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FoRTReSS: a Flow for Design Space Exploration

of Partially Reconfigurable Systems

François Duhem1, Fabrice Muller1, Robin Bonamy1, Sebastien Bilavarn1 ∗

Abstract

In this paper, we present a flow enabling design space exploration for
partially reconfigurable systems with real-time constraints, called FoRTReSS.
FoRTReSS allows estimating mixed hardware/software implementations
of an application where the hardware design space, the floorplanning of
reconfigurable regions placed on the FPGA, is automatically inferred from
application resources information, interface constraints and the target de-
vice. Real-time constraints are verified by a highly configurable SystemC
simulator, RecoSim, handling applications described as Control Data Flow
Graphs (CDFGs). We demonstrate our approach on an H.264 video de-
coder and an H.265 encoder targeting the latest Zynq-7000 platforms
from Xilinx, embedding a Cortex-A9 dual-core processor. We show that
an hardware/software implementation of the H.264 decoder using both
processor cores and slice decomposition is possible under real-time con-
straints, effectively achieving a framerate of 30 frames per second while
reducing area requirements compared to a static implementation, using
54% less slice resources and 44% less BRAM resources. Additionally we
report the ability of the methodology to address very early analysis from
high level application specification on the example of an H.265 encoder.

Keywords: Reconfigurable Architecture, Design Space Exploration, Real-Time
Systems, Partial Reconfiguration, Field Programmable Gate Arrays

1 Introduction

The last few decades saw the emergence of reconfigurable computing through
Field Programmable Gate Arrays (FPGA). These devices provide a high level of
parallelism along with programmability, bridging the gap between programmable
processors and high performance, but expensive, Application Specific Integrated
Circuits (ASIC). Over generations of devices, FPGAs had more and more com-
puting power so that entire systems can now be built into a single device, in-
cluding processors, hardware accelerators, memory controllers, I/O peripherals
and so on. They are called System on Programmable Chip (SoPC). Processors
included in the design can be either soft cores (i.e. using the FPGA fabric as
resources, for instance MicroBlaze or Nios cores) or hard cores (i.e. integrated
within the die, hardwired to the FPGA). In the latter case, the processors are
much more powerful than soft cores, hence providing designers with high perfor-
mance processor-centric architectures like the Xilinx Zynq-7000 devices, based
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on a dual ARM Cortex-A9 MPCore [36]. However, the hardware part of the
Zynq-7000 does not offer many logic cells compared to state-of-the-art Virtex-7
FPGAs built with the same 28 nm technology.

At first, these devices could only be programmed in an all-or-nothing style
such that all services and IP cores are stopped during reconfiguration. In the
case of communication services, pieces of data might be lost and degrade the
Quality-of-Service (QoS). In critical applications, this cannot be tolerated. This
led to the development of Partial Reconfiguration (PR), introduced with the
Xilinx XC6200 series, which allows modifying the behaviour of pre-defined Re-
configurable Regions (RR) without affecting the remaining logic. The circuit
functionality can thus be modified at runtime depending on the application re-
quirements and/or execution. Since not all the resources are present on the
FPGA persistently, area requirements are reduced. If a careful study is made
at design time, it is possible either to switch to a smaller and cheaper FPGA or
to add extra features on the target device [22, 28].

Despite promising features, PR is still not widely spread in the industry [26].
The major issue concerns designing the systems satisfying application require-
ments as well as technology-specific constraints inherent to PR systems. For
instance, mutualising reconfigurable region resources between multiple tasks is
possible, but implies PR-compatible scheduling that takes into account reconfig-
uration times, which cannot be neglected for applications with severe real-time
constraints [8, 31]. Moreover, Design Space Exploration (DSE) still remains a
great challenge: existing design flows do not allow DSE during early develop-
ment stages but rather during the late FPGA implementation stage when the
cost implied by any architecture modification can be prohibitive. Hence, FPGA
engineers prefer relying on existing, well-known and reliable design flows, even
if the solution is sub-optimal in terms of logic resources or device cost.

Our contribution in this paper is an extension of previous work described
in [12]. The methodology consists of FoRTReSS, a Flow for Reconfigurable
archiTectures in Real time SystemS that enables both hardware and software
design space exploration for partially reconfigurable applications with real-time
constraints, along with its graphical user interface, FoRTReSS Toolbox. Our
approach is based on two main steps: first, an architecture is generated in
terms of processors and reconfigurable regions. RRs are inferred from synthesis
results in the form of netlists and text reports and/or XML (eXtensible Markup
Language) task descriptions. The second step consists of the simulation of this
architecture using RecoSim, a Reconfigurable simulator written in SystemC.
This step automatically verifies whether the application real-time constraints
are met with a given QoS.

Since our previous work, a lot of significant improvements have been made
on RecoSim and new features have been introduced. First of all, the model of
computation changed a lot as RecoSim now handles Control Data Flow Graphs
(CDFGs) instead of DFGs. Diagrams may contain cycles and loopbacks, while
tasks can be periodic or not. We also added type information to the interfaces
(e.g. AXI, PLB, FIFO...) and refined our communication model in order to
provide the user with a more accurate description. Another important extension
consists in adding software considerations into FoRTReSS. It is now possible
to add processors to the design and defining several implementations for one
task. This feature is illustrated by new use cases: an H.264 video decoder and
H.265 video encoder with multiple hardware and software implementations of

2



tasks. FoRTReSS provides several Application Programming Interfaces (APIs)
to easily modify and/or develop task and scheduling algorithms. The paper also
targets a state-of-the-art Zynq device. In fact, any device, already existing or
not, can be targeted using a flexible device description using XML.

The remainder of the paper is structured as follows: in Section 2, we discuss
works related to FPGA floorplanning and existing PR design flows. Section 3
introduces our methodology. In section 4, our approach is validated using two
representative applications with performance and architecture results. Finally,
future works and conclusions are outlined respectively in Section 5 and Section 6.

2 Related Work

2.1 FPGA floorplanning

One primordial problem is the task placement on FPGA led by a placement
algorithm. Two categories of algorithms are clearly identified: off-line and on-
line. In the first category, it is possible to investigate a near-optimal or optimal
solution because the off-line scenario is found before the execution of the system.
In the second category, the placement decision must be taken quickly because
time is very critical. Anyway, RR placement for partially reconfigurable systems
is necessarily defined during the design phase. Hence, we only discuss below on
off-line floorplanning techniques.

The placement of hardware tasks on an FPGA is an NP-Complete problem
and the time to reach a solution depends mainly on the number of the tasks.
The work in [5, 6] introduces an exact resolution of scheduling problems. These
approaches are very time-consuming and are not scalable. Rather than finding
the best solution, it is preferable to find a near-optimal solution in a reasonable
amount of time, based on heuristics. For instance, authors in [3] define 3D
FPGA templates in time and space dimensions and use simulated annealing and
greedy research heuristics to place Reconfigurable Functional Unit Operations
(or RFUOPs). Moreover, Lodi et al. propose in [25] and [24] different off-line
approaches to resolve hardware task placement as 2D bin-packing problem for
instance Floor-Ceiling algorithm and Knapsack packing algorithm. However,
these approaches are not adapted for real-time embedded systems because the
scheduling of tasks has to be known at compile time.

Authors in [29] introduce an approach based on simulated annealing in
order to find out the bigger common area between two reconfigurable zones.
This common area will not be modified and the reconfiguration overhead will
decrease. Authors also consider traffic congestion in the design brought by plac-
ing reconfigurable regions close to each other, which helps to remove infeasible
solutions in many designs.

In [27], authors present a resource- and configuration-aware floorplacement
framework that uses metrics such as external wire length (total length of wires
connecting reconfigurable regions) to qualify a solution. They report an av-
erage improvement of 50% when using this metric. Their main objective is
to group reconfigurable units together without taking into account the hetero-
geneity of FPGA resources. Indeed, current FPGAs include different partially
reconfigurable resources such as logic blocks (e.g. Configurable Logic Blocks),
memories (e.g. Block Random Access Memory) and Digital Signal Processing
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Figure 1: Physical disposition of resources inside an FPGA

blocks. A column includes only one kind of resource. Hence, a flexible model is
essential because the structure of FPGAs differs.

A methodology for an architecture-aware and reconfiguration-centric floor-
planning is introduced by [34]. To obtain the solution, a cost function is defined
by the total wire length and wastage of resources without taking into account
the task dependencies or timing constraints for the application. However, the
real-time aspect is essential and must be considered for partially reconfigurable
systems. A lot of application domains such as robotics, video streaming, auto-
motive, avionics and so on, depend on these constraints.

An approach similar to FoRTReSS has been developed by authors in [23].
This methodology, called FoRSE, (standing for Formulation-level partial Re-
configuration design Space Exploration) performs a mathematical-based explo-
ration of the design space, looking for a Pareto optimum for the application,
considerably reducing the exploration time compared to methodologies requiring
implementation (implementation-level versus formulation-level). Nevertheless,
this formal method does not take into account potential real-time constraints.
However, it is worth noting that this methodology relies on Xilinx FPGA models
to represent an FPGA device.

According to our knowledge, the works on floorplanning for partial recon-
figuration are often treated separately or even are not studied at all. We think
that these two problems must be considered together, as the floorplan problem
is often meaningless without the communication channels to support it.

2.2 PR design flows

To complete this overview of methods for partial reconfiguration, it is also im-
portant to give a clear picture of partial reconfiguration design flows. Xilinx was
the first company to introduce such a feature for their FPGAs [37]. Their flow
inspired Virginia Tech’s open-source tool, OpenPR [30]. Altera also recently
unveiled a new version of Quartus enabling dynamic and partial reconfigura-
tion for their state-of-the-art Stratix V FPGAs [1] with a PR flow pretty much
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similar to Xilinx’s one. Another interesting flow is GoAhead [4], an academic
tool providing some new partial reconfiguration features such as module relo-
cation (an extensively adressed subject [16, 9]). GoAhead also allows mapping
two reconfigurable modules simultaneously inside the same PR region (which is
also possible using only Xilinx tools but with an important extra design effort).
We believe that a design methodology should not be (or the least possible)
technology-dependent and also extendable to virtual FPGAs and architecture
exploration of physical FPGAs.

FoRTReSS addresses these issues by providing designers with a feasible floor-
plan for state-of-the-art heterogeneous devices and a task scheduling that sat-
isfies the application timing constraints. The FoRTReSS device model is flexi-
ble in order to be compliant with future device architectures or virtual FPGA
platforms. Finally, FoRTReSS can handle task and RR interfaces to represent
various communication models (e.g. point to point, shared bus...).

3 Our approach

3.1 FoRTReSS overview

FoRTReSS is a tool providing the user a way to explore the partial reconfig-
uration design space and ultimately proposing a set of reconfigurable regions
and processors that will ensure a certain Quality-of-Service (QoS) for a given
application. The term quality of service refers to the rate of task executions
that respected their deadline. For instance, hard real time applications would
typically require a QoS of 100% whereas in applications such as video streaming,
it is acceptable to lose some packets and have a degraded QoS.

Figure 2 shows an overview of the FoRTReSS flow. It is based upon a Y-chart
approach where application and architecture are described separately. The ap-
plication is described as a Control Data Flow Graph (CDFG) or a set of periodic
tasks with dependencies. Each task has some timing characteristics such as a
deadline or a period (zero for non-periodic tasks), and a set of possible imple-
mentations with different performance, resource and energy trade-offs. These
implementations can be hardware (i.e. to be mapped on a reconfigurable region)
or software (i.e. to be mapped on a processor core) and share a set of parameters
such as the task Best/Worst Case Execution Time (BCET/WCET). Some other
parameters are different from one type of implementation to another. Typically,
hardware implementations are defined by their resource requirements resulting
from synthesis. This information can be extracted from Xilinx synthesis reports
or from XML-based files (.tsk extension) developed for compliance with other
synthesis tools. Describing task hardware implementation is mandatory in or-
der to determine a reconfigurable region set which might fit the application.
FoRTReSS might also require full netlists of each implementation (Xilinx NGC
or standard EDF) in cases where compressed bitstreams are used to optimise
reconfiguration times (see section 3.3.6 for more details). On the other hand,
software implementations are characterised similarly by the time required to
load the binary executable into the instruction memory of the processor.

The target architecture is described separately as an FPGA and a set of pro-
cessor cores that can be either on the same die (Virtex-5 with integrated Pow-
erPC or the latest Xilinx Zynq-7000 SoC with a CortexA9 processor), external
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Figure 2: PR flow using FoRTReSS

to the FPGA or soft cores instantiated with its configurable logic resources (e.g.
MicroBlaze). The FPGA architecture is also described using an XML-based file
format in order to be compatible with existing devices as well as custom, virtual
or non-existent (future) architectures.

FoRTReSS uses the application resource requirements and FPGA descrip-
tion to find potential reconfigurable regions. The validation of the application
quality-of-service is carried out using a SystemC based simulator called Re-
coSim. Tasks are scheduled under a standard Earliest-Deadline-First (EDF)
policy integrated in this simulator and that can be modified or extended to
other scheduling policies due to a dedicated API (Application Programming
Interface). RecoSim also generates traces, statistics and log files for every sim-
ulation for debug purposes. Finally, FoRTReSS provides an architecture fully
defined in terms of RR by an UCF file (User Constraints File, used by Xil-
inx) and an XML representation of the regions (.rrd extension). The resulting
floorplan can be viewed using the Xilinx PlanAhead design tool as shown in
Fig. 2.

The SystemC simulator has already been introduced in a previous publica-
tion [13]. However, the model of computation has been improved since in order
to better process the simulation of real time constraints. The following sections
give an update on these features and a description of the underlying FoRTReSS
flow in order to better understand the set of parameters impacting the design
space exploration process.
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Figure 3: Example of CDFG handled by RecoSim

3.2 RecoSim overview

RecoSim, for Reconfigurable Simulator, is a SystemC/TLM simulator that veri-
fies if an architecture can satisfy real-time constraints of an application. From a
description of possible mappings of tasks on the execution units, RecoSim uses
Transaction-Level Models of the system to ensure fast simulation while consid-
ering abstract communication details, reconfiguration overheads (that can be
inferred from cost models such as [14]), context switches, hardware and soft-
ware preemptions, for a wide range of architectures.

3.2.1 RecoSim model of computation

The main input of RecoSim is an application description given in the form of a
Control Data Flow Graph, which means that communications from a module to
another can be conditional. An example of specification that can be simulated
by RecoSim is shown in Figure 3. Compared to standard Data Flow Graphs
(DFGs), CDFGs introduce control at the task level to make conditional commu-
nications possible. For instance, task T2 in Figure 3 can send data to Testbench
IN and task T3 independently: it is possible to make T2 send n packets to T3
after each execution (i.e. when new data are generated by the task algorithm)
while sending data to the testbench once every m executions only. Another
feature of this CDFG model is the ability to describe cyclic applications: on the
first iteration, no relevant data are provided by T3 and hence T1 only waits for
data incoming from the testbench. Finally, it is also possible to simulate several
communication channels linking the same two tasks (see connections between
testbench and task T1 in Figure 3). This can perfectly describe separate data
and metadata channels to evaluate different performance between these connec-
tions. For example, a metadata channel would use a low speed bus (AXI Lite
bus) while the data channel would need a more efficient bus (AXI bus).

The application must be surrounded by two testbenches as depicted in Fig-
ure 3, separating stimuli generation from result verification. Unlike other tasks,
we suppose here that testbenches are persistent in the system (i.e. not dynam-
ically reconfigurable). They also have no implementation explicitely defined,
however testbench algorithms, which decribes the behavior of data sending or
receiving, might be modified using a dedicated API.

Applications can be composed of periodic tasks. The main difference with
non-periodic applications resides in the way tasks are started: for non-periodic
applications, the task is launched whenever all incoming sockets have sent their
data (according to the task algorithm controlling which socket is required for
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this task execution). In case of periodic applications, it is also required that
a new period has started. If not, the task has to wait for this new period
and execution is delayed. However, its absolute deadline is still calculated with
regard to the task relative deadline (except whenever incoming data are ready
like in full dataflow applications).

Either way, the application has to be simulated long enough to ensure that
the architecture maintains the required quality of service. The minimum simu-
lation time for periodic applications is a hyperperiod. For DFGs, it is defined
as the Least Common Multiple (LCM) of task periods whereas for CDFGs, the
additional control part changes this hyperperiod and it is not possible to pre-
dict its value automatically. Moreover, in order for every tasks to be running
in the same hyperperiod, the system should be in a steady state. We consider
that the upper limit for the time required to enter this steady state can be
estimated as the sum of every worst case execution times. Adding this time
to the hyperperiod gives an estimation of the minimum simulation time. Note
that it is the responsibility of the designer to ensure that this simulation time is
respected and can be modified in FoRTReSS flow. The uncertainty brought by
CDFGs into the computation of the hyperperiod leads FoRTReSS to notify the
user when the simulation is relevant, but the designer might want to manually
compute the minimum simulation time (or over estimate it) when designing the
testbench.

Let us note WCET (Ti) the Worst Case Execution Time of task i. Equation
(1) gives us the minimal simulation time for the system.

tsimulation,min = LCM (T1..Tn) +

n∑
i=1

WCET (Ti) (1)

3.2.2 Mapping tasks to processing units

Recosim simulates the mapping of application tasks to the processing units
and the corresponding execution (i.e. run-time allocation and scheduling).
These processing units are either hardware (reconfigurable regions infered by
FoRTReSS for the target FPGA) or software (user-defined processor cores).
The mapping decision is made by the reconfiguration manager considering the
different software and hardware implementations associated with each task as
well as the availability of reconfiguration units: the default behaviour consists
in getting the most out of the architecture by using As Many units As Possible
(AMAP mapping). The choice of an implementation also depends on param-
eters such as the configuration time, execution time or energy consumption.
A dedicated API is defined to help the definition of specific scheduling and
allocation techniques.

3.2.3 Task preemption and context switches

We have already presented the management of preemption for hardware tasks
in [13]. Our preemption model is based on a request/grant system where pre-
emption points are explicitely defined in the task implementation code as de-
picted in Fig. 4. The reconfiguration manager does not preempt the task but it
is rather the task that issues a preemption request (cooperative multitasking).
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Figure 4: Task preemption within RecoSim

This behaviour fits well with the execution of hardware tasks which preemption
is more complex than software tasks. Furthermore, context evolves during task
execution as the number of registers used to store important data are chang-
ing. Hence, it is understandable that context switches, operated by register
save/restore operations, should be performed when it has the fewest impacts.

This approach is also compatible with classic software preemption by defining
as many preemption points as instructions in the executable. This way, the task
will notify the manager after each instruction, making the task preemptible at
every moment of its execution, emulating preemptive multitasking. However,
the simulation time overhead inherent to this technique (due to an increase of
communication between the module and the reconfiguration manager) can be
fairly important but considered reasonable compared to accuracy. For example,
we simulated an application composed of 30 tasks with a scenario representing
an execution time of 2 seconds on a Core I7-3740QM running at 2.7GHz with
8GB of RAM. With a preemption resolution of 1 us, the execution time on
the computer is 810 seconds against 1.53 seconds without preemption. This is
a significant increase, but considering the complexity of preemption is at this
cost. This overhead will be much closer to 1.53 seconds in real cases as real
applications will only require a few preemption points per task. Nevertheless,
this overhead is necessary for an accurate modeling of software tasks. In fact,
the relationship between these two quantities is shown in Equation 2, where Ni

is the number of preemption points for the task i.

Overhead (in seconds) =

TaskNumber∑
i=0

0.4 ×Ni (2)

Using (2), the designer has to perform a trade-off between extreme precision
of software preemption, quality of the results (some good solutions might be
missed when losing precision in some corner cases) and overall flow execution
time.

Figure 4 also illustrates an example of context switch for a task execution.
Context save and restore operations are required whenever a task is preempted.
There is also an optional context switch at the beginning and at the end of
task execution due to the distinction between hardware and software execu-
tion. Software context switches are processor dependent whereas for hardware
implementations, this context switch depends on the implementation (two im-
plementations of the same task might have different context switch times due to
a different number of registers to save/restore, possibly some memories). Some
work has been done on context switch for hardware tasks such as [5, 17, 20].
However, context switching is not required after a task configuration, but might

9



Figure 5: Task finite-state machine

be necessary for proper task execution (for instance, IP configuration). Hence,
the designer is given the possibility to enable context switching after configura-
tion for each implementation.

3.2.4 RecoSim task finite-state machine

RecoSim is based on the Finite-State Machine (FSM) depicted in Figure 5. This
FSM represents the states and transitions of the application tasks:

• Inactive: task is not running nor placed on the FPGA.

• Queued: after an execution request has been granted by the scheduler and
a processing unit has been chosen, the task is queued, waiting for recon-
figuration, ordered in a first-come-first-served basis since task priority is
handled within the scheduler waiting queue.

• Configuration: task is being configured on the FPGA.

• Context load: loads the task context (for instance after being preempted
or if necessary before task execution)

• Idle: task is idle, waiting for the beginning of next period (transitory for
non-periodic applications)

• Waiting: task is waiting to receive communications from its predecessors

• Running: task is running

• Preempted/mapped: task reached a preemption point and notified the
reconfiguration manager. Task is not preempted yet.

• Context save: saves the task context when the task is being preempted.
It may also be needed after task execution.

• Preempted/inactive: task has been actually preempted by the reconfigu-
ration manager and has been replaced on the processing unit. It is brought
back into the waiting queue in order to be configured again and resume
execution.
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• Mapped: task is placed on a reconfigurable region but not running. It
can be safely replaced by a higher priority task by the reconfiguration
manager.

3.2.5 Interfaces and communications

It is possible to use different types of interface (e.g. AXI, PLB, FIFO...). How-
ever, some tasks might have many interfaces (for instance, task 1 from Figure 3
has four interfaces: two interfaces with the testbench, one with task 2 and
one with task 3) and it seems rather inappropriate to consider exhaustively all
possible types of interface (AXI, PLB, FIFO...) for each reconfigurable region
hosting this task (especially in case of several bus interfaces). In order to reduce
the overall number of interfaces that should be implemented on a reconfigurable
region, we introduce the concept of physical and virtual interfaces. Virtual in-
terfaces are the ones required by the task as described on the diagram (the
four interfaces of task 1). On the other hand, physical interfaces are the ones
actually used in the implementation. The number of physical interfaces can
vary from one implementation to another. A situation can occur when there is
less physical than virtual interface in the application diagram. In such a case,
since it is not possible to use the same interface for distinct but simultaneous
data transfers, accesses to the physical interfaces should be made sequentially,
using a first-come, first-served policy. In the case where no physical interfaces
have been defined for the task implementation, RecoSim automatically uses the
information from the diagram to provide the task with as many interfaces as
declared in the diagram, to maintain the best performance.

As a matter of fact, virtual interfaces might require a permanent access to
a physical channel to optimize performance. Typically, task T1 from Figure 3
has two virtual input interfaces from Testbench OUT that can represent data
and metadata channels. The data channel can be defined as a priority channel:
a physical interface is dedicated to this virtual interface while potential other
interfaces share the remaining common interfaces. This choice, which is up
to the designer, is a mean to reduce data transfer latency, as the cost of an
additional resource overhead for the dedicated physical interface.

3.3 FoRTReSS flow

Figure 6 shows the different steps composing the FoRTReSS flow. Since the
original flow is described in [12], only major features and enhancements are
described here.

3.3.1 RR determination per task

The first step in the architecture definition process is to determine a pool of re-
configurable regions that are able to host one or more tasks of the application in
terms of resources. This reference pool is built by browsing the XML-based rep-
resentation of the target device resources. These RRs are shaped and mapped
on the reconfigurable device with regard to the heterogeneity of the device re-
sources, with possible RR overlapping to have a wider choice of RRs later. They
are also built to be as close as possible to the resource requirements of the cur-
rent task, and trying to waste the smallest amount of resources (this is called
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Figure 6: FoRTReSS flow

internal fragmentation). However, experience shows that defining a region based
on minimising the number of resources are generally results in a failure during
the routing phase. Furthermore, resources information from the synthesis step
does not take routing into account. For instance, Xilinx recommends adding 5%
extra resources to the reconfigurable region. For a more accurate description,
FoRTReSS has a parameter for global routing margin that can be overriden for
every hardware implementation that might require more routing ressources.

FoRTReSS also takes care of interfaces: as we already mentioned, it is pos-
sible to define a set of interfaces for task implementations. In case of hardware
implementations, they are also used to constrain physical task placement on
the FPGA. These restrictions are inferred from interfaces placed on the FPGA
by the designer. It is also possible to prevent a region from being used by
any reconfigurable region (static area). Typically, these features can be used to
force the placement of reconfigurable regions around the actual location of inter-
faces (located for instance between the FPGA and Cortex cores in a Zynq-7000
device).

The search for reconfigurable regions is very useful when starting from
scratch, but it is also possible to use FoRTReSS when the placement and number
of reconfigurable regions are already defined. For this purpose, an XML-based
file format describing predefined regions can be read to avoid being forced to
explore the reconfigurable region space.
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3.3.2 RR sorting

Once we have determined a pool of compatible RRs for each task, it is sorted
according to a cost function in order to select the best regions for the application.
The cost function is described in Equation 3.

CostRR = k1 ∗ Costshape

+ k2 ∗ Costcompliance

+ k3 ∗ Costfragmentation (3)

The metric CostRR is formulated around three components. First, it de-
pends on the shape of the RR with the metric Costshape. As mentioned in
previous subsection, regions can have different shapes. However, the more you
complexify the shape, the less likely routing is to be efficient, this can possibly
lead to failure at the floorplanning step. Therefore, we penalize regions with
complex shapes by counting their vertices.

Costcompliance refers to the concept of Application Architecture Adequacy
(often noted AAA). It takes into account the number of tasks that can be
mapped on the reconfigurable region. Bigger regions might host a more im-
portant set of tasks, hence giving more freedom to the scheduler for runtime
mapping of the application.

Finally, the last metric Costfragmentation corresponds to the internal frag-
mentation and is used to penalize regions that have been built with too many
resources compared to the task they host. This cost tries to avoid the waste of
resources inside a reconfigurable region. This component actually reflects the
percentage of unused resources inside a reconfigurable region.

Since all components have different amplitudes (Costshape takes values from
4 to 10 vertices, Costcompliance from 0 to n incompatible tasks, n being the
number of tasks in the application), it is important to weight them in order to
share the same dynamics. On top of that, k1, k2 and k3 in Equation 3 correspond
to parameters defined in our flow that can be tuned to promote either the shape,
the compliance or the fragmentation component of the cost function. Default
values are set to one to give the same importance to all three components.

3.3.3 RR selection for simulation

During this step, the tool picks the RRs that will constitute the system architec-
ture. It searches for the minimum number of RRs that will make the simulation
step succeed in order to optimize the partially reconfigurable area. FoRTReSS
also addresses the external fragmentation which represents the physical distance
between the reconfigurable regions, calculated as the sum of all Manhattan dis-
tances between regions. Low external fragmentation reduces the total wire
length and thus provides better results during the implementation phase: the
regions are packed on a small part of the device, optimizing the remaining area
for static logic.

There are two main approaches for the minimisation of fragmentation: re-
configurable regions should be placed as close as possible to each other or there
should exist a minimum distance between them. The last option considers con-
gestion at the interconnect level if regions are too close [29], inducing a drop
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on the frequency that can be reached by the system. We decided to let this
choice up to the designer with a parameter representing the minimum distance
between reconfigurable regions.

In order to reduce resource requirements for PR systems, the application is
partitioned. If tasks have very different resource needs, i.e. have very different
resource needs (which is the case most of the time), small tasks hosted within
big regions are in some ways resource inefficient. To prevent this situation, we
try to group tasks with similar resource requirements: tasks within the same
group will share the same reconfigurable regions. Therefore, tasks with small
requirements will not be placed on regions defined for bigger tasks. The first
step to partition the application consists in sorting the tasks according to a
resource cost function that penalizes the waste of scarce resources. The cost of
a reconfigurable resource is inversely proportional to the amount of resources
available on the device, while fixing CLB (logic elements) cost to 1.

Then, the tasks are split into three categories according to pre-defined trig-
ger values: optimum, acceptable and unacceptable mapping to reflect adequacy
between a task and the biggest RR. An example is given in Figure 7. Optimum
tasks are the more expensive in terms of resources and their mapping to bigger
reconfigurable regions is relevant (tasks t5 and t6 in figure 7). Acceptable tasks
do not waste too much resources within the reconfigurable region (tasks t3 and
t4) while unacceptable tasks represent a clearly bad allocation scheme (tasks
t1 and t2). Reconfigurable regions from the initial simulation subset (and the
biggest ones according to the cost computed in previous section) will host both
optimum and acceptable tasks. New regions are created based on the maxi-
mum resource needs of acceptable and unacceptable tasks, replacing some of the
biggest reconfigurable regions in the initial set. These regions cannot physi-
cally host the biggest tasks, explaining the area savings that can be obtained
by partitioning the application.

Trigger values are user-defined with arbitrary default values of 33% and 66%
(percentage of RR resources use). The designer should set the optimum trigger
value in order to isolate resource demanding tasks from the others. However
when many tasks are isolated, more reconfigurable regions should be used and
less area optimisation is also expected in this case. The second trigger prevents
tasks with low requirements from being mapped to big regions and should be
set so that all partitions are balanced (i.e. containing similar number of tasks).
The trigger values should then be updated from one exploration to the other
depending on the previous results.

3.3.4 Processor selection for simulation

While FoRTReSS focus is on the determination and placement of reconfigurable
regions, it is also possible to design mixed systems including one or more soft-
ware processing units. However, these elements are not processed exactly the
same way as hardware reconfigurable regions. Processor cores are added stat-
ically at the beginning of the exploration process while reconfigurable regions
are dynamically added to the simulation subset. In a future release, we aim
to extend exploration to be able to analyse automatically software and hard-
ware implementation opportunities. In the current version, several simulation
iterations are needed to consider different number of cores.

A processor type is associated with each software implementation to de-
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Figure 7: Partitioning step

termine on which core it can be mapped during simulation (e.g. MicroBlaze,
PowerPC, Cortex A9 for Zynq platforms). We also defined a context switch pa-
rameter to represent the time required to save and restore an execution context.
This parameter is processor-dependent.

3.3.5 RR and processor allocation

When an RR is selected for simulation, the tool defines which region is used for
each task. This allocation step is the most complex since it is the one giving
the greatest degree of freedom to the designer. The most obvious constraint
is that the task should fit the RR in terms of resources. However, if the task
can be placed on different RRs, this will lead to as many bitstreams stored
in memories since bitstream relocation is not currently supported (using the
same configuration bitstream for one task on several reconfigurable regions).
The memory footprint associated with many configuration bitstreams cannot be
neglected in embedded systems where memory can be a scarce resource. Also,
larger memories such as DDR have higher access times than FPGA internal
memories that can affect reconfiguration times. Hence, it is important not to
map tasks to every possible RR but rather limiting the task-RR association to
a mimimum for a better memory footprint.

There are two distinct phases in the allocation process. The first phase
consists of finding a viable solution, i.e. finding the mimimum number of recon-
figurable regions and processors for the application to reach the required QoS.
Hence, the first allocation is pretty straightforward and consists in allowing ev-
ery combination of tasks on RRs to maximise the freedom of the scheduler for
on-line task placement. If in spite of this freedom simulation fails, it means
that trying to improve the mapping is meaningless and that is it necessary to
add another region to the simulation subset. Upon first simulation success, task
allocation may be optimized. Furthermore, the first step is greedy in terms of
memory usage since there could be a lot of bitstreams to store.

An optimisation based on removing pairs of task/region from the solution is
applied using the following strategies:

• Least used allocation: removes the couple task/RR that is the least used
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during the simulation (i.e. the association that is most likely to be removed
without altering the system performance).

• Highest internal fragmentation: removes the task wasting the most re-
sources on a reconfigurable region.

• Highest memory cost: removes the task having the biggest bitstream.

Because memory footprint improvement differs from one use case to another,
there is no best optimization strategy. Therefore, the designer is left with the
possibility to select the strategy that best suits to the application needs. Note
that for the last strategy, involving bitstream size, we do not consider bitstream
relocation (using one bitstream for configuring several regions). We will include
bitstream relocation management in a future release of FoRTReSS.

Interface related constraints are not taken into account during this step: we
consider it is a result of the allocation step. It is thus possible to find situations
where an IP with a FIFO interface and an IP with an AXI interface would share
the same reconfigurable region. In such case, the reconfigurable region must
access both AXI and FIFO interfaces. A common approach is to separate the IP
core from the communication interfaces in order to reduce reconfiguration time
and resource overheads. Interfaces are actually connected to their associated IP
core by a router which is parameterised at configuration time. As grouping IPs
with different interfaces are known to be inefficient, improvements are foreseen
on these aspects.

This step allocates software implementations to processor cores as well.
Compared to hardware mapping, the difference lies in the optimisation strate-
gies than can not be strictly the same: processor level optimization is based
on the Least used allocation strategy which is the only one implemented in this
case but could be extended by another strategies such as a low power strategy.

3.3.6 PR cost model

Before simulating the solution, it is necessary to calculate the reconfiguration
times associated with every task-RR association. For this purpose, we use
the cost model developped for an optimised reconfiguration controller called
FaRM [14] (Fast Reconfiguration Manager). FaRM also allows for bitstream
compression to further reduce the memory footprint without degrading config-
uration performance.

3.3.7 Simulation with RecoSim

At this point, we can simulate a solution to check whether this architecture is
fulfilling the timing constraints of the application. The application is consid-
ered frozen and the only parameters that can be modified are those related to
the scheduler. For instance, FoRTReSS comes with an Earliest Deadline First
(EDF) scheduling strategy and As Many As Possible (AMAP) mapping strategy
(using as many processing units as possible), but the designer can define custom
strategies using dedicated APIs. The time spent by the scheduler to decide the
next move is simulated in order for the simulation to be time-accurate. The
main objective is to obtain a realistic schedule and, through measurements or
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an accurate cost model, to ensure compliance with real-time constraints. How-
ever, this scheduler is currently under implementation based on previous work
described in [7].

RecoSim can simulate the simultaneous mapping of several applications on
the target FPGA (an application being a sequence of tasks started and ended
by a testbench, just like the example of Figure 3). In this case, all applications
are controlled by the same reconfiguration manager and the same scheduler that
can be implemented either in software and hardware. Either way, schedulers are
considered static and placed on a dedicated unit.

3.3.8 Layout constraints generation

When simulation has completed, a User Constraint File (UCF) is produced
describing the placement of reconfigurable regions on the device, compliant with
Xilinx design tools. For non-Xilinx devices, FoRTReSS also generates an XML
file representing the chosen reconfigurable regions.

3.4 About the solution chosen by FoRTReSS

The solution chosen and validated by FoRTReSS is one amongst many other
correct solutions in the design space. FoRTReSS mainly focuses on whether
or not the architecture satisfies the application real-time constraints. Once the
constraints are met, it is not necessary to continue evaluating other solutions
and possibly find a better solution since we already found a valuable one. Still,
it is possible to manually search for an optimal solution by running several times
the FoRTReSS flow while reducing the timing constraints.

In future versions of the flow, we plan on integrating energy minimisation.
The same behaviour is expected: there will be an energy consumption constraint
that should be respected as well as the timing constraint. We will not be looking
for a trade-off between both metrics but FoRTReSS will rather evaluate the
system’s feasibility. Therefore, the same approach can be preserved.

3.5 FoRTReSS Toolbox

In order to ease the joint use of FoRTReSS and RecoSim, we developed a
Graphical User Interface (GUI), called FoRTReSS Toolbox [15] which allows
the graphical specification of application diagrams and exploration parameters.
The Eclipse Graphical Modeling Framework (GMF) [32] is used to create user
interfaces based on Eclipse editor and Eclipse Modeling Framework (EMF). This
environment is used to generate the C++ source code required by FoRTReSS
and RecoSim using JDOM [19]. Code generation, compilation and simulation
are handled within FoRTReSS Toolbox GUI. Interactions with other design
tools such as Xilinx PlanAhead or Mentor Graphics ModelSim are possible to
examine details of the simulation results. FoRTReSS Toolbox is compatible
with Linux-based and Windows operating systems.

4 Application study & results

This section illustrates the application of FoRTReSS methodology for system
level exploration of hardware software mappings involving dynamic and partial

17



Figure 8: H.264/AVC decoder block diagram

reconfiguration. A reasonable specification assumption can be based on using
C/C++ as a high level input code. Since the relevance of RR definition depends
greatly on reliable characteristics of hardware accelerators, we rely on the use
of High Level Synthesis (HLS) made possible by the use of C/C++ code. This
approach is fully illustrated on the analysis example of an H.264/AVC decoder.

The entire system has not been implemented on the Zynq platform. Each
hardware block was synthesized to extract resources and was placed and routed
separately on the Zynq device to evaluate its performance accurately (i.e. WCET).
Moreover, each software block was run on a Cortex-A9 (performed ten times)
in order to have the most accurate worst case execution time. About the data
transfer, data is located in main memory (e.g. on-board DDR3 memory). A
program, running on the Cortex-A9 and using a DMA, moves data to the ac-
celerator. Regarding software IPs, they fetch data directly from memory. We
also integrated this data transfer time in the WCET. Therefore, this leads to a
very good accuracy for the simulation in our tool in terms of resource and time.

However, in practice C/C++ code requires a lot of time and effort to be
actually compliant with HLS rules, sometimes going as far as complete applica-
tion rewriting. Therefore in a second validation study, we address the mapping
exploration of an H.265/HEVC encoder from a reference C++ code released
by the x265 open-source project [35]. As this type of code is often not able
to comply with HLS requirements, we show how exploration can nevertheless
be usefully processed from existing software and relevant hardware implemen-
tations reported in the literature as explained in section 4.4, in order to assess
early mapping opportunities and their impact on performance.

4.1 H.264/AVC decoder overview

The first application which is considered for this validation study is an H.264/AVC
profile video decoder. An Electronic System Level (ESL) design methodol-
ogy [10] is used here to provide values of cost performance tradeoffs for possible
hardware functions, which serve as an entry point to the exploration methodol-
ogy of FoRTReSS. The H.264 decoder used corresponds to the block diagram of
figure 8 which is a version derived from the ITU-T reference code [18] to comply
with hardware design constraints and HLS. From the original C++ code, a pro-
filing step identifies four main functionalities for acceleration that are, in order of
importance, the deblocking filter (24%), the inverse context-adaptive variable-
length coding (Inv. CAVLC 21%), the inverse quantization (Inv. Quant. 19%)
and the inverse integer transform (Inv. Transf. 12%). To achieve better re-
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Table 1: H264 task parameters on Zynq-7000 EPP (no slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms)SLICE DSP BRAM

Exp Golomb 1.96 n/a n/a n/a n/a
MB Header 1.96 n/a n/a n/a n/a
Inv CAVLC 20.56 5.05 3383 0 6
Inv QTr 30.35 15.48 1202 3 7
Inv Pred 8.81 n/a n/a n/a n/a
DB Filter 23.50 6.50 701 0 5

Table 2: H264 task parameters on Zynq-7000 EPP (two slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms)SLICE DSP BRAM

Exp Golomb 1.96 n/a n/a n/a n/a
MB Header 1.96 n/a n/a n/a n/a
Inv CAVLC 10.28 2.53 3383 0 6
Inv QTr 15.18 7.74 1202 3 7
Inv Pred 4.41 n/a n/a n/a n/a
DB Filter 11.75 3.25 701 0 5

sults, we have merged the inverse quantization and integer transform into a
single block (Inv. QTr.). It might be noted here that CAVLC was not added
to this block because the HLS tool (Catapult C Synthesis 2009a Release) could
not handle the complexity of the resulting C++ code. Therefore, this results
in three potential hardware functions representing 76% of the total processing
time.

The deblocking filter, inverse CAVLC, and inverse quantization and trans-
form block are the three functionalities of the decoder that can be either imple-
mented in software or in dedicated hardware. In addition to these accelerating
oportunities, we also consider a parallelization of the video decoder which ex-
ploits the possibility of slice decomposition of frames in the H264/AVC standard.
A slice represents an independent zone of a frame, it can reference other slices
of previous frames for decoding; therefore decoding one slice (of a frame) is
independent from another (slice of the same frame). This way, the decoder can
process different slices of a frame in parallel. We have thus considered two ver-
sions of the decoder corresponding to i) the original decoder (no slice decompo-
sition), and ii) a two slice decomposition of the image where two streams can be
processed in parallel on two halves of a same frame. This will allow considering
implementations up to six accelerators and two processors for exploration. The
corresponding hardware and software task parameters are reported in Table 1
for the original decoder and Table 2 for a two slice decomposition.

These parameters constitute the inputs for the exploration methodology.
Hardware execution parameters (section HWex in Table 1 and 2) are derived
from the full implementation of the three hardware functions identified pre-
viously on a Xilinx Zynq-7000 Extensible Processing Platform. Software tasks
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(section SWex in Table 1 and 2) are described over the 667MHz ARM CortexA9
processor. The following section provides exploration results, analysis and dis-
cussion relevant to video processing constraints for this application example.

4.2 H.264/AVC decoder exploration results

The aim of this design space exploration is to determine if it is possible to
decode an H.264 video stream in real-time, i.e. processing 30 frames per sec-
ond (fps). For this purpose, we studied different use cases, from full software
implementations towards mixed solutions, with or without making use of the
slice decomposition possibility. Since FoRTReSS does not automatically explore
the number of processor units, it was run with different projects increasing the
number of processors. Reconfigurable regions are then automatically adjusted
to fit with the configuration.

Performance and area results reported by FoRTReSS are summed up in Ta-
ble 3. Area results are provided for both static and partially reconfigurable
solutions in a way to put forward the relative improvements of dynamic recon-
figuration. Raw improvement is computed by comparing resources of a static
solution against resources required by reconfigurable regions. A total improve-
ment is also computed considering the additional resources used by the recon-
figuration controler (FaRM). For every use case presented here, we took care
of choosing the shortest possible deadline, hence achieving the best framerate
for the H.264 decoder. When considering a HW/SW implementations, global
performance is usually limited by the number of processor units and reconfig-
urable regions which are directly related to the size of the target device. In this
application study, we may use both Cortex-A9 cores of the Zynq-7000 platform.

The second column labelled ”Framerate” in Table 3 shows that the first so-
lution complying with a 30fps constraint is HW/SW implementation using two
CPUs for a two slice decomposition (34.1 fps). For this solution, the resource
improvements from the use of partial reconfiguration are 25.45%, -11.11% and
-900% respectively for slice, BRAM and DSP blocks. This means that BRAM
and DSP requirements have actually increased while the number of slices de-
creased in a small fraction. Therefore, this overhead might not promote the use
of PR. However, this solution can be improved: the maximum framerate that
can be reached with this architecture is more than the targeted framerate of
30 frames per second. Hence, the application deadline can be increased to 33.3
ms: this is the last use case in Table 3. Proceeding this way brings significant
improvement with 54% slice improvement (less than half of previous slice re-
quirements, from just reducing the framerate constraint) and even 44% BRAM
improvement.

Across all implementations, we notice a important overhead for DSP re-
sources in Table 3. It is due to the limited DSP requirements (only 3 DSP48s)
and reconfiguration granularity: each reconfigurable region must span an entire
clock domain, hence constraining every resource within the column. For DSP re-
sources, each column is composed of 20 DSP48s, which is the minimum number
of DSP48s that can be set for a Zynq-7000 device. Therefore, there will always
be an important resource overhead for DSP elements. If this is unacceptable to
the designer (for instance, if the remaining static logic is very DSP-consuming),
it is always possible to change synthesis parameters in order to prohibit the
synthesizer from inferring DSP blocks and use logic elements instead.
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Table 3: Performance and area results of H.264 decoder implementations

ImplementationFramerateResourceStatic NumberPR
area

PR Improvement (%)

(fps) type area of
RRs

(columns)area Raw Total

Full SW Slice
1 slice 11.4 BRAM n/a n/a n/a n/a n/a n/a
1 core DSP
Full SW Slice
2 slices 21.7 BRAM n/a n/a n/a n/a n/a n/a
2 cores DSP
HW/SW Slice 5551 72 3600 35.15 29.40
1 slice 23.3 BRAM 18 1 1 10 44.4 44.4
1 core DSP 3 1 20 -

566.7
-
566.7

HW/SW Slice 11102 140 7000 36.95 25.45
2 slices 28.2 BRAM 36 4 4 40 -

11.11
-
11.11

1 core DSP 6 3 60 -900 -900
HW/SW Slice 11102 140 7000 36.95 25.45
2 slices 34.1 BRAM 36 4 4 40 -

11.11
-
11.11

2 cores DSP 6 3 60 -900 -900
HW/SW Slice 11102 88 4400 60.37 54.62
2 slices 30 BRAM 36 2 2 20 44.44 44.44
2 cores DSP 6 1 20 -

233.3
-
233.3

Table 4: Occupation rate results of H.264 decoder implementations

Implementation FramerateCore (%) Reconfigurable Region (%)
(fps) Core1 Core2 RR1 RR2 RR3 RR4 RR5 RR6

HW/SW (2
slices/cores)

34.1 48.42 43.37 26.39 11.08 26.39 11.08 n/a n/a

HW/SW (2
slices/cores)

30 88.09 73.40 n/a n/a n/a n/a 9.74 30.77
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Figure 9: Floorplan with interface constraints on a Zynq-7000 platform

To better understand the results obtained when reducing the targeted fram-
erate, the Table 4 shows the occupation rates of the last two solutions of the
Table 3 depending on the framerate and the possible ICAVLC allocation (RR
or core). Reducing the framerate gives the scheduler the opportunity to use a
slower task implementation (the software one) rather than a faster hardware
implementation, but with a resource overhead in return. The 30 fps use case
shows much higher occupation rates than the 34.1 use case (73.4 and 88.09%
compared to 43.37 and 48.42% respectively for both cores).

4.3 Adding interfaces constraints to FoRTReSS

Solutions found by FoRTReSS did not take into account any location constraints
and hence, placement of the reconfigurable regions on the FPGA is arbitrary.
However, our application mixes both hardware and software tasks communicat-
ing with each other. Hence, task placement can be optimized by placing the
reconfigurable regions closer to the Cortex-A9 processors.

Constraining regions is automated within FoRTReSS: for every hardware im-
plementation in the design, the interface requirements are specified so that every
region that can host the task must also provide this type of interface. In our
case, all accelerators use a 32-Bit AXI high-performance slave port (at 100MHz)
between the programmable logic zone and the processing system. Then, the lo-
cation of potential interfaces has to be specified by the user. Figure 9 shows the
location of the AXI interfaces as well as the resulting floorplan of the Zynq-7000
platform for previous use case (two RRs and two processor cores working on two
slices at 30 frames per second). In this case, we defined two possible locations
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Figure 10: H.265/HEVC encoder flow graph

Table 5: x265 task parameters on Zynq-7000 EPP (no slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms)SLICE DSP BRAM

Motion Est 2418 9.61 14067 0 297
Intra Pred 126 1.43 472 0 4
Quant 37 n/a n/a n/a n/a
Tranf 21 0.28 3595 0 0
CABAC 139 n/a n/a n/a n/a
Inv Quant 5 n/a n/a n/a n/a
Inv Transf 5 0.28 3595 0 0
Loop Filt 23 n/a n/a n/a n/a

for AXI interfaces, close to the Cortex-A9 processor. In order to comply with
the reconfiguration granularity, the possible interface locations span an entire
clock domain. We can see that both reconfigurable regions found by FoRTReSS
effectively include one AXI interface, ensuring enhanced performance during the
FPGA implementation phase.

4.4 H.265/HEVC encoder

In this second application study, we show the ability of the method to help
system level mapping analysis from early-stage application specifications. The
application considered is a recently released H.265/HEVC encoder from the x265
open source project which software is available since July 2014 [35]. Figure 10
shows the application graph derived from the reference C++ code.

Ideally the characteristics of hardware mappings of tasks needed for explo-
ration can originate from HLS, provided that the C/C++ source can be pro-
cessed. This is generally not the case for most applications, including x265, as
only a subset of C/C++ is usually supported for hardware acceleration. The
x265 code makes widespread use of dynamic memory allocation and arbitrary
indirection (pointers that are not static arrays) that will require extensive effort
to remove. However many works have already been devoted to the implemen-
tation of critical processing blocks of H.265/HEVC since the technical content
of HEVC was finalized at the beginning of 2013.

Table 5 reports the characteristics of three relevant hardware implementa-
tions on Virtex FPGAs that can be used to process an early exploration of the
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Table 6: x265 task parameters on Zynq-7000 EPP (two slice decomposition)

SWex HWex

Task WCET(ms) WCET(ms)SLICE DSP BRAM

Motion Est 1209 4.81 14067 0 297
Intra Pred 63 0.72 472 0 4
Quant 19 n/a n/a n/a n/a
Tranf 11 0.14 3595 0 0
CABAC 70 n/a n/a n/a n/a
Inv Quant 3 n/a n/a n/a n/a
Inv Transf 3 0.14 3595 0 0
Loop Filt 12 n/a n/a n/a n/a

acceleration potential with dynamic reconfiguration: a motion estimation en-
gine [11] which is the most computational part of the encoding process, a high
performance intra prediction hardware [21] and an accelerator supporting fast
forward and inverse two-dimensional transforms [33]. All implementation and
performance results come from Xilinx Virtex devices and have been extrapolated
to comply with the same video resolution and a running frequency of 100MHz.
We target the same platform (Zynq-7000 EPP) as depicted in section 4.1. As
for H.264, H.265 supports slice decomposition to allow frame level parallelism
when encoding using multiple cores. Task parameters corresponding to a two
slice decomposition are thus also considered and depicted in table 6.

4.5 H.265/HEVC encoder exploration results

Like for the previous H.264 application study, we cover different configurations
from full software to hardware software implementations with or without slice
decomposition. The corresponding results are reported in table 7.

There are sensitive performance benefits in the three hardware software so-
lutions defined, until 8.82 fps using two cores and three RRs over software exe-
cution (respectively 0.36 fps and 0.7 fps for 1 slice/1 core and 2 slices/2 cores).
However this use case is very much affected by the presence of a big computation
kernel represented by motion estimation which engages 14067 slices, that is 65%
of the total accelerator slices. There is no room for sharing and dynamically
reconfiguring a single RR able to host all tasks without an important perfor-
mance penalty (26.8 ms of reconfiguration time). As a result the best solution
is based on the use of three RRs, one for each type of function (Tranf and
Inv Transf functions share the same accelerator IP). There is no possible re-
source improvement from using dynamic reconfiguration in this example. In fact
there is even a slight increase of logic resource due to the inevitable oversizing
of a Reconfigurable Region to be able to host a task.

Nevertheless this application study shows the ability of the methodology
to easily evaluate the relevance of using dynamic reconfiguration or not from
very early development stages. In addition, further investigation can permit to
propose and analyze a set of possible improvements. For example, the scheduling
details of the 8.82 fps solution reported in figure 11 clearly shows that CABAC
function becomes a new major bottleneck after global acceleration. Therefore
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Table 7: Performance and area results of x265 encoder implementations

ImplementationFramerateResourceStatic NumberPR
area

PR Improvement (%)

(fps) type area of
RRs

(columns)area Raw Total

Full SW Slice
1 slice 0.36 BRAM n/a n/a n/a n/a n/a n/a
1 core DSP
Full SW Slice
2 slices 0.7 BRAM n/a n/a n/a n/a n/a n/a
2 cores DSP
HW/SW Slice 22673 552 27600 -21.7 -26
1 slice 4.58 BRAM 301 3 32 320 -6.31 -6.31
1 core DSP 0 0 0 0 0
HW/SW Slice 22673 552 27600 -21.7 -26
1 slice 5.33 BRAM 301 3 32 320 -6.31 -6.31
2 cores DSP 0 0 0 0 0
HW/SW Slice 22673 552 27600 -21.7 -26
2 slices 8.82 BRAM 301 3 32 320 -6.31 -6.31
2 cores DSP 0 0 0 0 0

Figure 11: Scheduling of the best X.265 accelerated solution.
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a hardware implementation for this function, but also for loop filters (sample
adaptive offset, deblocking filter) to a lesser extent, can certainly allow to reach
real time processing (e.g. 30 fps) and, depending on their size, change the
question of dynamic reconfiguration impact. We did not process these functions
as we found no hardware implementation reported in the literature yet.

4.6 Design time with FoRTReSS

The design cycle with FoRTReSS can actually be split in two: application spec-
ification using FoRTReSS Toolbox and actual execution of the FoRTReSS flow.
The graphical specification of the application diagram and FoRTReSS config-
uration takes less than an hour, which does not include the time required to
obtain the resource requirements for every hardware implementation of the tasks
and the timing information. This effort is done just the first time an application
is defined: diagrams can be imported and reused into multiple projects. Then,
each execution of the FoRTReSS flow can take up to a minute, depending on
the complexity of the RecoSim simulation and the unknown number of allo-
cation improvements that are performed during exploration. Therefore, it has
also been shown that it was possible to estimate the impact of partial recon-
figuration on an application in a short amount of time, which cannot be done
with current design flows. The H.265 encoder mapping example was processed
from scratch in a matter of three days. To do this, we needed descriptions of
hardware implementations or at least an estimation of the required resources
and the corresponding hardware and software execution times.

5 Future work

In future versions of FoRTReSS, we would like to add some energy considera-
tions. For now, FoRTReSS highly focuses on real-time constraints to automati-
cally identify performance compliant solution(s) under energy minimisation re-
quirement for example. We believe that combining both temporal and energetic
considerations for partially reconfigurable systems into a single tool can be very
time-saving for the designer interested in power efficiency. For instance, it is
possible to develop and evaluate scheduling algorithms with RecoSim that pro-
mote energy consumption when considering selecting task implementations and
allocation or using blank reconfigurable regions to minimise the global energy
cost while potentially considering DVFS oportunies at the processor level for
realistic multicore low power execution. Therefore, we would like to integrate
these considerations into the reconfigurable region selection and the allocation
optimization process.

6 Conclusion

In this paper, we introduced FoRTReSS, a flow enabling design space exploration
for partially reconfigurable applications in real-time systems. FoRTReSS pro-
vides the designer with a convenient tool for estimating hardware, software and
mixed solutions using partial reconfiguration. The hardware design space explo-
ration is automated by FoRTReSS, which infers a set of reconfigurable regions
from task resources information. FoRTReSS relies on a SystemC simulator,
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RecoSim, that allows the designer to develop and evaluate its own scheduling
algorithms. We described in depth the features and abilities of FoRTReSS on
a H.264 video decoding application targeting a framerate of 30 frames per sec-
ond on a Zynq-7000 platform. Several implementations of the decoder were
evaluated, from a full software solution working on the entire stream to a solu-
tion using hardware accelerators and working on a two slice decomposition of
the stream. We have shown that a first solution was indentified by FoRTReSS
to process a framerate of 34.1 frames per second, but with an important re-
sources overhead. Finally, extending slightly the deadlines permitted to reach
a 30 fps solution with very interesting area improvements, saving more than
half the slice resources compared to a static implementation and using 44% less
memory resource. We have additionally shown the usefulness of the framework
to help analyzing mapping opportunities from early C++ specifications on a
H.265/HEVC encoder. The different explorations performed within this work
were facilitated by the use of FoRTReSS Toolbox, a GUI for controlling the
FoRTReSS flow.
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