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In this paper, we present a flow enabling design space exploration for partially reconfigurable
systems with real-time constraints, called FoRTReSS. FoRTReSS allows estimating mixed hard-
ware/software implementations of an application where the hardware design space, the floor-
planning of reconfigurable regions placed on the FPGA, is automatically inferred from applica-
tion resources information, interface constraints and the target device. Real-time constraints are
verified by a highly configurable SystemC simulator, RecoSim, handling applications described
as Control Data Flow Graphs (CDFGs). We demonstrate our approach on an H.264 video de-
coder and an H.265 encoder targeting the latest Zynq-7000 platforms from Xilinx, embedding
a Cortex-A9 dual-core processor. We show that an hardware/software implementation of the
H.264 decoder using both processor cores and slice decomposition is possible under real-time
constraints, effectively achieving a framerate of 30 frames per second while reducing area re-
quirements compared to a static implementation, using 54% less slice resources and 44% less
BRAM resources. Additionally we report the ability of the methodology to address very early
analysis from high level application specification on the example of an H.265 encoder.

1. INTRODUCTION

The last few decades saw the emergence of reconfigurable computing through Field Programmable Gate
Arrays (FPGA). These devices provide a high level of parallelism along with programmability, bridging the
gap between programmable processors and high performance, but expensive, Application Specific Integrated
Circuits (ASIC). Over generations of devices, FPGAs had more and more computing power so that entire
systems can now be built into a single device, including processors, hardware accelerators, memory controllers,
I/O peripherals and so on. They are called System on Programmable Chip (SoPC). Processors included in
the design can be either soft cores (i.e. using the FPGA fabric as resources, for instance MicroBlaze or Nios
cores) or hard cores (i.e. integrated within the die, hardwired to the FPGA). In the latter case, the processors
are much more powerful than soft cores, hence providing designers with high performance processor-centric
architectures like the Xilinx Zynq-7000 devices, based on a dual ARM Cortex-A9 MPCore [36]. However, the
hardware part of the Zynq-7000 does not offer many logic cells compared to state-of-the-art Virtex-7 FPGAs
built with the same 28 nm technology.

At first, these devices could only be programmed in an all-or-nothing style such that all services and IP
cores are stopped during reconfiguration. In the case of communication services, pieces of data might be
lost and degrade the Quality-of-Service (QoS). In critical applications, this cannot be tolerated. This led to
the development of Partial Reconfiguration (PR), introduced with the Xilinx XC6200 series, which allows
modifying the behaviour of pre-defined Reconfigurable Regions (RR) without affecting the remaining logic.
The circuit functionality can thus be modified at runtime depending on the application requirements and/or
execution. Since not all the resources are present on the FPGA persistently, area requirements are reduced. If a
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careful study is made at design time, it is possible either to switch to a smaller and cheaper FPGA or to add
extra features on the target device [22, 28].

Despite promising features, PR is still not widely spread in the industry [26]. The major issue concerns
designing the systems satisfying application requirements as well as technology-specific constraints inherent to
PR systems. For instance, mutualising reconfigurable region resources between multiple tasks is possible, but
implies PR-compatible scheduling that takes into account reconfiguration times, which cannot be neglected for
applications with severe real-time constraints [8, 31]. Moreover, Design Space Exploration (DSE) still remains a
great challenge: existing design flows do not allow DSE during early development stages but rather during the
late FPGA implementation stage when the cost implied by any architecture modification can be prohibitive.
Hence, FPGA engineers prefer relying on existing, well-known and reliable design flows, even if the solution
is sub-optimal in terms of logic resources or device cost.

Our contribution in this paper is an extension of previous work described in [12]. The methodology consists
of FoRTReSS, a Flow for Reconfigurable archiTectures in Real time SystemS that enables both hardware and
software design space exploration for partially reconfigurable applications with real-time constraints, along
with its graphical user interface, FoRTReSS Toolbox. Our approach is based on two main steps: first, an
architecture is generated in terms of processors and reconfigurable regions. RRs are inferred from synthesis
results in the form of netlists and text reports and/or XML (eXtensible Markup Language) task descriptions.
The second step consists of the simulation of this architecture using RecoSim, a Reconfigurable simulator
written in SystemC. This step automatically verifies whether the application real-time constraints are met with
a given QoS.

Since our previous work, a lot of significant improvements have been made on RecoSim and new features
have been introduced. First of all, the model of computation changed a lot as RecoSim now handles Control
Data Flow Graphs (CDFGs) instead of DFGs. Diagrams may contain cycles and loopbacks, while tasks can
be periodic or not. We also added type information to the interfaces (e.g. AXI, PLB, FIFO...) and refined our
communication model in order to provide the user with a more accurate description. Another important
extension consists in adding software considerations into FoRTReSS. It is now possible to add processors to
the design and defining several implementations for one task. This feature is illustrated by new use cases: an
H.264 video decoder and H.265 video encoder with multiple hardware and software implementations of tasks.
FoRTReSS provides several Application Programming Interfaces (APIs) to easily modify and/or develop task
and scheduling algorithms. The paper also targets a state-of-the-art Zynq device. In fact, any device, already
existing or not, can be targeted using a flexible device description using XML.

The remainder of the paper is structured as follows: in Section 2, we discuss works related to FPGA
floorplanning and existing PR design flows. Section 3 introduces our methodology. In section 4, our approach
is validated using two representative applications with performance and architecture results. Finally, future
works and conclusions are outlined respectively in Section 5 and Section 6.

2. RELATED WORK

A. FPGA floorplanning
One primordial problem is the task placement on FPGA led by a placement algorithm. Two categories of
algorithms are clearly identified: off-line and on-line. In the first category, it is possible to investigate a
near-optimal or optimal solution because the off-line scenario is found before the execution of the system. In
the second category, the placement decision must be taken quickly because time is very critical. Anyway, RR
placement for partially reconfigurable systems is necessarily defined during the design phase. Hence, we only
discuss below on off-line floorplanning techniques.

The placement of hardware tasks on an FPGA is an NP-Complete problem and the time to reach a solution
depends mainly on the number of the tasks. The work in [5, 6] introduces an exact resolution of scheduling
problems. These approaches are very time-consuming and are not scalable. Rather than finding the best
solution, it is preferable to find a near-optimal solution in a reasonable amount of time, based on heuristics. For
instance, authors in [3] define 3D FPGA templates in time and space dimensions and use simulated annealing
and greedy research heuristics to place Reconfigurable Functional Unit Operations (or RFUOPs). Moreover,
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Fig. 1. Physical disposition of resources inside an FPGA

Lodi et al. propose in [25] and [24] different off-line approaches to resolve hardware task placement as 2D
bin-packing problem for instance Floor-Ceiling algorithm and Knapsack packing algorithm. However, these
approaches are not adapted for real-time embedded systems because the scheduling of tasks has to be known
at compile time.

Authors in [29] introduce an approach based on simulated annealing in order to find out the bigger common
area between two reconfigurable zones. This common area will not be modified and the reconfiguration
overhead will decrease. Authors also consider traffic congestion in the design brought by placing reconfigurable
regions close to each other, which helps to remove infeasible solutions in many designs.

In [27], authors present a resource- and configuration-aware floorplacement framework that uses metrics
such as external wire length (total length of wires connecting reconfigurable regions) to qualify a solution. They
report an average improvement of 50% when using this metric. Their main objective is to group reconfigurable
units together without taking into account the heterogeneity of FPGA resources. Indeed, current FPGAs
include different partially reconfigurable resources such as logic blocks (e.g. Configurable Logic Blocks),
memories (e.g. Block Random Access Memory) and Digital Signal Processing blocks. A column includes only
one kind of resource. Hence, a flexible model is essential because the structure of FPGAs differs.

A methodology for an architecture-aware and reconfiguration-centric floorplanning is introduced by [34].
To obtain the solution, a cost function is defined by the total wire length and wastage of resources without
taking into account the task dependencies or timing constraints for the application. However, the real-time
aspect is essential and must be considered for partially reconfigurable systems. A lot of application domains
such as robotics, video streaming, automotive, avionics and so on, depend on these constraints.

An approach similar to FoRTReSS has been developed by authors in [23]. This methodology, called FoRSE,
(standing for Formulation-level partial Reconfiguration design Space Exploration) performs a mathematical-
based exploration of the design space, looking for a Pareto optimum for the application, considerably reducing
the exploration time compared to methodologies requiring implementation (implementation-level versus
formulation-level). Nevertheless, this formal method does not take into account potential real-time constraints.
However, it is worth noting that this methodology relies on Xilinx FPGA models to represent an FPGA device.

According to our knowledge, the works on floorplanning for partial reconfiguration are often treated
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separately or even are not studied at all. We think that these two problems must be considered together, as the
floorplan problem is often meaningless without the communication channels to support it.

B. PR design flows
To complete this overview of methods for partial reconfiguration, it is also important to give a clear picture
of partial reconfiguration design flows. Xilinx was the first company to introduce such a feature for their
FPGAs [37]. Their flow inspired Virginia Tech’s open-source tool, OpenPR [30]. Altera also recently unveiled
a new version of Quartus enabling dynamic and partial reconfiguration for their state-of-the-art Stratix V
FPGAs [1] with a PR flow pretty much similar to Xilinx’s one. Another interesting flow is GoAhead [4], an
academic tool providing some new partial reconfiguration features such as module relocation (an extensively
adressed subject [9, 16]). GoAhead also allows mapping two reconfigurable modules simultaneously inside
the same PR region (which is also possible using only Xilinx tools but with an important extra design effort).
We believe that a design methodology should not be (or the least possible) technology-dependent and also
extendable to virtual FPGAs and architecture exploration of physical FPGAs.

FoRTReSS addresses these issues by providing designers with a feasible floorplan for state-of-the-art
heterogeneous devices and a task scheduling that satisfies the application timing constraints. The FoRTReSS
device model is flexible in order to be compliant with future device architectures or virtual FPGA platforms.
Finally, FoRTReSS can handle task and RR interfaces to represent various communication models (e.g. point to
point, shared bus...).

3. OUR APPROACH

A. FoRTReSS overview
FoRTReSS is a tool providing the user a way to explore the partial reconfiguration design space and ultimately
proposing a set of reconfigurable regions and processors that will ensure a certain Quality-of-Service (QoS) for
a given application. The term quality of service refers to the rate of task executions that respected their deadline.
For instance, hard real time applications would typically require a QoS of 100% whereas in applications such
as video streaming, it is acceptable to lose some packets and have a degraded QoS.

Figure 2 shows an overview of the FoRTReSS flow. It is based upon a Y-chart approach where application
and architecture are described separately. The application is described as a Control Data Flow Graph (CDFG)
or a set of periodic tasks with dependencies. Each task has some timing characteristics such as a deadline or a
period (zero for non-periodic tasks), and a set of possible implementations with different performance, resource
and energy trade-offs. These implementations can be hardware (i.e. to be mapped on a reconfigurable region)
or software (i.e. to be mapped on a processor core) and share a set of parameters such as the task Best/Worst
Case Execution Time (BCET/WCET). Some other parameters are different from one type of implementation
to another. Typically, hardware implementations are defined by their resource requirements resulting from
synthesis. This information can be extracted from Xilinx synthesis reports or from XML-based files (.tsk
extension) developed for compliance with other synthesis tools. Describing task hardware implementation is
mandatory in order to determine a reconfigurable region set which might fit the application. FoRTReSS might
also require full netlists of each implementation (Xilinx NGC or standard EDF) in cases where compressed
bitstreams are used to optimise reconfiguration times (see section C.6 for more details). On the other hand,
software implementations are characterised similarly by the time required to load the binary executable into
the instruction memory of the processor.

The target architecture is described separately as an FPGA and a set of processor cores that can be either on
the same die (Virtex-5 with integrated PowerPC or the latest Xilinx Zynq-7000 SoC with a CortexA9 processor),
external to the FPGA or soft cores instantiated with its configurable logic resources (e.g. MicroBlaze). The
FPGA architecture is also described using an XML-based file format in order to be compatible with existing
devices as well as custom, virtual or non-existent (future) architectures.

FoRTReSS uses the application resource requirements and FPGA description to find potential reconfigurable
regions. The validation of the application quality-of-service is carried out using a SystemC based simulator
called RecoSim. Tasks are scheduled under a standard Earliest-Deadline-First (EDF) policy integrated in this
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Fig. 2. PR flow using FoRTReSS

simulator and that can be modified or extended to other scheduling policies due to a dedicated API (Application
Programming Interface). RecoSim also generates traces, statistics and log files for every simulation for debug
purposes. Finally, FoRTReSS provides an architecture fully defined in terms of RR by an UCF file (User
Constraints File, used by Xilinx) and an XML representation of the regions (.rrd extension). The resulting
floorplan can be viewed using the Xilinx PlanAhead design tool as shown in Fig. 2.

The SystemC simulator has already been introduced in a previous publication [13]. However, the model of
computation has been improved since in order to better process the simulation of real time constraints. The
following sections give an update on these features and a description of the underlying FoRTReSS flow in
order to better understand the set of parameters impacting the design space exploration process.

B. RecoSim overview
RecoSim, for Reconfigurable Simulator, is a SystemC/TLM simulator that verifies if an architecture can satisfy
real-time constraints of an application. From a description of possible mappings of tasks on the execution units,
RecoSim uses Transaction-Level Models of the system to ensure fast simulation while considering abstract
communication details, reconfiguration overheads (that can be inferred from cost models such as [14]), context
switches, hardware and software preemptions, for a wide range of architectures.

B.1. RecoSim model of computation

The main input of RecoSim is an application description given in the form of a Control Data Flow Graph,
which means that communications from a module to another can be conditional. An example of specification
that can be simulated by RecoSim is shown in Figure 3. Compared to standard Data Flow Graphs (DFGs),
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Fig. 3. Example of CDFG handled by RecoSim

CDFGs introduce control at the task level to make conditional communications possible. For instance, task T2
in Figure 3 can send data to Testbench IN and task T3 independently: it is possible to make T2 send n packets
to T3 after each execution (i.e. when new data are generated by the task algorithm) while sending data to
the testbench once every m executions only. Another feature of this CDFG model is the ability to describe
cyclic applications: on the first iteration, no relevant data are provided by T3 and hence T1 only waits for
data incoming from the testbench. Finally, it is also possible to simulate several communication channels
linking the same two tasks (see connections between testbench and task T1 in Figure 3). This can perfectly
describe separate data and metadata channels to evaluate different performance between these connections.
For example, a metadata channel would use a low speed bus (AXI Lite bus) while the data channel would
need a more efficient bus (AXI bus).

The application must be surrounded by two testbenches as depicted in Figure 3, separating stimuli generation
from result verification. Unlike other tasks, we suppose here that testbenches are persistent in the system (i.e.
not dynamically reconfigurable). They also have no implementation explicitely defined, however testbench
algorithms, which decribes the behavior of data sending or receiving, might be modified using a dedicated
API.

Applications can be composed of periodic tasks. The main difference with non-periodic applications resides
in the way tasks are started: for non-periodic applications, the task is launched whenever all incoming sockets
have sent their data (according to the task algorithm controlling which socket is required for this task execution).
In case of periodic applications, it is also required that a new period has started. If not, the task has to wait for
this new period and execution is delayed. However, its absolute deadline is still calculated with regard to the
task relative deadline (except whenever incoming data are ready like in full dataflow applications).

Either way, the application has to be simulated long enough to ensure that the architecture maintains the
required quality of service. The minimum simulation time for periodic applications is a hyperperiod. For DFGs,
it is defined as the Least Common Multiple (LCM) of task periods whereas for CDFGs, the additional control
part changes this hyperperiod and it is not possible to predict its value automatically. Moreover, in order for
every tasks to be running in the same hyperperiod, the system should be in a steady state. We consider that
the upper limit for the time required to enter this steady state can be estimated as the sum of every worst case
execution times. Adding this time to the hyperperiod gives an estimation of the minimum simulation time.
Note that it is the responsibility of the designer to ensure that this simulation time is respected and can be
modified in FoRTReSS flow. The uncertainty brought by CDFGs into the computation of the hyperperiod
leads FoRTReSS to notify the user when the simulation is relevant, but the designer might want to manually
compute the minimum simulation time (or over estimate it) when designing the testbench.

Let us note WCET(Ti) the Worst Case Execution Time of task i. Equation (1) gives us the minimal simulation
time for the system.
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Fig. 4. Task preemption within RecoSim

tsimulation,min = LCM (T1..Tn) +
n

∑
i=1

WCET (Ti) (1)

B.2. Mapping tasks to processing units

Recosim simulates the mapping of application tasks to the processing units and the corresponding execution
(i.e. run-time allocation and scheduling). These processing units are either hardware (reconfigurable regions
infered by FoRTReSS for the target FPGA) or software (user-defined processor cores). The mapping decision
is made by the reconfiguration manager considering the different software and hardware implementations
associated with each task as well as the availability of reconfiguration units: the default behaviour consists in
getting the most out of the architecture by using As Many units As Possible (AMAP mapping). The choice
of an implementation also depends on parameters such as the configuration time, execution time or energy
consumption. A dedicated API is defined to help the definition of specific scheduling and allocation techniques.

B.3. Task preemption and context switches

We have already presented the management of preemption for hardware tasks in [13]. Our preemption model
is based on a request/grant system where preemption points are explicitely defined in the task implementation
code as depicted in Fig. 4. The reconfiguration manager does not preempt the task but it is rather the task
that issues a preemption request (cooperative multitasking). This behaviour fits well with the execution of
hardware tasks which preemption is more complex than software tasks. Furthermore, context evolves during
task execution as the number of registers used to store important data are changing. Hence, it is understandable
that context switches, operated by register save/restore operations, should be performed when it has the
fewest impacts.

This approach is also compatible with classic software preemption by defining as many preemption points
as instructions in the executable. This way, the task will notify the manager after each instruction, making
the task preemptible at every moment of its execution, emulating preemptive multitasking. However, the
simulation time overhead inherent to this technique (due to an increase of communication between the module
and the reconfiguration manager) can be fairly important but considered reasonable compared to accuracy. For
example, we simulated an application composed of 30 tasks with a scenario representing an execution time of
2 seconds on a Core I7-3740QM running at 2.7GHz with 8GB of RAM. With a preemption resolution of 1 us, the
execution time on the computer is 810 seconds against 1.53 seconds without preemption. This is a significant
increase, but considering the complexity of preemption is at this cost. This overhead will be much closer to
1.53 seconds in real cases as real applications will only require a few preemption points per task. Nevertheless,
this overhead is necessary for an accurate modeling of software tasks. In fact, the relationship between these
two quantities is shown in Equation 2, where Ni is the number of preemption points for the task i.

Overhead (in seconds) =
TaskNumber

∑
i=0

0.4 × Ni (2)
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Fig. 5. Task finite-state machine

Using (2), the designer has to perform a trade-off between extreme precision of software preemption, quality
of the results (some good solutions might be missed when losing precision in some corner cases) and overall
flow execution time.

Figure 4 also illustrates an example of context switch for a task execution. Context save and restore
operations are required whenever a task is preempted. There is also an optional context switch at the beginning
and at the end of task execution due to the distinction between hardware and software execution. Software
context switches are processor dependent whereas for hardware implementations, this context switch depends
on the implementation (two implementations of the same task might have different context switch times due
to a different number of registers to save/restore, possibly some memories). Some work has been done on
context switch for hardware tasks such as [5, 17, 20]. However, context switching is not required after a task
configuration, but might be necessary for proper task execution (for instance, IP configuration). Hence, the
designer is given the possibility to enable context switching after configuration for each implementation.

B.4. RecoSim task finite-state machine

RecoSim is based on the Finite-State Machine (FSM) depicted in Figure 5. This FSM represents the states and
transitions of the application tasks:

• Inactive: task is not running nor placed on the FPGA.

• Queued: after an execution request has been granted by the scheduler and a processing unit has been
chosen, the task is queued, waiting for reconfiguration, ordered in a first-come-first-served basis since
task priority is handled within the scheduler waiting queue.

• Configuration: task is being configured on the FPGA.

• Context load: loads the task context (for instance after being preempted or if necessary before task
execution)

• Idle: task is idle, waiting for the beginning of next period (transitory for non-periodic applications)

• Waiting: task is waiting to receive communications from its predecessors

• Running: task is running

• Preempted/mapped: task reached a preemption point and notified the reconfiguration manager. Task is
not preempted yet.
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• Context save: saves the task context when the task is being preempted. It may also be needed after task
execution.

• Preempted/inactive: task has been actually preempted by the reconfiguration manager and has been
replaced on the processing unit. It is brought back into the waiting queue in order to be configured again
and resume execution.

• Mapped: task is placed on a reconfigurable region but not running. It can be safely replaced by a higher
priority task by the reconfiguration manager.

B.5. Interfaces and communications

It is possible to use different types of interface (e.g. AXI, PLB, FIFO...). However, some tasks might have many
interfaces (for instance, task 1 from Figure 3 has four interfaces: two interfaces with the testbench, one with task
2 and one with task 3) and it seems rather inappropriate to consider exhaustively all possible types of interface
(AXI, PLB, FIFO...) for each reconfigurable region hosting this task (especially in case of several bus interfaces).
In order to reduce the overall number of interfaces that should be implemented on a reconfigurable region, we
introduce the concept of physical and virtual interfaces. Virtual interfaces are the ones required by the task as
described on the diagram (the four interfaces of task 1). On the other hand, physical interfaces are the ones
actually used in the implementation. The number of physical interfaces can vary from one implementation to
another. A situation can occur when there is less physical than virtual interface in the application diagram.
In such a case, since it is not possible to use the same interface for distinct but simultaneous data transfers,
accesses to the physical interfaces should be made sequentially, using a first-come, first-served policy. In the
case where no physical interfaces have been defined for the task implementation, RecoSim automatically uses
the information from the diagram to provide the task with as many interfaces as declared in the diagram, to
maintain the best performance.

As a matter of fact, virtual interfaces might require a permanent access to a physical channel to optimize
performance. Typically, task T1 from Figure 3 has two virtual input interfaces from Testbench OUT that can
represent data and metadata channels. The data channel can be defined as a priority channel: a physical
interface is dedicated to this virtual interface while potential other interfaces share the remaining common
interfaces. This choice, which is up to the designer, is a mean to reduce data transfer latency, as the cost of an
additional resource overhead for the dedicated physical interface.

C. FoRTReSS flow
Figure 6 shows the different steps composing the FoRTReSS flow. Since the original flow is described in [12],
only major features and enhancements are described here.

C.1. RR determination per task

The first step in the architecture definition process is to determine a pool of reconfigurable regions that are
able to host one or more tasks of the application in terms of resources. This reference pool is built by browsing
the XML-based representation of the target device resources. These RRs are shaped and mapped on the
reconfigurable device with regard to the heterogeneity of the device resources, with possible RR overlapping
to have a wider choice of RRs later. They are also built to be as close as possible to the resource requirements of
the current task, and trying to waste the smallest amount of resources (this is called internal fragmentation).
However, experience shows that defining a region based on minimising the number of resources are generally
results in a failure during the routing phase. Furthermore, resources information from the synthesis step does
not take routing into account. For instance, Xilinx recommends adding 5% extra resources to the reconfigurable
region. For a more accurate description, FoRTReSS has a parameter for global routing margin that can be
overriden for every hardware implementation that might require more routing ressources.

FoRTReSS also takes care of interfaces: as we already mentioned, it is possible to define a set of interfaces
for task implementations. In case of hardware implementations, they are also used to constrain physical task
placement on the FPGA. These restrictions are inferred from interfaces placed on the FPGA by the designer. It
is also possible to prevent a region from being used by any reconfigurable region (static area). Typically, these
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Fig. 6. FoRTReSS flow

features can be used to force the placement of reconfigurable regions around the actual location of interfaces
(located for instance between the FPGA and Cortex cores in a Zynq-7000 device).

The search for reconfigurable regions is very useful when starting from scratch, but it is also possible to use
FoRTReSS when the placement and number of reconfigurable regions are already defined. For this purpose,
an XML-based file format describing predefined regions can be read to avoid being forced to explore the
reconfigurable region space.

C.2. RR sorting

Once we have determined a pool of compatible RRs for each task, it is sorted according to a cost function in
order to select the best regions for the application. The cost function is described in Equation 3.

CostRR = k1 ∗ Costshape

+ k2 ∗ Costcompliance

+ k3 ∗ Cost f ragmentation (3)
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The metric CostRR is formulated around three components. First, it depends on the shape of the RR with
the metric Costshape. As mentioned in previous subsection, regions can have different shapes. However, the
more you complexify the shape, the less likely routing is to be efficient, this can possibly lead to failure at the
floorplanning step. Therefore, we penalize regions with complex shapes by counting their vertices.

Costcompliance refers to the concept of Application Architecture Adequacy (often noted AAA). It takes into
account the number of tasks that can be mapped on the reconfigurable region. Bigger regions might host a more
important set of tasks, hence giving more freedom to the scheduler for runtime mapping of the application.

Finally, the last metric Cost f ragmentation corresponds to the internal fragmentation and is used to penalize
regions that have been built with too many resources compared to the task they host. This cost tries to avoid
the waste of resources inside a reconfigurable region. This component actually reflects the percentage of
unused resources inside a reconfigurable region.

Since all components have different amplitudes (Costshape takes values from 4 to 10 vertices, Costcompliance
from 0 to n incompatible tasks, n being the number of tasks in the application), it is important to weight them in
order to share the same dynamics. On top of that, k1, k2 and k3 in Equation 3 correspond to parameters defined
in our flow that can be tuned to promote either the shape, the compliance or the fragmentation component of
the cost function. Default values are set to one to give the same importance to all three components.

C.3. RR selection for simulation

During this step, the tool picks the RRs that will constitute the system architecture. It searches for the minimum
number of RRs that will make the simulation step succeed in order to optimize the partially reconfigurable
area. FoRTReSS also addresses the external fragmentation which represents the physical distance between
the reconfigurable regions, calculated as the sum of all Manhattan distances between regions. Low external
fragmentation reduces the total wire length and thus provides better results during the implementation phase:
the regions are packed on a small part of the device, optimizing the remaining area for static logic.

There are two main approaches for the minimisation of fragmentation: reconfigurable regions should be
placed as close as possible to each other or there should exist a minimum distance between them. The last
option considers congestion at the interconnect level if regions are too close [29], inducing a drop on the
frequency that can be reached by the system. We decided to let this choice up to the designer with a parameter
representing the minimum distance between reconfigurable regions.

In order to reduce resource requirements for PR systems, the application is partitioned. If tasks have very
different resource needs, i.e. have very different resource needs (which is the case most of the time), small
tasks hosted within big regions are in some ways resource inefficient. To prevent this situation, we try to group
tasks with similar resource requirements: tasks within the same group will share the same reconfigurable
regions. Therefore, tasks with small requirements will not be placed on regions defined for bigger tasks. The
first step to partition the application consists in sorting the tasks according to a resource cost function that
penalizes the waste of scarce resources. The cost of a reconfigurable resource is inversely proportional to the
amount of resources available on the device, while fixing CLB (logic elements) cost to 1.

Then, the tasks are split into three categories according to pre-defined trigger values: optimum, acceptable and
unacceptable mapping to reflect adequacy between a task and the biggest RR. An example is given in Figure 7.
Optimum tasks are the more expensive in terms of resources and their mapping to bigger reconfigurable
regions is relevant (tasks t5 and t6 in figure 7). Acceptable tasks do not waste too much resources within the
reconfigurable region (tasks t3 and t4) while unacceptable tasks represent a clearly bad allocation scheme (tasks
t1 and t2). Reconfigurable regions from the initial simulation subset (and the biggest ones according to the cost
computed in previous section) will host both optimum and acceptable tasks. New regions are created based on
the maximum resource needs of acceptable and unacceptable tasks, replacing some of the biggest reconfigurable
regions in the initial set. These regions cannot physically host the biggest tasks, explaining the area savings
that can be obtained by partitioning the application.

Trigger values are user-defined with arbitrary default values of 33% and 66% (percentage of RR resources
use). The designer should set the optimum trigger value in order to isolate resource demanding tasks from
the others. However when many tasks are isolated, more reconfigurable regions should be used and less area
optimisation is also expected in this case. The second trigger prevents tasks with low requirements from being
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Fig. 7. Partitioning step

mapped to big regions and should be set so that all partitions are balanced (i.e. containing similar number of
tasks). The trigger values should then be updated from one exploration to the other depending on the previous
results.

C.4. Processor selection for simulation

While FoRTReSS focus is on the determination and placement of reconfigurable regions, it is also possible
to design mixed systems including one or more software processing units. However, these elements are not
processed exactly the same way as hardware reconfigurable regions. Processor cores are added statically at the
beginning of the exploration process while reconfigurable regions are dynamically added to the simulation
subset. In a future release, we aim to extend exploration to be able to analyse automatically software and
hardware implementation opportunities. In the current version, several simulation iterations are needed to
consider different number of cores.

A processor type is associated with each software implementation to determine on which core it can be
mapped during simulation (e.g. MicroBlaze, PowerPC, Cortex A9 for Zynq platforms). We also defined
a context switch parameter to represent the time required to save and restore an execution context. This
parameter is processor-dependent.

C.5. RR and processor allocation

When an RR is selected for simulation, the tool defines which region is used for each task. This allocation
step is the most complex since it is the one giving the greatest degree of freedom to the designer. The most
obvious constraint is that the task should fit the RR in terms of resources. However, if the task can be placed
on different RRs, this will lead to as many bitstreams stored in memories since bitstream relocation is not
currently supported (using the same configuration bitstream for one task on several reconfigurable regions).
The memory footprint associated with many configuration bitstreams cannot be neglected in embedded
systems where memory can be a scarce resource. Also, larger memories such as DDR have higher access times
than FPGA internal memories that can affect reconfiguration times. Hence, it is important not to map tasks to
every possible RR but rather limiting the task-RR association to a mimimum for a better memory footprint.

There are two distinct phases in the allocation process. The first phase consists of finding a viable solution,
i.e. finding the mimimum number of reconfigurable regions and processors for the application to reach the
required QoS. Hence, the first allocation is pretty straightforward and consists in allowing every combination
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of tasks on RRs to maximise the freedom of the scheduler for on-line task placement. If in spite of this freedom
simulation fails, it means that trying to improve the mapping is meaningless and that is it necessary to add
another region to the simulation subset. Upon first simulation success, task allocation may be optimized.
Furthermore, the first step is greedy in terms of memory usage since there could be a lot of bitstreams to store.

An optimisation based on removing pairs of task/region from the solution is applied using the following
strategies:

• Least used allocation: removes the couple task/RR that is the least used during the simulation (i.e. the
association that is most likely to be removed without altering the system performance).

• Highest internal fragmentation: removes the task wasting the most resources on a reconfigurable region.

• Highest memory cost: removes the task having the biggest bitstream.

Because memory footprint improvement differs from one use case to another, there is no best optimization
strategy. Therefore, the designer is left with the possibility to select the strategy that best suits to the application
needs. Note that for the last strategy, involving bitstream size, we do not consider bitstream relocation (using
one bitstream for configuring several regions). We will include bitstream relocation management in a future
release of FoRTReSS.

Interface related constraints are not taken into account during this step: we consider it is a result of the
allocation step. It is thus possible to find situations where an IP with a FIFO interface and an IP with an AXI
interface would share the same reconfigurable region. In such case, the reconfigurable region must access both
AXI and FIFO interfaces. A common approach is to separate the IP core from the communication interfaces
in order to reduce reconfiguration time and resource overheads. Interfaces are actually connected to their
associated IP core by a router which is parameterised at configuration time. As grouping IPs with different
interfaces are known to be inefficient, improvements are foreseen on these aspects.

This step allocates software implementations to processor cores as well. Compared to hardware mapping,
the difference lies in the optimisation strategies than can not be strictly the same: processor level optimization
is based on the Least used allocation strategy which is the only one implemented in this case but could be
extended by another strategies such as a low power strategy.

C.6. PR cost model

Before simulating the solution, it is necessary to calculate the reconfiguration times associated with every
task-RR association. For this purpose, we use the cost model developped for an optimised reconfiguration
controller called FaRM [14] (Fast Reconfiguration Manager). FaRM also allows for bitstream compression to
further reduce the memory footprint without degrading configuration performance.

C.7. Simulation with RecoSim

At this point, we can simulate a solution to check whether this architecture is fulfilling the timing constraints
of the application. The application is considered frozen and the only parameters that can be modified are
those related to the scheduler. For instance, FoRTReSS comes with an Earliest Deadline First (EDF) scheduling
strategy and As Many As Possible (AMAP) mapping strategy (using as many processing units as possible),
but the designer can define custom strategies using dedicated APIs. The time spent by the scheduler to decide
the next move is simulated in order for the simulation to be time-accurate. The main objective is to obtain a
realistic schedule and, through measurements or an accurate cost model, to ensure compliance with real-time
constraints. However, this scheduler is currently under implementation based on previous work described
in [7].

RecoSim can simulate the simultaneous mapping of several applications on the target FPGA (an application
being a sequence of tasks started and ended by a testbench, just like the example of Figure 3). In this case,
all applications are controlled by the same reconfiguration manager and the same scheduler that can be
implemented either in software and hardware. Either way, schedulers are considered static and placed on a
dedicated unit.
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C.8. Layout constraints generation

When simulation has completed, a User Constraint File (UCF) is produced describing the placement of
reconfigurable regions on the device, compliant with Xilinx design tools. For non-Xilinx devices, FoRTReSS
also generates an XML file representing the chosen reconfigurable regions.

D. About the solution chosen by FoRTReSS

The solution chosen and validated by FoRTReSS is one amongst many other correct solutions in the design
space. FoRTReSS mainly focuses on whether or not the architecture satisfies the application real-time con-
straints. Once the constraints are met, it is not necessary to continue evaluating other solutions and possibly
find a better solution since we already found a valuable one. Still, it is possible to manually search for an
optimal solution by running several times the FoRTReSS flow while reducing the timing constraints.

In future versions of the flow, we plan on integrating energy minimisation. The same behaviour is expected:
there will be an energy consumption constraint that should be respected as well as the timing constraint.
We will not be looking for a trade-off between both metrics but FoRTReSS will rather evaluate the system’s
feasibility. Therefore, the same approach can be preserved.

E. FoRTReSS Toolbox

In order to ease the joint use of FoRTReSS and RecoSim, we developed a Graphical User Interface (GUI), called
FoRTReSS Toolbox [15] which allows the graphical specification of application diagrams and exploration
parameters. The Eclipse Graphical Modeling Framework (GMF) [32] is used to create user interfaces based on
Eclipse editor and Eclipse Modeling Framework (EMF). This environment is used to generate the C++ source
code required by FoRTReSS and RecoSim using JDOM [19]. Code generation, compilation and simulation
are handled within FoRTReSS Toolbox GUI. Interactions with other design tools such as Xilinx PlanAhead or
Mentor Graphics ModelSim are possible to examine details of the simulation results. FoRTReSS Toolbox is
compatible with Linux-based and Windows operating systems.

4. APPLICATION STUDY & RESULTS

This section illustrates the application of FoRTReSS methodology for system level exploration of hardware
software mappings involving dynamic and partial reconfiguration. A reasonable specification assumption
can be based on using C/C++ as a high level input code. Since the relevance of RR definition depends greatly
on reliable characteristics of hardware accelerators, we rely on the use of High Level Synthesis (HLS) made
possible by the use of C/C++ code. This approach is fully illustrated on the analysis example of an H.264/AVC
decoder.

The entire system has not been implemented on the Zynq platform. Each hardware block was synthesized
to extract resources and was placed and routed separately on the Zynq device to evaluate its performance
accurately (i.e. WCET). Moreover, each software block was run on a Cortex-A9 (performed ten times) in order
to have the most accurate worst case execution time. About the data transfer, data is located in main memory
(e.g. on-board DDR3 memory). A program, running on the Cortex-A9 and using a DMA, moves data to the
accelerator. Regarding software IPs, they fetch data directly from memory. We also integrated this data transfer
time in the WCET. Therefore, this leads to a very good accuracy for the simulation in our tool in terms of
resource and time.

However, in practice C/C++ code requires a lot of time and effort to be actually compliant with HLS
rules, sometimes going as far as complete application rewriting. Therefore in a second validation study, we
address the mapping exploration of an H.265/HEVC encoder from a reference C++ code released by the x265
open-source project [35]. As this type of code is often not able to comply with HLS requirements, we show
how exploration can nevertheless be usefully processed from existing software and relevant hardware imple-
mentations reported in the literature as explained in section D, in order to assess early mapping opportunities
and their impact on performance.
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Fig. 8. H.264/AVC decoder block diagram

Table 1. H264 task parameters on Zynq-7000 EPP (no slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms) SLICE DSP BRAM

Exp_Golomb 1.96 n/a n/a n/a n/a

MB_Header 1.96 n/a n/a n/a n/a

Inv_CAVLC 20.56 5.05 3383 0 6

Inv_QTr 30.35 15.48 1202 3 7

Inv_Pred 8.81 n/a n/a n/a n/a

DB_Filter 23.50 6.50 701 0 5

A. H.264/AVC decoder overview

The first application which is considered for this validation study is an H.264/AVC profile video decoder. An
Electronic System Level (ESL) design methodology [10] is used here to provide values of cost performance
tradeoffs for possible hardware functions, which serve as an entry point to the exploration methodology of
FoRTReSS. The H.264 decoder used corresponds to the block diagram of figure 8 which is a version derived
from the ITU-T reference code [18] to comply with hardware design constraints and HLS. From the original
C++ code, a profiling step identifies four main functionalities for acceleration that are, in order of importance,
the deblocking filter (24%), the inverse context-adaptive variable-length coding (Inv. CAVLC 21%), the inverse
quantization (Inv. Quant. 19%) and the inverse integer transform (Inv. Transf. 12%). To achieve better results,
we have merged the inverse quantization and integer transform into a single block (Inv. QTr.). It might be
noted here that CAVLC was not added to this block because the HLS tool (Catapult C Synthesis 2009a Release)
could not handle the complexity of the resulting C++ code. Therefore, this results in three potential hardware
functions representing 76% of the total processing time.

The deblocking filter, inverse CAVLC, and inverse quantization and transform block are the three func-
tionalities of the decoder that can be either implemented in software or in dedicated hardware. In addition
to these accelerating oportunities, we also consider a parallelization of the video decoder which exploits the
possibility of slice decomposition of frames in the H264/AVC standard. A slice represents an independent
zone of a frame, it can reference other slices of previous frames for decoding; therefore decoding one slice (of a
frame) is independent from another (slice of the same frame). This way, the decoder can process different slices
of a frame in parallel. We have thus considered two versions of the decoder corresponding to i) the original
decoder (no slice decomposition), and ii) a two slice decomposition of the image where two streams can be
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Table 2. H264 task parameters on Zynq-7000 EPP (two slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms) SLICE DSP BRAM

Exp_Golomb 1.96 n/a n/a n/a n/a

MB_Header 1.96 n/a n/a n/a n/a

Inv_CAVLC 10.28 2.53 3383 0 6

Inv_QTr 15.18 7.74 1202 3 7

Inv_Pred 4.41 n/a n/a n/a n/a

DB_Filter 11.75 3.25 701 0 5

processed in parallel on two halves of a same frame. This will allow considering implementations up to six
accelerators and two processors for exploration. The corresponding hardware and software task parameters
are reported in Table 1 for the original decoder and Table 2 for a two slice decomposition.

These parameters constitute the inputs for the exploration methodology. Hardware execution parameters
(section HWex in Table 1 and 2) are derived from the full implementation of the three hardware functions
identified previously on a Xilinx Zynq-7000 Extensible Processing Platform. Software tasks (section SWex
in Table 1 and 2) are described over the 667MHz ARM CortexA9 processor. The following section provides
exploration results, analysis and discussion relevant to video processing constraints for this application
example.

B. H.264/AVC decoder exploration results
The aim of this design space exploration is to determine if it is possible to decode an H.264 video stream in
real-time, i.e. processing 30 frames per second (fps). For this purpose, we studied different use cases, from full
software implementations towards mixed solutions, with or without making use of the slice decomposition
possibility. Since FoRTReSS does not automatically explore the number of processor units, it was run with
different projects increasing the number of processors. Reconfigurable regions are then automatically adjusted
to fit with the configuration.

Performance and area results reported by FoRTReSS are summed up in Table 3. Area results are provided
for both static and partially reconfigurable solutions in a way to put forward the relative improvements of
dynamic reconfiguration. Raw improvement is computed by comparing resources of a static solution against
resources required by reconfigurable regions. A total improvement is also computed considering the additional
resources used by the reconfiguration controler (FaRM). For every use case presented here, we took care of
choosing the shortest possible deadline, hence achieving the best framerate for the H.264 decoder. When
considering a HW/SW implementations, global performance is usually limited by the number of processor
units and reconfigurable regions which are directly related to the size of the target device. In this application
study, we may use both Cortex-A9 cores of the Zynq-7000 platform.

The second column labelled "Framerate" in Table 3 shows that the first solution complying with a 30fps
constraint is HW/SW implementation using two CPUs for a two slice decomposition (34.1 fps). For this
solution, the resource improvements from the use of partial reconfiguration are 25.45%, -11.11% and -900%
respectively for slice, BRAM and DSP blocks. This means that BRAM and DSP requirements have actually
increased while the number of slices decreased in a small fraction. Therefore, this overhead might not promote
the use of PR. However, this solution can be improved: the maximum framerate that can be reached with this
architecture is more than the targeted framerate of 30 frames per second. Hence, the application deadline can
be increased to 33.3 ms: this is the last use case in Table 3. Proceeding this way brings significant improvement
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Table 3. Performance and area results of H.264 decoder implementations

Implementation Framerate Resource Static Number PR area PR Improvement (%)

(fps) type area of RRs (columns) area Raw Total

Full SW Slice

1 slice 11.4 BRAM n/a n/a n/a n/a n/a n/a

1 core DSP

Full SW Slice

2 slices 21.7 BRAM n/a n/a n/a n/a n/a n/a

2 cores DSP

HW/SW Slice 5551 72 3600 35.15 29.40

1 slice 23.3 BRAM 18 1 1 10 44.4 44.4

1 core DSP 3 1 20 -566.7 -566.7

HW/SW Slice 11102 140 7000 36.95 25.45

2 slices 28.2 BRAM 36 4 4 40 -11.11 -11.11

1 core DSP 6 3 60 -900 -900

HW/SW Slice 11102 140 7000 36.95 25.45

2 slices 34.1 BRAM 36 4 4 40 -11.11 -11.11

2 cores DSP 6 3 60 -900 -900

HW/SW Slice 11102 88 4400 60.37 54.62

2 slices 30 BRAM 36 2 2 20 44.44 44.44

2 cores DSP 6 1 20 -233.3 -233.3
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Table 4. Occupation rate results of H.264 decoder implementations

Implementation Framerate Core (%) Reconfigurable Region (%)

(fps) Core1 Core2 RR1 RR2 RR3 RR4 RR5 RR6

HW/SW (2 slices/cores) 34.1 48.42 43.37 26.39 11.08 26.39 11.08 n/a n/a

HW/SW (2 slices/cores) 30 88.09 73.40 n/a n/a n/a n/a 9.74 30.77

with 54% slice improvement (less than half of previous slice requirements, from just reducing the framerate
constraint) and even 44% BRAM improvement.

Across all implementations, we notice a important overhead for DSP resources in Table 3. It is due to
the limited DSP requirements (only 3 DSP48s) and reconfiguration granularity: each reconfigurable region
must span an entire clock domain, hence constraining every resource within the column. For DSP resources,
each column is composed of 20 DSP48s, which is the minimum number of DSP48s that can be set for a
Zynq-7000 device. Therefore, there will always be an important resource overhead for DSP elements. If this is
unacceptable to the designer (for instance, if the remaining static logic is very DSP-consuming), it is always
possible to change synthesis parameters in order to prohibit the synthesizer from inferring DSP blocks and use
logic elements instead.

To better understand the results obtained when reducing the targeted framerate, the Table 4 shows the
occupation rates of the last two solutions of the Table 3 depending on the framerate and the possible ICAVLC
allocation (RR or core). Reducing the framerate gives the scheduler the opportunity to use a slower task
implementation (the software one) rather than a faster hardware implementation, but with a resource overhead
in return. The 30 fps use case shows much higher occupation rates than the 34.1 use case (73.4 and 88.09%
compared to 43.37 and 48.42% respectively for both cores).

C. Adding interfaces constraints to FoRTReSS
Solutions found by FoRTReSS did not take into account any location constraints and hence, placement of the
reconfigurable regions on the FPGA is arbitrary. However, our application mixes both hardware and software
tasks communicating with each other. Hence, task placement can be optimized by placing the reconfigurable
regions closer to the Cortex-A9 processors.

Constraining regions is automated within FoRTReSS: for every hardware implementation in the design, the
interface requirements are specified so that every region that can host the task must also provide this type
of interface. In our case, all accelerators use a 32-Bit AXI high-performance slave port (at 100MHz) between
the programmable logic zone and the processing system. Then, the location of potential interfaces has to be
specified by the user. Figure 9 shows the location of the AXI interfaces as well as the resulting floorplan of
the Zynq-7000 platform for previous use case (two RRs and two processor cores working on two slices at 30
frames per second). In this case, we defined two possible locations for AXI interfaces, close to the Cortex-A9
processor. In order to comply with the reconfiguration granularity, the possible interface locations span an
entire clock domain. We can see that both reconfigurable regions found by FoRTReSS effectively include one
AXI interface, ensuring enhanced performance during the FPGA implementation phase.

D. H.265/HEVC encoder
In this second application study, we show the ability of the method to help system level mapping analysis
from early-stage application specifications. The application considered is a recently released H.265/HEVC
encoder from the x265 open source project which software is available since July 2014 [35]. Figure 10 shows
the application graph derived from the reference C++ code.

Ideally the characteristics of hardware mappings of tasks needed for exploration can originate from HLS,
provided that the C/C++ source can be processed. This is generally not the case for most applications,
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Fig. 9. Floorplan with interface constraints on a Zynq-7000 platform

Fig. 10. H.265/HEVC encoder flow graph
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Table 5. x265 task parameters on Zynq-7000 EPP (no slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms) SLICE DSP BRAM

Motion_Est 2418 9.61 14067 0 297

Intra_Pred 126 1.43 472 0 4

Quant 37 n/a n/a n/a n/a

Tranf 21 0.28 3595 0 0

CABAC 139 n/a n/a n/a n/a

Inv_Quant 5 n/a n/a n/a n/a

Inv_Transf 5 0.28 3595 0 0

Loop_Filt 23 n/a n/a n/a n/a

including x265, as only a subset of C/C++ is usually supported for hardware acceleration. The x265 code
makes widespread use of dynamic memory allocation and arbitrary indirection (pointers that are not static
arrays) that will require extensive effort to remove. However many works have already been devoted to the
implementation of critical processing blocks of H.265/HEVC since the technical content of HEVC was finalized
at the beginning of 2013.

Table 5 reports the characteristics of three relevant hardware implementations on Virtex FPGAs that can
be used to process an early exploration of the acceleration potential with dynamic reconfiguration: a motion
estimation engine [11] which is the most computational part of the encoding process, a high performance
intra prediction hardware [21] and an accelerator supporting fast forward and inverse two-dimensional
transforms [33]. All implementation and performance results come from Xilinx Virtex devices and have been
extrapolated to comply with the same video resolution and a running frequency of 100MHz. We target the
same platform (Zynq-7000 EPP) as depicted in section A. As for H.264, H.265 supports slice decomposition to
allow frame level parallelism when encoding using multiple cores. Task parameters corresponding to a two
slice decomposition are thus also considered and depicted in table 6.

E. H.265/HEVC encoder exploration results
Like for the previous H.264 application study, we cover different configurations from full software to hardware
software implementations with or without slice decomposition. The corresponding results are reported in
table 7.

There are sensitive performance benefits in the three hardware software solutions defined, until 8.82 fps
using two cores and three RRs over software execution (respectively 0.36 fps and 0.7 fps for 1 slice/1 core and
2 slices/2 cores). However this use case is very much affected by the presence of a big computation kernel
represented by motion estimation which engages 14067 slices, that is 65% of the total accelerator slices. There
is no room for sharing and dynamically reconfiguring a single RR able to host all tasks without an important
performance penalty (26.8 ms of reconfiguration time). As a result the best solution is based on the use of three
RRs, one for each type of function (Tran f and Inv_Trans f functions share the same accelerator IP). There is no
possible resource improvement from using dynamic reconfiguration in this example. In fact there is even a
slight increase of logic resource due to the inevitable oversizing of a Reconfigurable Region to be able to host a
task.

Nevertheless this application study shows the ability of the methodology to easily evaluate the relevance of
using dynamic reconfiguration or not from very early development stages. In addition, further investigation
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Table 6. x265 task parameters on Zynq-7000 EPP (two slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms) SLICE DSP BRAM

Motion_Est 1209 4.81 14067 0 297

Intra_Pred 63 0.72 472 0 4

Quant 19 n/a n/a n/a n/a

Tranf 11 0.14 3595 0 0

CABAC 70 n/a n/a n/a n/a

Inv_Quant 3 n/a n/a n/a n/a

Inv_Transf 3 0.14 3595 0 0

Loop_Filt 12 n/a n/a n/a n/a

Table 7. Performance and area results of x265 encoder implementations

Implementation Framerate Resource Static Number PR area PR Improvement (%)

(fps) type area of RRs (columns) area Raw Total

Full SW Slice

1 slice 0.36 BRAM n/a n/a n/a n/a n/a n/a

1 core DSP

Full SW Slice

2 slices 0.7 BRAM n/a n/a n/a n/a n/a n/a

2 cores DSP

HW/SW Slice 22673 552 27600 -21.7 -26

1 slice 4.58 BRAM 301 3 32 320 -6.31 -6.31

1 core DSP 0 0 0 0 0

HW/SW Slice 22673 552 27600 -21.7 -26

1 slice 5.33 BRAM 301 3 32 320 -6.31 -6.31

2 cores DSP 0 0 0 0 0

HW/SW Slice 22673 552 27600 -21.7 -26

2 slices 8.82 BRAM 301 3 32 320 -6.31 -6.31

2 cores DSP 0 0 0 0 0
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Fig. 11. Scheduling of the best X.265 accelerated solution.

can permit to propose and analyze a set of possible improvements. For example, the scheduling details of the
8.82 fps solution reported in figure 11 clearly shows that CABAC function becomes a new major bottleneck
after global acceleration. Therefore a hardware implementation for this function, but also for loop filters
(sample adaptive offset, deblocking filter) to a lesser extent, can certainly allow to reach real time processing
(e.g. 30 fps) and, depending on their size, change the question of dynamic reconfiguration impact. We did not
process these functions as we found no hardware implementation reported in the literature yet.

F. Design time with FoRTReSS
The design cycle with FoRTReSS can actually be split in two: application specification using FoRTReSS
Toolbox and actual execution of the FoRTReSS flow. The graphical specification of the application diagram and
FoRTReSS configuration takes less than an hour, which does not include the time required to obtain the resource
requirements for every hardware implementation of the tasks and the timing information. This effort is done
just the first time an application is defined: diagrams can be imported and reused into multiple projects. Then,
each execution of the FoRTReSS flow can take up to a minute, depending on the complexity of the RecoSim
simulation and the unknown number of allocation improvements that are performed during exploration.
Therefore, it has also been shown that it was possible to estimate the impact of partial reconfiguration on an
application in a short amount of time, which cannot be done with current design flows. The H.265 encoder
mapping example was processed from scratch in a matter of three days. To do this, we needed descriptions of
hardware implementations or at least an estimation of the required resources and the corresponding hardware
and software execution times.

5. FUTURE WORK

In future versions of FoRTReSS, we would like to add some energy considerations. For now, FoRTReSS highly
focuses on real-time constraints to automatically identify performance compliant solution(s) under energy
minimisation requirement for example. We believe that combining both temporal and energetic considerations
for partially reconfigurable systems into a single tool can be very time-saving for the designer interested in
power efficiency. For instance, it is possible to develop and evaluate scheduling algorithms with RecoSim that
promote energy consumption when considering selecting task implementations and allocation or using blank
reconfigurable regions to minimise the global energy cost while potentially considering DVFS oportunies at
the processor level for realistic multicore low power execution. Therefore, we would like to integrate these
considerations into the reconfigurable region selection and the allocation optimization process.

6. CONCLUSION

In this paper, we introduced FoRTReSS, a flow enabling design space exploration for partially reconfigurable
applications in real-time systems. FoRTReSS provides the designer with a convenient tool for estimating
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hardware, software and mixed solutions using partial reconfiguration. The hardware design space exploration
is automated by FoRTReSS, which infers a set of reconfigurable regions from task resources information.
FoRTReSS relies on a SystemC simulator, RecoSim, that allows the designer to develop and evaluate its own
scheduling algorithms. We described in depth the features and abilities of FoRTReSS on a H.264 video decoding
application targeting a framerate of 30 frames per second on a Zynq-7000 platform. Several implementations
of the decoder were evaluated, from a full software solution working on the entire stream to a solution using
hardware accelerators and working on a two slice decomposition of the stream. We have shown that a first
solution was indentified by FoRTReSS to process a framerate of 34.1 frames per second, but with an important
resources overhead. Finally, extending slightly the deadlines permitted to reach a 30 fps solution with very
interesting area improvements, saving more than half the slice resources compared to a static implementation
and using 44% less memory resource. We have additionally shown the usefulness of the framework to help
analyzing mapping opportunities from early C++ specifications on a H.265/HEVC encoder. The different
explorations performed within this work were facilitated by the use of FoRTReSS Toolbox, a GUI for controlling
the FoRTReSS flow.
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