the operator La is diagonalizable in Ca and there exist a sequence
of positive real numbers (λn)n∈IN∗ diverging to +∞ and a sequence (ϕn)n∈IN of elements of Ca such
that Laϕn = 1

λn
ϕn for every n ∈ IN∗, which rewrites

−α
(
a(x)2ϕ′n(x)

)′
+ βa(x)

√
1 + a′(x)2ϕn(x) = λn(a)a(x)2ϕn(x), x ∈ (0, `)

γa(0)2ϕ′n(0) = −λn(a)ϕn(0)
ϕ′n(`) = −σ

αϕn(`).

(11)

Moreover, according to the so-called min-max principle by Courant-Fisher (see e.g. [6]), there
holds

λn(a) = max
E⊂H1(0,`)

s.t. dimE=n

min
ϕ∈E
ϕ6=0

<[a, ϕ],

where <[a, ϕ] is defined by (2).
These considerations allow us to decompose the solution T of (7) as

T (t, x)− T∞ =

+∞∑
n=1

〈Td − T∞, ϕn〉ae−λntϕn(x), (12)
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Toward an extremal problem According to (12), one has the following asymptotic for the
solution of (7)

T (t, ·)− T∞ ∼
t→+∞

〈Td(·)− T∞, ϕ1〉ae−λ1(a)tϕ1,

provided that Td(·) − T∞ be non-orthogonal to ϕ1 for the inner-product 〈·, ·〉a, which is non
restrictive and will be assumed from now.

Since we are looking for the shape of a fin optimizing its cooling properties, it is then natural
to consider:

• the problem of finding the best shape of a thermal fin, by maximizing the first
eigenvalue λ1(a) with respect to the function a, so that the temperature of the material to
cool will become close to the fluid temperature T∞ as quick as possible.

• the problem of finding the worst shape of a thermal fin, by minimizing λ1(a) with
respect to the function a.

Finally, let us briefly comment on the choice of the admissible set of radii a. We will impose:

(i) a regularity assumption, namely a ∈ W 1,∞(0, `), to guarantee that the surface element be
defined almost everywhere.

(ii) a pointwise lower bound assumption that prevent the fin to collapse: there exists a0 > 0
such that a(x) > a0 for every x ∈ [0, `]. Moreover, to consider a class of shapes as large as
possible, we will choose a0 suitably small (the precise sense of the word “small” will be made
explicit in the statement of the main theorems of this paper).

(iii) a global lateral surface assumption, to model a limitation on the manufacturing cost. More
precisely, we assume an upper bound on the lateral surface of Ωa, that is given by

lateral surface of Ωa = 2π

∫ `

0

a(x)
√

1 + a′(x)2 dx.

In the next section, we sum-up the previous considerations and state the extremal problems we
will solve.

2 Solving of Problem (4) (looking for the worst shape)

2.1 Main results

This section is devoted to the investigation of Problem (4).
As highlighted in [13, Lemma 3.1], the class Sa0,`,S0

does not share nice compactness properties.
In particular, it is not closed nor bounded in W 1,∞(0, `) (endowed with the strong topology),
whereas it is bounded in L∞(0, `). This drives us to introduce a new optimal design problem in a
subclass of W 1,∞(0, `) enjoying good topological properties.

To this aim, let M > a0 and let us define the truncated class

SMa0,`,S0
=
{
a ∈W 1,∞(0, `) satisfying (H1) , (H2) and a

√
1 + a′2 6M a.e. in (0, `)

}
. (13)

Since Sa0,`,S0
is a bounded set of L∞(0, `), it is easy to see that SMa0,`,S0

is bounded and closed in

W 1,∞(0, `). In particular, it inherits useful compactness properties in a weak sense that will be
made precise in the sequel. In the following theorem, we investigate the minimization of a 7→ λ1(a)
over the class SMa0,`,S0

.
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Theorem 1. Let α, β, δ, a0, ` and S0 be positive real numbers such that S0 > a0` and σ > 0.
The constant function a(·) = a0 minimizes the functional λ1 over the class SMa0,`,S0

.

As a consequence, we infer the following result for the original problem (4).

Corollary 1. For every positive real numbers α, β, δ, every positive numbers a0, ` and S0 such
that S0 > a0`, and σ > 0, the constant function a(·) = a0 is the unique solution of the extremal
problem (4).

This result is quite natural from a physical point of view: in order to cool the material as slowly
as possible along a fin with prescribed lateral surface, one needs to use a very long fin, so that the
spatial temperature decays, and thus the lateral heat transfer is very smooth.

The approach used to prove the results above rests upon the use of a particular perturbation
that we will introduce in Section 2.2. The proofs of Theorem 1 and Corollary 1 are then gathered
in Section 2.3.

Remark 2. The optimal value of the function λ1(·) can be explicitly computed. For example,

assume that a0 <
(
βδ
σ

)1/3

. Recall that, for modeling reasons, such a smallness assumption on a0 is

of particular interest in the framework of our study, as underlined in Section 1.2. Hence, according
to (1) and considering ϕ ≡ 1 as a test function, we claim that

a0λ1(a0)− β = min
ϕ∈H1(0,`)

ϕ6=0

αa3
0

∫ `
0
ϕ′(x)2 dx+ σa3

0ϕ(`)2 − βδϕ(0)2

a2
0

∫ `
0
ϕ(x)2 dx+ δϕ(0)2

6
σa3

0 − βδ
a2

0`+ δ
< 0.

A straightforward computation leads to the following expression of the associated eigenfunction

ϕ1,a0(x) = A

(
cosh(ω1(a0)x)− λ1(a0)

γa2
0ω1(a0)

sinh(ω1(a0)x)

)
,

with ω1(a0)2 =
β − λ1(a0)a0

αa0
, where A denotes the normalization constant for the norm ‖·‖a0 . The

boundary condition at x = ` yields that, λ = λ1(a0) is the first positive root of the transcendental
equation

λ

γa2
0ω

=
αω sinh(ω`) + σ cosh(ω`)

αω cosh(ω`) + σ sinh(ω`)
with ω2 =

β − λ1(a0)a0

αa0
.

The construction of λ1(a0) is illustrated on Figure 2. Notice that an approximated value of the
eigenvalue can be easily obtained numerically, by solving for instance the transcendental equation
above with a Newton method.

2.2 A key technical lemma

This section is devoted to the description of particular perturbations that we will use to solve at
the same time the problems of minimizing and maximizing λ1 over the class SMa0,`,S0

.

Let ε > 0, S0 > a0`, a ∈ SMa0,`,S0
such that a(·) 6≡ a0, and set b = a

√
1 + a′2. Let us introduce

the two families of perturbations we will use in the sequel. Their construction is based on the
straightforward claim holding, up to a null (Lebesgue) measure set:

(0, `) = {b = M} ∪ {a = a0} ∪ {a0 < b < M} since {b = a0} = {a = a0}.
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y = λ
γa2

0ω

y = αω sinh(ωℓ)+σ cosh(ωℓ)
αω cosh(ωℓ)+σ sinh(ωℓ)

λ1(a0)

Figure 2: Construction of λ1(a0)

Perturbation of type I (worst shape). Assume that the function a is not identically equal
to a0. It follows that the set {a0 + c < b 6M} is of positive measure for some c > 0. We will then
consider the particular perturbation of b of the form

bε = b− cχVx0 (ε),

where x0 denotes a Lebesgue point of the set {a0 + c < b 6 M} and Vx0(ε) = {a0 < b 6

M} ∩ (x0 − ε, x0 + ε), and
∫ `

0
bε(x) dx 6 S0.

Perturbation of type II (best shape). Assume that M is large, more precisely that M` > S0.
Therefore, one has necessarily b 6≡M in the sense that the measure of the set {b = M} is strictly
lower than `.
Assume that the set {a0 < b < M} has a positive measure. We could then take c > 0 such that
{a0 + c 6 b 6M − c} has a positive measure and consider the particular perturbations of b of the
form

bε = b+ c
(
χVx0 (ε) − rεχVy0 (ε)

)
,

where c > 0, x0 is a Lesbegue point of {a0 6 b 6 M − c}, y0 6= x0 is a Lesbegue point of
{a0 + c < b 6M}, the measurable sets Vx0(ε) and Vy0(ε) are defined by

Vx0(ε) = {a0 6 b < M − c} ∩ (x0 − ε, x0 + ε), Vy0(ε) = {a0 + c < b 6M} ∩ (y0 − ε, y0 + ε),

with ε is small enough so that these two sets do not intersect, and rε :=
|Vx0 (ε)|
|Vy0 (ε)| . The Lebesgue

density theorem yields that limε→0 rε = 1. Obviously, since a(·) 6≡ a0, there holds a0 6 bε 6 M
almost everywhere in (0, `).

Using a choice of function bε as above, we will now construct a perturbation aε of a within the
class SMa0,`,S0

. This is the content of the following lemma.

Lemma 2. Let bε ∈ L∞(0, `) be a perturbation of b either of type I, or II. Then, there exists a
family (aε)ε>0 such that

• aε ∈ SMa0,`,S0
for every ε > 0,

8



• aε
√

1 + a′2ε = bε almost everywhere in (0, `) and for every ε > 0,

• one has the reminder estimate: ‖aε − a‖L∞(0,`) 6 Cε2, where the constant C only depends
on M , c and the constants α, β, δ, a0, `, S0 and σ.

The statement of this lemma is close to [13, Lemma 3.4]. Nevertheless, a notable difference
lies in the fact that we have to deal with perturbations of b that are the sums of characteristic
functions of measurable sets, instead of open sets.

Let us provide a qualitative interpretation of this lemma. The perturbation aε can be seen
as an infinitesimal perturbation (in L∞) of the original element a. The oscillations created on
the graph of aε are made so that the lateral surface element bε is an approximation of the Dirac
measure at the first order. The main difficulty consists in building the function aε in such a way
that it is an admissible element of SMa0,`,S0

.

Proof. The constructions of the function aε satisfying the aforementioned assertions when bε is
either of type I, or II are quite close. Nevertheless, since the case of a perturbation of type II
requires a little bit more technicity, we focus on it in this proof. The content of the proof can then
be easily adapted (and even simplified) to deduce the construction of aε for perturbations of type
I.

First step: case where b is smooth. Let us assume that b ∈ C∞([0, `]) and let us now
describe the construction of aε. We will consider here a general constant M > a0 + 2c such that
{a0 6 b < M − c} has a positive Lebesgue measure.

Let us first set
aε(x) = a(x) if x /∈ Vx0

(ε) ∪ Vy0(ε).

Without loss of generality, we will focus within this proof on the characterization of the perturbation
aε − a on Vx0(ε), the definition of aε − a on Vy0(ε) being similar (in absolute value).

Hence, let us define aε on Vx0
(ε). Since b is continuous, this set is a finite union of open intervals

Ii, in other words

Vx0
(ε) = {x ∈ (x0 − ε, x0 + ε) s.t. b(x) < M − c} = ∪Ni=1Ii.

The difficulty lies in controlling the L∞ distance between a and aε. The algorithmic procedure
to define aε writes as follows:

i one considers a regular subdivision of Ii into k intervals of length η, with η < min{c2/2M, ε2}.

ii on every subinterval (x̄, x̄+ η) of this subdivision, one creates one oscillation by setting

aε = aη,2 on (x̄, ξ) and aε = aη,1 on (ξ, x̄+ η),

where the functions aη,1 and aη,2 satisfy in particular aη,i
√

1 + a′2η,i = bε for i ∈ {1, 2}, aη,1
is decreasing and aη,2 is increasing.

More precisely, we define the function aη,2 as a solution of the Cauchy problem

a′η,2(x) =

√
bε(x)2−aη,2(x)2

aη,2(x) x ∈ (x̄, x̄+ η)

aη,2(x̄) = a(x̄),

and the function aη,1 as a solution of the Cauchy problem

a′η,1(x) = −
√
bε(x)2−aη,1(x)2

aη,1(x) x ∈ (x̄, x̄+ η)

aη,1(x̄+ η) = a(x̄+ η),

where ξ ∈ (x̄, x̄+ η) is chosen so that aη,1(ξ) = aη,2(ξ).

9



It remains to verify that such a construction is possible. First, |(a2
η,2)′| = 2aη,2|a′η,2| 6 2M

since bε 6M , which yields

|a2
η,2(x)− a2(x)| 6 2M |x− x| 6 2Mη

for all x ∈ [x, x+η) such that aη,2(x) is defined. Moreover, as bε = b+ c on (x̄, x̄+η), this function
is smooth and one has

b2ε(x)− a2(x) =
(
c+ a(x)

√
1 + a′(x)2

)2 − a2(x) > c2.

Hence, b2ε(x) − a2
η,2(x) > c2 − 2Mη > 0 due to our choice for η. Applying the Cauchy-Lipschitz

theorem yields that aη,2 is uniquely defined at least on [x, x+ η). The same arguments yield that
aη,1 is uniquely defined on (x− η, x].

We now need to check that the graphs of aη,1 and aη,2 intersect at a point whose abscissa
belongs to [x̄, x̄+ η], which comes to

aη,2(x̄+ η) > a(x̄+ η) and aη,1(x̄) > a(x̄).

according to the intermediate value theorem.
Let us show that aη,i > a everywhere in (x̄, x̄ + η] for i ∈ {1, 2}. Because of the symmetrical

definitions of aη,1 and aη,2, it suffices to prove this fact for i = 2. Assume by contradiction and
by continuity of a and aη,2 the existence of xη ∈ (x̄, x̄+ η] and δη > 0 such that a(x) > aη,2(x) on
(xη, xη + δη). Then, since bε = b+ c on this interval, we claim that

a′η,2(x) =

√
bε(x)2

aη,2(x)2
− 1 >

√
b(x)2

a(x)2
− 1 = a′(x),

for almost every x ∈ (xη, xη + δη). Integrating both sides of this inequality leads to∫ xη+δx

xη

a′η,2(x) dx >

∫ xη+δx

xη

a′(x) dx,

for every δx ∈ (0, δη), which rewrites aη,2(xη + δx) > a(xη + δx) since aη,2(xη) = a(xη). This is
in contradiction with the assumption above and proves that for every x ∈ (x̄, x̄ + η], there holds
aη,2(x) > a(x). This justifies the definition above. The construction of aε is illustrated on Figure
3.

Moreover, the lateral surface constraint remains satisfied by aε since∫ `

0

bε(x) dx =

∫ `

0

b(x) dx+ c(|Vx0
(ε)| − rε|Vy0(ε)|) 6 S0,

and obviously bε 6 b 6M on (0, `). Thus, there holds aε ∈ SMa0,`,S0
.

At this step, the function aε defined as previously satisfies the two first assertions of the lemma.
It remains now to estimate the L∞-norm of aε − a. Since

1

2
(aε(x)2 − aε(x̄)2) =

∫ x

x̄

aε(s)a
′
ε(s) ds 6

∫ x

x̄

bε(x) dx

and
1

2
(a(x)2 − a(x̄)2) =

∫ x

x̄

a(s)a′(s) ds 6 ‖a′‖L∞(0,`)‖a‖L∞(0,`)

for every x ∈ (x̄, x̄+ η), there holds

a(x)2 6 aε(x)2 6 2

∫ x̄+η

x̄

bε(x) dx+ a(x̄)2

6 2η(‖b+ c‖L∞(0,`) + 2‖a′‖L∞(0,`)‖a‖L∞(0,`)) + a(x)2,
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for every x ∈ [x̄, x̄+ η]. Moreover, since a ∈W 1,∞(0, `) and according to (H1), one has

0 6 aε(x)− a(x) 6
(‖b+ c‖L∞(0,`) + ‖a′‖L∞(0,`)‖a‖L∞(0,`))

a0
ε2

for every x ∈ [x̄, x̄ + η]. As ‖a′‖L∞(0,`) 6 M/a0 and, according to Lemma 2 in [13], ‖a‖L∞(0,`) is
bounded by a constant which only depends on S0 and `, it follows that ‖aε − a‖L∞(x̄,x̄+η) 6 Cε2,
for a constant C only depending on M , c and the constants of our problem.

The expected conclusion then follows in the case where b is smooth.

The general case. By using standard density theorems, there exists a sequence (an)n∈IN in
C∞([0, `]) converging to a in the Sobolev space W 1,1(0, `). Let us introduce bn = an

√
1 + a′2n .

We claim that, using the previous assumptions on a and b, it is not restrictive to assume (for
example by considering convolutions) that an > a0 in [0, `] and that |a′n| 6M/a0. Hence, (an)n∈IN

and (bn)n are bounded in L∞(0, `) respectively by two positive constants C̃ > 0 according to [13,
Lemma 3.1] and M̃ . Therefore, still denoting with a slight abuse of notation by (an)n∈IN any
extracted subsequence of (an)n∈IN, the Arzelà-Ascoli theorem yields that (an)n∈IN converges to a
in L∞(0, `).

First, (bn)n∈IN converges to b in L1(0, `). Indeed, there holds∫ `

0

|bn(x)− b(x)| dx =

∫ `

0

∣∣∣an(x)
√

1 + a′2n (x)− a(x)
√

1 + a′(x)2
∣∣∣ dx

6
∫ `

0

∣∣∣∣ (an(x)2 − a(x)2)(1 + a′n(x)2)

bn(x) + b(x)

∣∣∣∣ dx
+

∫ `

0

∣∣∣∣a(x)2(a′n(x)2 − a′(x)2)

bn(x) + b(x)

∣∣∣∣ dx
6

(1 +M/a0)(C + ‖a‖L∞(0,`))

2a0
‖an − a‖L∞(0,`)

+
‖a‖2L∞(0,`)(M/a0 + ‖a′‖L∞(0,`))

2a0
‖a′n − a′‖L1(0,`),

since bn > a0 and b > a0 a.e. in (0, `), and the right-hand side converges to 0 as n → +∞.
Replacing (bn)n∈IN by a well-chosen extracted subsequence, we can thus assume that (bn)n∈IN

converges to b almost everywhere in (0, `) and, thus, only consider Lebesgue points x0, y0 such that
bn(x0)→ b(x0) and bn(y0)→ b(y0) as n→ +∞. Hence, the measure of the sets

Vnx0
(ε) = {x ∈ (x0 − ε, x0 + ε), s.t. bn(x) < M − c}

and Vny0(ε) = {x ∈ (y0 − ε, y0 + ε), s.t. bn(x) > a0 + c}

are positive whenever n is large enough.
Let us now apply the construction of the first step to the elements an. It follows that for every

ε > 0, there exists (an,ε)n∈IN such that

bn,ε := an,ε

√
1 + a′2n,ε = bn + c

(
χVnx0 (ε) −

|Vnx0
(ε)|

|Vny0(ε)|
χVny0 (ε)

)
(14)

and

0 6 an,ε(x)− an(x) 6
‖bn + c‖L∞(0,`) + ‖a′n‖L∞(0,`)‖an‖L∞(0,`)

a0/2
ε2 6

M̃ + c+MC̃/a0

a0/2
ε2, (15)
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for every x ∈ [0, `] and n ∈ IN. In particular, for a given n ∈ IN, the family (an,ε)ε>0 converges to
an as ε↘ 0.

Moreover, by construction, (an,ε)ε>0 is a uniformly Lipschitz functions family with respect to n
(and ε) and according to the Arzelà-Ascoli theorem, it converges up to a subsequence to a function
aε ∈W 1,∞(0, `). Letting n tend to +∞ in (15) yields that

0 6 aε(x)− a(x) 6
M̃ + c+MC̃/a0

a0/2
ε2.

for every x ∈ [0, `]. In particular, it follows that aε > a > a0 in [0, `].
Next, since (bn)n∈IN converges to b in L1(0, `), one gets

lim
n→+∞

bn,ε = b+ c
(
χVx0 (ε) − rεχVy0 (ε)

)
= bε in L1(0, `),

by passing to the limit in (14)
Moreover, using the same decomposition as above, we claim that

(a′n,ε)
2 − (a′ε)

2 =
(bn − b)(bn,ε + bε)− (a2

n,ε − a2
ε)(1 + a′2n,ε)

a2
ε

for almost every x ∈ (0, `) ∩ {an,ε 6= aε}. Using the C0-boundedness of the families (an,ε)n∈IN,ε>0,
(bn,ε)n∈IN,ε>0, the strong C0 convergence of (an,ε)n∈IN to aε and the L1-convergence of (bn)n∈IN

to b, one gets that (a′n,ε)
2 converges to (a′ε)

2 in L1(0, `). Therefore, using the same reasonings as

above, it follows that (bn,ε)n∈IN converges to bε := aε
√

1 + a′2ε in L1(0, `).
The proof of the lemma is then complete.

x = ξx = x̄ x = x̄+ η

y = aη,1(x)

y = aη,2(x)

y = aε(x)

y = a(x)

x1 x0

y = a(x)

y = aε(x)

Figure 3: Left: Zoom on one oscillation. Right: the perturbation aε

2.3 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. We first investigate the existence of a minimizer within the class SMa0,`,S0
.

In view of that, we will need the following straightforward lemma.
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Lemma 3. Let (un)n∈IN be a sequence of L2(0, `) converging to some function u weakly in L2(0, `).
Assume moreover that (un)n∈IN is bounded in L∞(0, `). Then,

√
1 + u2

n belongs to L2(0, `) for every

n ∈ IN and the sequence
(√

1 + u2
n

)
n∈IN

converges weakly in L2(0, `) to a function U satisfying
√

1 + u2 6 U a.e. in (0, `).

Proof. Even if this result is straightforward, we nevertheless provide elements of proof for the sake
of completeness. Since

√
1 + u2

n 6 1 + |un| a.e. in (0, `), the first claim follows. By assumption,
there exists u > 0 such that |un| 6 u a.e. in (0, `), for every n ∈ IN. Notice moreover that the
functional v 7→

√
1 + v2 is convex and continuous for the strong L2-topology on the set Uu =

{v ∈ L2(0, `) | ‖v‖∞ 6 u}. Indeed, the convexity is obvious and the continuity is obtained by
considering a sequence of Uu denoted (vn)n∈IN that converges strongly in L2 to a function v, and
by writing∫ `

0

(√
1 + v2

n −
√

1 + v2
)2

dx =

∫ `

0

(vn − v)2(vn + v)2(√
1 + v2

n +
√

1 + v2
)2 dx 6 u

2‖vn − v‖2L2 .

We thus infer that v 7→
√

1 + v2 is also lower semi-continuous for the weak-topology of L2(0, `)
(see e.g. [5, 17]).
By weak-compactness of the bounded sets of L2(0, `), there exists a function U such that, up
to a subsequence, (

√
1 + u2

n)n∈IN converges weakly in L2(0, `) to U , and the expected pointwise

inequality follows by weak-semicontinuity of v 7→
√

1 + v2 on Uu.

Lemma 4. The problem of minimizing λ1 over SMa0,`,S0
has a solution.

Proof. Let us consider a minimizing sequence (an)n∈IN for this problem. Denote by λ1,n the
associated eigenvalue λ1(an) and by ϕ1,n the associated eigenfunction such that ‖ϕ1,n‖an = 1 and
ϕ1,n(0) > 0. The function ϕ1,n solves the system

−α
(
an(x)2ϕ′1,n(x)

)′
+ βan(x)

√
1 + a′n(x)2ϕ1,n(x) = λ1,nan(x)2ϕ1,n(x), x ∈ (0, `)

γan(0)2ϕ′1,n(0) = −λ1,nϕ1,n(0)
ϕ′1,n(`) = −σ

αϕ1,n(`).

(16)

Multiplying this system by ϕ1,n and integrating by parts leads to

α

∫ `

0

an(x)2ϕ′1,n(x)2 dx+ β

∫ `

0

an(x)
√

1 + a′n(x)2ϕ1,n(x)2 dx+ σan(`)2ϕ1,n(`)2

= λ1,n

(∫ `

0

an(x)2ϕ1,n(x)2 dx+ δϕ1,n(0)2

)
.

(17)

Since the sequence (λ1,n)n∈IN is bounded and since min {an, bn} = an > a0 a.e. in (0, `) with

bn = an
√

1 + a′2n , the sequence (ϕ1,n)n∈IN is bounded in H1(0, `). Then, using the compact Sobolev
embeddings H1(0, `) ↪→ L2(0, `) and H1(0, `) ↪→ C0([0, `]), we infer that, up to a subsequence,
(ϕ1,n)n∈IN converges weakly in H1(0, `) and strongly in L2(0, `) and in C0([0, `]) to some function
ϕ.
Moreover, one has a0|a′n(x)| 6 M for every n ∈ IN and almost every x ∈ (0, `). Hence (an)n∈IN

is uniformly Lipschitz-continuous and bounded. According to the Arzelà-Ascoli theorem, the
sequence (an)n∈IN converges, up to a subsequence, to some Lipschitz-continuous limit aM , satisfying
a0 6 bM 6 M where bM = aM

√
1 + a′2M . Since ‖a′n‖∞ 6 M/a0 and according to Lemma 3, one

shows furthermore that the sequence
(
an
√

1 + a′2n

)
n∈IN

converges, up to a subsequence, weakly in
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L2(0, `) to a function bM such that a0 6 bM 6 bM 6M a.e. in (0, `).
All these considerations allow to make n go to +∞ in (17) and one gets that

lim
n→+∞

λ1,n =
α
∫ `

0
aM (x)2ϕ′(x)2 dx+ β

∫ `
0
bMϕ(x)2 dx+ σaM (`)2ϕ(`)2∫ `

0
aM (x)2ϕ(x)2 dx+ δϕ(0)2

>
α
∫ `

0
aM (x)2ϕ′(x)2 dx+ β

∫ `
0
bMϕ(x)2 dx+ σaM (`)2ϕ(`)2∫ `

0
aM (x)2ϕ(x)2 dx+ δϕ(0)2

> min
ϕ∈H1(0,`)

ϕ6=0

<[aM , ϕ] = λ1(aM ).

By minimality, we thus infer that the previous inequalities are in fact equalities and it follows that
necessarily, bM = bM . As a result, the sequence (λ1,n)n∈IN converges to λ1(aM ) as n→ +∞. and
the problem of minimizing λ1 over the class SMa0,`,S0

has (at least) one solution.

As previously, denote by aM a solution of the problem infa∈SMa0,`,S0
λ1(a). Let us now show that

necessarily, aM = a0. Denoting by ϕ1,M the eigenfunction associated to the eigenvalue λ1(aM ),
one writes

min
a∈SMa0,`,S0

λ1(a) = λ1(aM ) = min
ϕ∈H1(0,`)

ϕ6=0

<[aM , ϕ] = <[aM , ϕ1,M ]

where <[a, ϕ] is defined by (2).
To show that bM = a0, assume by contradiction that the set {a0 < bM 6 M} has a nonzero

Lebesgue measure. Then according both to the continuity of aM and the assumption (H1), there
exists a Lebesgue point x0 of the set {a0 < bM 6M} such that (x0−ε/2, x0+ε/2)∩{a0 < bM 6M}
is of positive Lebesgue measure.

Using the notations of Section 2.2, let Vx0(ε) = {a0 < b 6 M} ∩ (x0 − ε, x0 + ε), where c > 0

is chosen so that there holds at the same time a0 6 bε 6M a.e. in (0, `) and
∫ `

0
bε(x) dx 6 S0.

Denote then by bε the function b − cχVx0 (ε). In other words and according to Section 2.2,

bε is a perturbation of type (I). Hence, Lemma 2 yields the existence of aε ∈ SMa0,`,S0
such that

aε
√

1 + a′2ε = bε and ‖aM − aε‖∞ = O(ε2).

Furthermore, since bε−b
ε converges in the sense of measures to the Dirac measure −cδx0

as ε
goes to zero, we then infer that

λ1(aε) 6 <[aε, ϕ1,M ] ∼
ε→0
<[aM , ϕ1,M ]− ε βcϕ1,M (x0)2∫ `

0
aM (x)2ϕ1,M (x)2 dx+ δϕ1,M (0)2

+ O(ε2)

< λ1(aM ),

provided that ε be small enough.
This is in contradiction with the minimality of aM and we conclude that |{a0 < bM 6M}| = 0.

Proof of Corollary 1. The sequence (SMa0,`,S0
)M>a0 is obviously decreasing for the inclusion,

and there holds
Sa0,`,S0 =

⋃
M>a0

SMa0,`,S0
.

It thus follows that

inf
a∈Sa0,`,S0

λ1(a) = inf
M>a0

inf
a∈SMa0,`,S0

λ1(a) = lim
M→+∞

min
a∈SMa0,`,S0

λ1(a) = λ1(a0),

according to Theorem 1. The conclusion follows. �
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3 Solving of Problem (5) (looking for the best shape)

3.1 Functional setting

Define the class of admissible designs

Aa0,` =
{
a ∈W 1,∞(0, `), a > a0 a.e. in (0, `)

}
,

and the product space Âa0,` defined by

Âa0,` =
{

(a, b), a ∈ Aa0,` and b = a
√

1 + a′2
}
.

Introduce the functional λ̂1 defined on Âa0,` by

λ̂1(a, a
√

1 + a′2) = λ1(a), (18)

for every a ∈ Aa0,`. Here and in the sequel, the notation M(0, `) stands for the space of Radon
measures on (0, `).

Definition 1. Let (an, bn)n∈IN be a sequence of elements of Âa0,`. We will say that (an, bn)n∈IN
τ -converges to (a, b) ∈ C0([0, `])×M(0, `) if

• (an)n∈IN converges to a, locally uniformly in (0, `];

• (bn)n∈IN converges to b in the sense of measures.

We endow Âa0,` with the topology inherited from the τ -convergence.
Moreover, one has the following continuity result

Proposition 1. Assume that the sequence
(
an, an

√
1 + a′2n

)
n∈IN

τ -converges to (aM , µ). Then

the sequence (λ1(an))n∈IN converges to λ̂1(aM , µ), where

λ̂1(aM , µ) = min
ϕ∈H1(0,`)

ϕ6=0

α
∫ `

0
a(x)2ϕ′(x)2 dx+ β〈µ, ϕ2〉M(0,`) + σa(`)2ϕ(`)2∫ `

0
a(x)2ϕ(x)2 dx+ δϕ(0)2

, (19)

and the eigenfunction ϕ1,n associated with λ1(an) converges to a minimizer ϕ of (19) strongly in
H1(0, `).

Proof. Denote by ϕ1,n the first eigenfunction solution of (11) with a = an normalized by
∫ `

0
a2
nϕ

2
1,n =

1. Multiplying the main equation of (11) by ϕ1,n and integrating then by parts leads to

α

∫ `

0

an(x)2ϕ′1,n(x)2 dx+ β

∫ `

0

an(x)
√

1 + a′n(x)2ϕ1,n(x)2 dx+ σan(`)2ϕ1,n(`)2 = λ1(an). (20)

Since the sequence (λ1(an))n∈IN is bounded and since min {an, bn} = an > a0 a.e. in (0, `) with
bn = an

√
1 + a′2n , the sequence (ϕ1,n)n∈IN is bounded in H1(0, `). Then, using the compact Sobolev

embeddings H1(0, `) ↪→ L2(0, `) and H1(0, `) ↪→ C0([0, `]), we infer that, up to a subsequence,
(ϕ1,n)n∈IN converges weakly in H1(0, `) and strongly in L2(0, `) and in C0([0, `]) to some function
ϕ. We conclude by using the classical arguments recalled in detail in the proof of Lemma 4, by
making each term converging in the variational formulation of the equation solved by ϕ1,n. The
strong convergence in H1(0, `) follows from classical arguments.

Finally, the fact that ϕ is associated to the first eigenvalue λ̂1(aM , µ) is due to the fact that
each element of the sequence (ϕ1,n)n∈IN is positive on (0, `), and that according to the compact
embedding H1(0, `) ↪→ C0([0, `]), the limit ϕ is nonnegative on (0, `).
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3.2 Main results

The following theorem constitutes the main result of this section.

Theorem 2. Let α, β, δ, a0, ` and S0 be positive real numbers such that S0 > a0`, σ > 0 and

a0

(
β + 4σ + σ

S0

`2

)
<
δβ

S0
. (21)

Problem (5) has no solution. Moreover, every sequence (an)n∈IN of elements of Sa0,`,S0
such that(

an, an
√

1 + a′2n

)
n∈IN

τ -converges to (a0, a0 + (S0 − a0`)δ0), where δ0 denotes the Dirac measure

at x = 0, is a maximizing sequence for Problem (5).

Let us comment on this result from a physical/ingeneering point of view. When one considers
large terms of the maximizing sequence given by Theorem 2, the temperature in the fin is decreasing
with respect to x ∈ (0, `). In order to maximize the lateral heat transfer, we need the inlet surface
to be very large near x = 0. Since the the total surface S0 is prescribed, in order to cool the
material as quickly as possible, we thus take a = a0 minimal when x is close to `, and a highly
oscillating, so that the lateral surface is large, when x → 0+. From a qualitative point of view,
this result says that, to maximize the heat diffusion properties of the structure, it is enough to
concentrate on its inlet.

Of course, this reasoning only works if the lateral heat transfer is not neglectible compared
with the heat transfer at x = `, which might give a physical explanation for the threshold (21). In
the opposite extremal case σ = +∞ and β = 0 investigated in [1], one expects on the contrary an
increasing radius a(·).

Remark 3. Note that assumption (21) is satisfied provided that a0 be small enough, the other
parameters being fixed. This is satisfying since a > a0 is mainly a technical assumption ensuring
the ellipticity and thus the well-posedness of the equation.

However, if the heat transfer is instantaneous at x = `, as assumed in [1, 2], corresponding
to σ = +∞, or at least if σ is too large, this condition is not satisfied anymore. Indeed, when
β = 0 and σ = ∞, the maximizing shape (under a volume constraint on a instead of a surface
one) computed in [1] is the increasing function a(x) = C/ cosh2(x− `), which is very different from
what we find here under the assumption (21). We thus conjecture that Theorem 2 should not hold
for parameters such that (21) is not satisfied, in particular for σ large.

Remark 4 (Example of maximizing sequence). Introduce Mm = a0 + (S0 − a0`)m for every
m ∈ IN∗. Let us construct the sequence (aS0,m)n∈IN∗ oscillating m times on [0, 1/m]. More
precisely, we define aS0,m by

aS0,m(x) =


√
M2
m − (

√
M2
m − a2

0 − x)2 on
[
0, 1

2m2

)
;

aS0,m( 1
m2 − x) on

[
1

2m2 ,
1
m2

)
;

aS0,m

(
x− i

m2

)
on
[
i
m2 ,

i+1
m2

)
, i ∈ {1, ...,m− 1} ;

a0 on
[

1
m , `

]
.

(22)

Then, one shows easily that

max
x∈[0,`]

aS0,m(x) = aS0,m

(
1

2m2

)
=

√
a2

0 −
1

4m4
+

√
M2
m − a2

0

m2

= a0 +
(S0 − a0`)

2

2a2
0m

+ o

(
1

m

)
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and therefore one has

‖aS0,m − a0‖∞ = aS0,m

(
1

2m2

)
− a0 = o

(
1

m

)
as m→ +∞,

and moreover,

aS0,m(x)
√

1 + a′S0,m
(x)2 =

{
a0 + (S0 − a0`)m if x ∈ [0, 1/m]
a0 if x ∈ (1/m, `].

Hence, the sequence (aS0,m, aS0,m

√
1 + a′2S0,m

)m∈IN τ -converges to (a0, a0 + (S0 − a0`)δ0) as m

diverges. The graph of the function aS0,m is plotted on Figure 4 for m = 8.
It is also interesting to comment on this choice of maximizing sequence from a physical point

of view. Indeed, this construction is consistent with the assumptions used to derive the fin model
of conduction in Section 1.2. Roughly speaking, the fact that ∂T

∂r ' 0 inside ΩaS0,m , the domain
of the fin can be considered as valid as soon as the Biot number is small. Since the Biot number
is proportional to the volume of (ΩaS0,m) divided by the lateral surface of Ωa and since the lateral

surface element aS0,m

√
1 + a′2S0,m

diverges pointwisely at the inlet of the fin while the (local) volume

remains bounded, the (local) Biot number at the inlet will decrease and vanish as m tends to +∞.

a0

0 1/m

Figure 4: Graph of the function aS0,m with m = 8

Remark 5. The optimal value of the function λ1(·) can be explicitly computed. Introduce the

notation λ = λ̂1

(
a0, a0 + (S0 − a0`)δ0

)
. In other words,

λ = min
ϕ∈H1(0,`)

ϕ6≡0

αa2
0

∫ `
0
ϕ′(x)2dx+ βa0

∫ `
0
ϕ(x)2dx+ β(S0 − a0`)ϕ(0)2 + σa2

0ϕ(`)2

a2
0

∫ `
0
ϕ(x)2dx+ δϕ2(0)

(23)
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Denote then by ϕ0 the associated normalized eigenfunction (for the norm ‖ · ‖a0 , see Section1.2
for its definition) of the spectral problem in the right-hand-side of (23), in other word, the first
eigenfunction of the system −αa0ϕ

′′
0 = (λa0 − β)ϕ0 on (0, `),

−αa2
0ϕ
′
0(0) =

(
λδ − β(S0 − a0`)

)
ϕ0(0),

ϕ′0(`) = −σ
αϕ0(`).

(24)

Since different cases may arise, depending on the sign of λa0 − β, let us assume for example
that S0 > a0`+ δ/a0. Hence, according to (23), one has

a0λ− β = min
ϕ∈H1(0,`)

ϕ6=0

αa3
0

∫ `
0
ϕ′(x)2 dx+ β(a0S0 − a2

0`− δ)ϕ(0)2 + σa3
0ϕ(`)2

a2
0

∫ `
0
ϕ(x)2 dx+ δϕ(0)2

> 0.

A straightforward computation leads to the following expression of the associated eigenfunction

ϕ1,a0(x) = A

(
cos(ωx)− λδ − β(S0 − a0`)

αa2
0ω

sin(ωx)

)
,

with ω2 = λa0−β
αa0

, where A denotes the normalization constant for the norm ‖ · ‖a0 . Moreover,

tedious computations show that λ is the first positive root of the transcendental equation

δ − β(S0 − a0`)

αa2
0ω

=
σ cos(ω`)− αω sin(ω`)

σ sin(ω`) + αω cos(ω`)
.

As in Section 2.1, this gives a practical way of determining λ.

Let M > a0`. The proof of Theorem 2 relies on the investigation of the maximization problem

sup
a∈SMa0,`,S0

λ1(a), (25)

settled on a smaller class of admissible functions a(·). The real number M can be interpreted as
a penalization parameter used to derive compactness properties of the maximizing sequence. The
precise study of this auxiliary problem will allow to make M go to +∞ and deduce the expected
non-existence result.

Theorem 3. Let α, β, δ, a0, ` and S0 be such that S0 > a0`, σ > 0 and

a0

(
β + 4σ + σ

S0

`2

)
<
δβ

S0
. (26)

Assume that M is chosen such that

M > max{M,S0/`} where M = (S2
0/`

2 + 4S0)
βS0 + σ(S2

0/`
2 + 4S0)

β(a2
0 + δ)

. (27)

Then, Problem (25) has a solution aM . Moreover, the function bM = aM
√

1 + (a′M )2 satisfies

bM (x) =

{
M on (0, xM )
a0 on (xM , `),

with xM = S0−a0`
M−a0 .

Remark 6. Notice that the assumption “M > S0/`” is imposed to guarantee that the function
aM (x)

√
1 + a′M (x)2 does not coincide with the constant function equal to M . Such an assumption

is necessary to use Lemma 2 for perturbations of type (II).

The result stated in Theorem 3 is intrinsically interesting since it allows to consider Problem
(25) as a remedy to the non-existence result stated in Theorem 2.
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3.3 Proof of Theorem 3

In what follows and for f ∈ L∞(0, `), we will respectively denote by f+ and f− its positive and
negative part.

Consider a maximizing sequence (an)n∈IN and let bn = an
√

1 + (a′n)2. Since (bn)n∈IN is uni-
formly bounded by M in L∞(0, `), we can assume that it converges to a limit bM for the L∞ weak-?
topology. Similarly, (an)n∈IN is uniformly Lipschitz-continuous and bounded and we can assume
that it converges to a function aM for the W 1,∞((0, `)) weak-? topology and uniformly in (0, `).
Lastly, if (ϕn)n∈IN is a sequence of eigenfunctions associated with λ1(an), then it follows from the
same arguments as in the proof of Proposition 1 that it converges in H1(0, `), up to extraction, to
an eigenfunction ϕM associated to the first eigenvalue of the problem

−α
(
aM (x)2ϕ′M (x)

)′
+ βbM (x)ϕM (x) = λMaM (x)2ϕM (x), x ∈ (0, `)

γaM (0)2ϕ′M (0) = −λMϕM (0)
αϕ′M (`) = −δϕM (`).

(28)

Proposition 2. For almost every x0 ∈ {bM < M} and y0 ∈ {bM > a0}, one has ϕM (x0) 6
ϕM (y0).

Proof of Proposition 2. Let

Ac = {x ∈ (0, `), bM (x) 6M − c} and Bc = {x ∈ (0, `), a0 + c 6 bM (x)}1.

As bM is not uniformly equal to a0 according to Theorem 1 nor to M since M > a0`, one has
|Ac| > 0 and |Bc| > 0 for all c > 0 small enough. Consider two Lebesgue points x0 of Ac and y0

of Bc. We claim that

lim inf
η→0

lim sup
n→+∞

|B(x0, η/2) ∩ {bn < M − c/2}|
η

> 0

and lim inf
η→0

lim sup
n→+∞

|B(y0, η/2) ∩ {bn > a0 + c/2}|
η

> 0. (29)

Let us prove the first claim, the second one being showed in a similar way. Assume by contra-
diction that

lim inf
η→0

lim sup
n→+∞

|B(x0, η/2) ∩ {bn < M − c/2}|
η

= 0.

This yields the existence of a sequence (ηk)k∈IN converging to 0 and of N̂0 ∈ IN such that for
n > N̂0 and for all k ∈ IN, there holds∫

B(x0,ηk/2)

(
bn −M +

c

2

)
−
dx 6

c

2
|B(x0, ηk/2) ∩ {bn < M − c/2}| < ηkc

10
. (30)

As x0 is a Lebesgue point of Ac, one can take k large enough such that

1

ηk

∫
B(x0,ηk/2)

(
bM −M +

c

2

)
−
dx < − c

4
. (31)

Lastly, using the L∞ weak-? convergence of (bn)n∈IN to bM , there exists Nk ∈ IN such that

∀n > Nk,
∫
B(x0,ηk/2)

(bn − bM ) dx <
ηkc

10
. (32)

1Here the definition must be understood up to some subset of zero Lebesgue measure.

19



Let us choose k large enough and n > max(N̂0, Nk). According to (31), (30) and (32), we get

0 6
1

ηk

∫
B(x0,ηk/2)

(
bn −M +

c

2

)
+
dx

6
1

ηk

∫
B(x0,ηk/2)

(bn − bM ) dx+
1

ηk

∫
B(x0,ηk/2)

(
bM −M +

c

2

)
dx

− 1

ηk

∫
B(x0,ηk/2)

(
bn −M +

c

2

)
−
dx

6
c

10
+

c

10
− c

4
< 0

leading to a contradiction. Therefore, the assertion (29) is proved.
Let us introduce ν = min{ν0, ν1}, where

ν0 = lim inf
η→0

lim sup
n→+∞

|B(x0, η/2) ∩ {bn < M − c/2}|
η

,

and ν1 = lim inf
η→0

lim sup
n→+∞

|B(y0, η/2) ∩ {bn > a0 + c/2}|
η

.

According to the previous analysis, there holds ν > 0.
This result allows us to consider subsequences (ηk)k∈IN, and (nk)k∈IN such that for every k ∈ IN,

one has

|B(x0, ηk/2) ∩ {bnk < M − c/2}| > νηk
2

and |B(y0, ηk/2) ∩ {bnk > a0 + c/2}| > νηk
2
.

Without loss of generality, we also assume that B(x0, ηk/2) ∩B(y0, ηk/2) = ∅ for every k ∈ IN.
Assume by contradiction that ϕM (x0) > ϕ(y0). Hence, using that (λ1(ank))k∈IN converges to

supa∈SMa0,`,S0
λ1(a) and that ((ϕM (x0)2−ϕM (y0)2)ηk)k∈IN is a positive sequence converging to zero,

one can assume that

λ1(ank) > sup
a∈SMa0,`,S0

λ1(a)− ηk
cν

8
(ϕM (x0)2 − ϕM (y0)2). (33)

for every k ∈ IN, even if that means that we have to extract another subsequence of (nk)k∈IN. Let
k ∈ IN∗, Vx0

(ηk) be any measurable subset of B(x0, ηk/2)∩ {bnk < M − c/2} of Lebesgue measure
νηk/2 and Vy0(ηk) be any measurable subset of B(y0, ηk/2)∩{bnk > a0 +c/2} of Lebesgue measure
νηk/2.

Now, introduce the perturbation bnk,ηk defined for every k ∈ IN by

bnk,ηk = bnk +
c

4
(χVx0 (ηk) − χVy0 (ηk)).

According to Section 2.2 and Lemma 2, bnk,ηk defines a perturbation of type (II) and there exists
a sequence (ank,ηk)k∈IN such that such that

• ank,ηk ∈ SMa0,`,S0
for every k ∈ IN,

• ank,ηk
√

1 + a′2nk,ηk = bnk,ηk almost every in (0, `) and for every k ∈ IN,

• ‖ank,ηk − ank‖L∞(0,`) 6 Cη2
k for every k ∈ IN, where the constant C only depends on M , c

and the constants α, β, δ, a0, `, S0 and σ.
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Let us investigate the L∞ weak-? convergence of the sequence (bnk,ηk)k∈IN. Since
|Vx0 (ηk)|

ηk
= ν

2 ,

according to the Banach-Alaoglu-Bourbaki theorem, there exists ρ0 ∈ L∞(0, `; [0, 1]) such that
the positive measure 1

ηk
χVx0 (ηk) converges weakly-? to ρ0 in L∞. Moreover, since the support of

χVx0 (ηk) shrinks to {x0}, one easily infers that ρ0 = ν
2 δx0 as k goes to +∞. Similarly, one shows

that the measure 1
ηk
χVy0 (ηk) converges weakly-? to ν

2 δy0 as k goes to +∞. Let ϕk the principal

eigenfunction associated with λ1(ank,ηk) and normalized by
∫ `

0
ank,ηk(x)2ϕk(x)2 dx+ δϕk(0)2 = 1.

We know from Proposition 1 that it converges in H1(0, `) to a minimizer ϕM of:

λM := min
ϕ∈H1(0,`)

ϕ6=0

α
∫ `

0
aM (x)2ϕ′(x)2 dx+ β

∫ `
0
bM (x)ϕ(x)2 dx+ σaM (`)2ϕ(`)2∫ `

0
aM (x)2ϕ(x)2 dx+ δϕ(0)2

. (34)

As a consequence, one computes

λ1(ank,ηk) = α

∫ `

0

ank,ηk(x)2ϕ′k(x)2 dx+ β

∫ `

0

bnk,ηk(x)ϕk(x)2 dx+ σank,ηk(`)2ϕk(`)2

> α

∫ `

0

ank(x)2ϕ′k(x)2 dx+ β

∫ `

0

bnk,ηk(x)ϕk(x)2 dx+ σank(`)2ϕk(`)2 − C ′η2
k

= α

∫ `

0

ank(x)2ϕ′k(x)2 dx+ β

∫ `

0

bnk(x)ϕk(x)2 dx+ σank(`)2ϕk(`)2

+
c

4

∫ `

0

(χVx0 (ηk) − χVy0 (ηk))ϕ
2
k − C ′η2

k

> λ1(ank) +
c

4

∫ `

0

(χVx0 (ηk) − χVy0 (ηk))ϕ
2
k − C ′η2

k

where the constant C ′ does not depend on k. Moreover, according to the considerations above,
one has

lim
k→+∞

1

ηk

∫ `

0

(χVx0 (ηk) − χVy0 (ηk))ϕ
2
k =

ν

2

(
ϕM (x0)2 − ϕM (y0)2

)
.

Take k large enough so that

cν

16
(ϕM (x0)2 − ϕM (y0)2) > C ′ηk.

Combining with (33), one gets λ1(ank,ε) > supa∈SMa0,`,S0
λ1(a) provided that k be large enough.

This is a contradiction, and it follows that ϕM (x0) 6 ϕM (y0). The Lebesgue density theorem
yields that this inequality holds for almost every x0 ∈ Ac and y0 ∈ Bc and we conlude by taking
the union of these sets over c ∈ Q ∩ (0,∞).

Define

ξM := esssup{ϕM (x), bM (x) < M} and ξ′M := essinf{ϕM (x), bM (x) > a0}.

These two sets both have a positive measure since bM ≡ a0 and bM ≡M are excluded. Proposition
2 yields ξM 6 ξ′M . Moreover, if ξM < ξ′M , then as ϕM is continuous, there exists x ∈ (0, `) such
that ξM < ϕM (x) < ξ′M , which would imply bM (x) = M since ϕM (x) > ξM and bM (x) = a0 since
ϕM (x) < ξ′M . Hence, there holds ξM = ξ′M or in other words:

esssup{ϕM (x), bM (x) < M} = essinf{ϕM (x), bM (x) > a0}.
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Lemma 5. One cannot have ϕM 6 ξM everywhere in (0, `).

Proof of Lemma 5. Assume by contradiction that ϕM 6 ξM on (0, `). Since

ϕ′M (0) = −λMϕM (0)/γa(0)2 < 0,

there exists x0 ∈ (0, `] such that ϕM (x) < ξM in (0, x0). Taking x0 the largest, we could assume
that ϕM (x0) = ξM .

The definition of ξM yields that for almost every x ∈ (0, `) such that ϕM (x) < ξM , one
has bM (x) = a0. Hence x0 < ` since we know from Theorem 1 that bM 6≡ a0. Moreover, as
bM > aM

√
1 + (a′M )2 > a0 a.e. on (0, `), the identity bM (x) = a0 is equivalent to aM (x) = a0 for

almost every x. Hence aM = a0 in (0, x0).
We now distinguish between two cases:

• First case: assume that λMa0 > β. Then ϕM satisfies

−αa2
0ϕ
′′
M = (λMa

2
0 − βa0)ϕM > 0 in (0, x0)

and thus ϕM is concave in (0, x0). But as ϕ′M (0) < 0 and ϕM reaches its maximum on (0, x0)
at x0, this is a contradiction.

• Second case: assume that λMa0 6 β. Then ϕM is convex in (0, x0). As ϕM (x) < ϕM (x0)
for all x < x0, one gets ϕ′M (x0) > 0 and thus ϕM (x) > ξM on a right neighborhood of x0, a
contradiction since ϕM 6 ξM on (0, `).

We have thus reached a contradiction in all cases.

Lemma 6. For M > M where M is defined in the statement of Theorem 3, there exists xM > 0
such that {ϕM > ξM} = (0, xM ).

Proof of Lemma 6. The open set {ϕM > ξM} is not empty by Lemma 5. The definition of ξM
yields that {ϕM > ξM} ⊂ {bM ≡M}. Consider any connected component (x0, x1) of the open set
{ϕM > ξM}. Clearly ϕM (x0) = ξM if x0 > 0 and ϕM (x1) = ξM if x1 < `. Moreover, the function
ϕM satisfies

α
(
aM (x)2ϕ′M (x)

)′
=
(
βM − λMaM (x)2

)
ϕM (x) > 0 in (x0, x1)

since βM > λMaM (x)2. Indeed, we know from Lemma 2 in [13] that

a(x) 6
√
S2

0/`
2 + 4S0 for all x ∈ (0, `) (35)

and, taking ϕ ≡ 1 as a test-function in the definition of λ1(a), one has

λ1(a) 6
βS0 + σa(`)2

a2
0 + δ

, (36)

leading to βM > λMaM (x)2 for all x ∈ (0, `).
Hence, ϕM does not admit any interior maximum in (x0, x1), which is a contradiction if x0 > 0

and x1 < ` since ϕM (x) > ξM in (x0, x1). Similarly, if x1 = `, then x0 > 0 otherwise one would
get bM = M in (x0, x1) = (0, `), and thus ϕM (x0) = ξM . It follows that the maximum of ϕM on
[x0, x1] could only be reached at x1. According to the Hopf lemma, there holds ϕ′M (x1) > 0, and on
the contrary, one has ϕ′M (x1) 6 0 since (28) and σ > 0. We have reached a contradiction. Hence,
the only possible connected component of {ϕM > ξM} is an interval of the form (0, xM ).
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Lemma 7. If σ > 0 and M > M , then the set {ϕM < ξM} is not empty and there exists yM ∈ (0, `)
such that {ϕM < ξM} = (yM , `).

Proof of Lemma 7. If ϕM > ξM on (0, `), then as σ > 0, one has ϕM (x) > ξM on some set (y0, `),
which implies bM (x) = M on this interval. Hence y0 > 0 and we could assume that ϕM (y0) = ξM .

But as M > M , one has
(
a2
Mϕ
′
M

)′
> 0 on (y0, `) as in the proof of Lemma 6 and thus ϕM does

not admit any interior local maximum on this interval, a contradiction.
Next, we know that {ϕM < ξM} ⊂ {bM = aM = a0} and we consider a connected component

(y0, y1) of {ϕM < ξM}.
αa2

0ϕ
′′
M =

(
βa0 − λMa2

0

)
ϕM in (y0, y1).

Distinguishing between the cases λMa0 > β and λMa0 < β as in the proof of Lemma 5 and using
the same types of arguments on minimas as in proof of Lemma 6, we get the conclusion.

Lemma 8. Let σ > 0 and assume (26) and (27) (so that, in particular, the conclusion of Lemma
6 and 7 hold). One has xM = yM . In other words, there exists xM ∈ (0, `) such that

• ϕM (x) > ξM and bM (x) = M if x ∈ (0, xM ),

• ϕM (x) < ξM and bM (x) = a0 if x ∈ (xM , `),

where xM is uniquely given by xMM + (`− xM )a0 = S0. In particular, bM is bang-bang.

Proof of Lemma 8. Assume in a first time that σ > 0. Then, one has clearly ϕ′M (`) 6= 0 and thus
xM 6 yM < `. Lemma 6 and 7 will yield that the conclusion follows provided that we prove that
{a0 < bM < M} ⊂ [xM , yM ] has zero measure.

According to Proposition 2 and Lemma 6 and 7, the following situation occurs:

• on {ϕM > ξM} = (0, xM ), one has bM ≡M ,

• on {ϕM (x) < ξM} = (yM , `), one has bM ≡ a0,

• on {ϕM (x) = ξM} = [xM , yM ], one has βbM = λMa
2
M on (xM , yM ) since ϕM solves Equation

(28).

Assume now by contradiction that xM 6= yM . Since bM > aM
√

1 + (a′M )2 a.e. in (0, `), there

holds λMa
2
M > βaM

√
1 + (a′M )2 on (xM , yM ) and therefore

aM >
β

λM
>

β(a2
0 + δ)

βS0 + σaM (`)2
>

βδ

βS0 + σ(S2
0/`

2 + 4S0)
on (xM , yM ),

by using the estimates (35) and (36). Hence, according to (26), one has limx→yM
x<yM

aM (x) > a0 which

is in contradiction with the continuity of aM and the fact that aM = a0 on (yM , `). It follows that
necessarily, xM = yM yielding the expected conclusion. The computation of xM follows from the

identity
∫ `

0
bM = S0.

It remains to show that the same conclusion holds in the case where σ = 0. Let us roughly
provide the argument. Consider a sequence (σp)p∈IN of positive real numbers converging to zero.
Since the parameter σ varies, we change temporarily our notations, denoting by λ1,σ the eigenvalue
given by (1), by (aM,σ, bM,σ) any τ -limit of a maximizing sequence for the optimal design problem
(25), and by λM,σ the eigenvalue given by (34). Denote also by ϕM,σ the minimizer of the associated
Rayleigh quotient. Thus, one has

λ1,σp(a) 6 λ1(aM,σp) = λM,σp ∀a ∈ SMa0,`,S0
, ∀p ∈ IN.
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Making p go to +∞ and passing to the limit yields that

λ1,0(a) 6 λ1(aM,0) = λM,0 ∀a ∈ SMa0,`,S0
,

by noting that M is an increasing function of σ, that the graph of bM,σp does not depend on σp > 0

whenever M > M and by using the same (standard) techniques as in the proof of Proposition 1.

It remains now to show that necessarily, bM = aM
√

1 + (a′M )2. Let dn = M − an
√

1 + (a′n)2

and IM = {bM = M}. Then 0 6 dn 6M − a0 in (0, `) and thus∫
IM

d2
n dx 6 (M − a0)

∫
IM

dn dx→ 0 as n→ +∞,

by definition of IM (indeed, an
√

1 + (a′n)2χIM ⇀ MχIM weakly-? in L∞(0, `) as n → +∞).

Therefore, the sequence (an
√

1 + (a′n)2χIM )n∈IN converges strongly to MχIM in L2(0, `). Hence,

up to extraction, one can assume that an
√

1 + (a′n)2 →M almost everywhere in IM . Since (an)n∈IN

converges locally uniformly to aM , it easily follows that (a′n)n∈IN converges almost everywhere to
a′M in IM and thus aM

√
1 + a′2M = M in IM . Moreover, according to Lemma 3, there holds

aM
√

1 + a′2M 6 bM and thus

aM

√
1 + a′2M = aM = a0 = bM in {bM = a0}.

We have thus proved that aM
√

1 + a′2M = bM almost everywhere in (0, `), yielding that limn→+∞ λ1(an) =

λ1(aM ). As a consequence, Problem (25) has a solution aM such that aM
√

1 + a′2M is bang-bang.

3.4 Proof of Theorem 2

Notice that the sequence of sets (SMa0,`,S0
)M>a0 is increasing for the inclusion, and there holds

Sa0,`,S0 =
⋃

M>a0

SMa0,`,S0
.

It thus follows that

sup
a∈Sa0,`,S0

λ1(a) 6 lim
M→+∞

sup
a∈SMa0,`,S0

λ1(a)

= lim
M→+∞

λ1(aM ).

Finally, since

aM (x)
√

1 + a′M (x)2 =

{
M if 0 < x < xM
a0 if xM < x < `,

with xM = S0−a0`
M−a0 , the family

(
aM , aM (x)

√
1 + a′M (x)2

)
M>a0

τ -converges to (a0, a0 + (S − a0`)δ0).
Therefore, using the same arguments as in Proposition 1, there holds

sup
a∈Sa0,`,S0

λ1(a) 6
αa2

0

∫ `
0
ϕ′0(x)2dx+ βa0

∫ `
0
ϕ0(x)2dx+ β(S0 − a0`)ϕ0(0)2 + σa2

0ϕ0(`)2

a2
0

∫ `
0
ϕ0(x)2dx+ δϕ2

0(0)
= λ.

(37)

Conversely, considering any sequence
(
an, an

√
1 + a′2n

)
n∈IN

that τ -converges to (a0, a0 + (S0−
a0`)δ0) (for instance, the one exhibited in Remark 4) yields

sup
a∈Sa0,`,S0

λ1(a) > λ,

by using Proposition 1. The conclusion follows.
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4 Perspectives

In this article, we have addressed the issue of finding the optimal shape of a fin, by using simplifying
assumptions about the model: axisymmetric shape, one-dimensional parabolic equation governing
the temperature inside the fin, etc. Even if such assumptions are often considered in the engineering
literature (see e.g. [3, 18]), it would be natural to investigate a more realistic model of thermal
conduction.

The simplified model considered in this article shows that a relaxation type phenomenon arises
when investigating the existence of a fin optimizing cooling properties. We propose the following
general formulation for a general thermal fin: the domain Ω occupied by the fin is assumed to be
simply connected and bounded. Introduce Γi, the inlet of the fin, Γlat its lateral surface and Γo
the outlet of the fin, so that ∂Ω = Γi ∪ Γlat ∪ Γo. A possible temperature model for this fin writes

∂T
∂t −4T = 0 in Ω
T (0, ·) = Td in Ω
−k ∂T∂ν = h(T − T∞) on Γlat
∂T
∂t = γ ∂T∂ν on Γi
−k ∂T∂ν = hr(T − T∞) on Γo

(38)

where all the constant are positive and can be defined according to [1, 3, 18], Td ∈ H1/2(Γi) , ∂
∂ν

is the outward normal derivative on the boundary ∂Ω.
Performing the same asymptotic analysis as the one in Section 1.2, it appears relevant to

investigate the shape optimization problem

inf
Ω open

Per(Ω)=P0

µ1(Ω), (39)

where P0 is a positive real number, and µ1(Ω) is the first eigenvalue associated to the eigenvalue
problem

−4ϕ = µ(Ω)ϕ in Ω

−k ∂ϕ∂ν = hϕ on Γlat
γ ∂ϕ∂ν = −µ(Ω)ϕ on Γi
−k ∂ϕ∂ν = hrϕ on Γo

(40)

We foresee to analyze this shape optimization problem in a future study.

Acknowledgment. The authors warmly thank Gilles Marck for useful discussions about the
physical modeling of heat conduction problems.

A Proof of Lemma 1

Note first that H1(0, `) ↪→ Ca continuously. Moreover, for every f and g in Ca, there holds using
an integration by parts and introducing ϕa = Laf and ψa = Lag,

〈Laf, g〉a = 〈ϕa, g〉a

=

∫ `

0

a(x)2ϕa(x)g(x) dx+
α

γ
ϕa(0)g(0)

= −α
∫ `

0

a(x)2ϕ′a(x)ψ′a(x) dx− σa(`)2ϕa(`)ψa(`)− β
∫ `

0

a(x)
√

1 + a′(x)2ϕa(x)ψa(x) dx

= 〈f, ψa〉a = 〈f,Lag〉a,
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since ϕa solves Equation (10). We thus infer that La is selfadjoint in Ca.
Let us show that La is compact. Let (fn)n∈IN be a sequence of Ca such that ‖fn‖a 6 1 for

every n ∈ IN, where ‖ · ‖a stands for the norm induced by the inner-product 〈·, ·〉a. We will prove
that, up to a subsequence, the sequence (ϕn)n∈IN where ϕn = Lafn converges in Ca. Let n ∈ IN.
Multiplying the main equation of (10) (where ϕ and f have been respectively replaced by ϕn and
fn) by ϕn, one gets by using an integration by parts,

α

∫ `

0

a(x)2ϕ′n(x)2 dx+ σa(`)2ϕn(`)2 + β

∫ `

0

a(x)
√

1 + a′(x)2ϕn(x)2 dx = −〈ϕn, fn〉a.

On the one hand,

α

∫ `

0

a(x)2ϕ′n(x)2 dx+σa(`)2ϕn(`)2+β

∫ `

0

a(x)
√

1 + a′(x)2ϕn(x)2 dx > min{αa2
0, βa0}‖ϕn‖2H1(0,`),

and on the other hand, combining the Cauchy-Schwarz inequality with the continuity of the map-
ping Tr : H1(0, `) 3 ϕ 7→ ϕ(0), one gets the existence of a positive constant C such that

|〈ϕn, fn〉a| 6 ‖fn‖a‖ϕn‖a 6 ‖ϕn‖a 6 C‖ϕn‖H1(0,`).

Therefore, the sequence (ϕn)n∈IN is bounded in H1(0, `) and converges thus up to a subsequence,
weakly in H1(0, `) and strongly in L2(0, `) to some element ϕ ∈ H1(0, `) according to Rellich
compactess embedding theorem. Finally, by using the compactness of the mapping Tr, one gets
that he sequence (ϕn)n∈IN converges to ϕ in Ca.
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