
HAL Id: hal-01133949
https://hal.science/hal-01133949

Submitted on 20 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology-preserving flocking of nonlinear agents using
optimistic planning

Lucian Busoniu, Irinel-Constantin Morarescu

To cite this version:
Lucian Busoniu, Irinel-Constantin Morarescu. Topology-preserving flocking of nonlinear agents using
optimistic planning. Control Theory and Technology, 2015, 13 (1), pp.70-81. �10.1007/s11768-015-
4107-5�. �hal-01133949�

https://hal.science/hal-01133949
https://hal.archives-ouvertes.fr

Topology-preserving flocking of nonlinear agents

using optimistic planning∗

Lucian Buşoniu, Irinel-Constantin Moruarescu†

Abstract

We consider the generalized flocking problem in multiagent systems,
where the agents must drive a subset of their state variables to common
values, while communication is constrained by a proximity relationship
in terms of another subset of variables. We build a flocking method for
general nonlinear agent dynamics, by using at each agent a near-optimal
control technique from artificial intelligence called optimistic planning. By
defining the rewards to be optimized in a well-chosen way, the preserva-
tion of the interconnection topology is guaranteed, under a controllability
assumption. We also give a practical variant of the algorithm that does
not require to know the details of this assumption, and show that it works
well in experiments on nonlinear agents.

1 Introduction

Multi-agent systems such as robotic teams, energy and telecommunication net-
works, collaborative decision support systems, data mining, etc. appear in many
areas of technology. Their component agents usually only have a local, limited
view, which means decentralized approaches are necessary to control the overall
system. In this decentralized setting, often consensus between the agents is de-
sired, meaning that they must reach agreement on certain controlled variables of
interest [1, 2, 3]. Inspired by the behavior of flocks of birds, researchers studied
the flocking variant of consensus, which only requires consensus on velocities
while also using position measurements [3, 4]. Flocking is highly relevant in e.g.
mobile robot teams [5].

In this paper we consider a generalized version of the flocking problem, in
which agreement is sought for a subset of agent variables, while other variables
define the interconnection topology between the agents. These two subsets may,

∗ The work of L. Buşoniu was supported by a grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project number PNII-RU-TE-2012-3-0040. The work of I.-
C Moruarescu was partially funded by the ANR project ”Computation Aware Control Systems”,
ANR-13-BS03-004-02.
†L. Buşoniu is with Department of Automation, Technical University of Cluj-Napoca,

Memorandumului 28, 400114 Cluj-Napoca, Romania. I.-C. Moruarescu is with Université de
Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye,
Vandœuvre-lès-Nancy, France.

1

but need not represent velocities and positions. The communication connections
between agents are based on a proximity relationship, in which a connection is
active when the agents are closer than some threshold in terms of the connec-
tivity variables. Each agent finds control actions (inputs) using the optimistic
planning (OP) algorithm from artificial intelligence [6]. OP works with discrete
actions, like the consensus method of [7], and finds sequences of actions that are
near-optimal with respect to general nonquadratic reward functions, for general
nonlinear dynamics. The first major advantage of our technique is this inherited
generality: it works for any type of nonlinear agents. A controllability property
is imposed that, for any connected state, roughly requires the existence of an
input sequence which preserves connectivity. We define agent reward functions
with separate agreement and connectivity components, and our main analytical
result shows that if the connectivity rewards are sufficiently large, the algorithm
will preserve the interconnection topology. In interesting cases, the computa-
tional complexity of the flocking problem is not larger than if the agent would
solve the agreement-only problem. The theoretical algorithm is restrictive in
requiring to know the length of action sequences satisfying the controllability
property. We therefore also provide a practical algorithm variant which does
not use this knowledge, and validate it in simulation to nonholonomic agents
and robot arms [8]. In the second problem we illustrate that despite our focus
on flocking, the method also works in the full-state consensus case.

The main novelty of the OP approach compared to existing methods is that
it is agnostic to the specific agent dynamics, and so it works uniformly for gen-
eral nonlinear agents. In particular, our analysis shows that when a solution
that preserves the topology exists (in a sense that will be formalized later), then
irrespective of the details of the dynamics the algorithm will indeed maintain the
topology. Existing topology preservation results are focused on specific types
of agents, mainly linear [9, 10], [11, Ch. 4], or sometimes nonlinear as in e.g.
[12] where the weaker requirement of connectivity is considered. Our practical
flocking algorithm exhibits the same generality, whereas existing methods ex-
ploit the structure of the specific dynamics targeted to derive predefined control
laws, e.g. for linear double integrators [3], agents with nonlinear acceleration
dynamics [13, 14], or nonholonomic robots [15, 12]. The technical contribution
allowing us to achieve these results is the exploitation of the OP algorithm, and
of its strong near-optimality guarantees.

The approach presented here is a significant extension of our earlier work
[16]: it introduces a new algorithm that is theoretically shown to preserve the
topology, and also includes new empirical results for nonholonomic agents. Also
related is our optimistic-optimization based approach of [17], which only han-
dles consensus on a fixed graph rather than flocking, and directly optimizes
over fixed-length action sequences rather than using planning to exploit the
dynamical structure of the control problem.

The remainder of this paper is organized as follows. After formalizing the
problem in Section 2 and explaining OP in Section 3, the two variants of the
consensus algorithm and the analysis of the theoretical variant are given in
Section 4. Section 5 presents the experimental results and Section 6 concludes

2

the paper.

List of symbols and notations

|·| cardinality of argument set
n number of agents
G,V, E ,N graph, vertices, edges, neighbors
i, j agent indices
x, u, f state, action, dynamics
xa, xc agreement states, connectivity states
P communication range

ũ, f̃ extended action, extended dynamics
k absolute time step
K length of sequence ensuring connectivity
ud action sequence of length d
uki action sequence of agent i at k
xki state sequence of agent i at k

x̂i,kj state sequence prediction for agent j,
built by agent i at step k

uki,d, x
k
i,d, x̂

i,k
j,d the dth element of respective sequence

ρ, v reward function, value (return)
γ discount factor
∆, Γ agreement reward, connectivity reward
β weight of connectivity reward
T optimistic planning budget
T , T ∗,L tree, near-optimal tree, leaves
d depth in the tree (relative time step)
b, ν upper and lower bound on return
κ branching factor of near-optimal tree

2 Problem statement

Consider a set of n agents with decoupled nonlinear dynamics xi,k+1 = fi(xi,k, ui,k),
i = 1, . . . , n, where xi and ui denote the state and action (input) of the ith agent,
respectively. The agents can be heterogeneous: they can have different dynamics
and state or input dimensionality. An agent only has a local view: it can receive
information only from its neighbors on an interconnection graph Gk = (V, Ek),
which can be time-varying. The set of nodes V = {1, . . . , n} represents the
agents, and the edges Ek ⊆ V × V are the communication links. Denote by
Ni,k = {j | (i, j) ∈ Ek } the set of neighbors of node i at step k. A path through
the graph is a sequence of nodes i1, . . . , iN so that (il, il+1) ∈ Ek, 1 ≤ l < N .
The graph is connected if there is a path between any pair of nodes i, j.

The objective can be formalized as:

lim
k→∞

‖xa
i,k − xa

j,k‖ = 0 ∀i, j = 1, . . . , n

3

where xa selects only those state variables for which agreement is desired, and
‖·‖ denotes an arbitrary norm. We require of course that the selection produces
a vector with the same dimensionality for all agents. When all agents have the
same state dimension, xa = x, and Ek = E (a fixed communication graph) we
obtain the standard full-state consensus problem [1, 2]. While our technique can
be applied to this case, as will be illustrated in the experiments, in the analytical
development we will focus on the flocking problem, where the communication
network varies with the connectivity state variables xc. Usually, xa and xc do not
overlap, being e.g., the agent’s velocity and position [3], so that velocities must
be synchronized under communication constraints dependent on the position.
Specifically, we consider the case where a link is active when the connectivity
states of two agents are close:

Ek =
{

(i, j)
∣∣ i 6= j, ‖xc

i,k − xc
j,k‖ ≤ P

}
(1)

For example when xc is a position this corresponds to the agents being physically
closer than some transmission range P .

Our approach requires discretized agent actions.

Assumption 1 Agent actions are discretized: ui ∈ {Ui} with |Ui| = Mi.

Remark: Certain systems have inherently discrete and finitely-many actions,
because they are controlled by switches. When the actions are originally con-
tinuous, discretization reduces performance, but the loss is often manageable.
Other authors showed interest in multiagent coordination with discretized ac-
tions, e.g. [7]. �

Further, to develop our connectivity analysis, we require the following con-
trollability condition. Denote ui,K = (ui,0, ui,1, . . . , ui,K−1) ∈ UKi a sequence of

K actions of agent i, and f̃i(xi,ui,K) the result of applying this sequence: the

agent’s state after K steps, with f̃i the extended dynamics.

Assumption 2 There exists K so that for any agent i, and any states xi, xj,
∀j ∈ Ni,k so that ‖xc

i − xc
j‖ ≤ P , there exists some sequence ui,K so that

‖f̃ c
i (xi,ui,K)− xc

j‖ ≤ P , ∀j ∈ Ni,k.

Remark: This is a feasibility assumption: it is difficult to preserve the topology
without requiring such a condition. The condition simply means that for any
joint state of the system in which an agent is connected to some neighbors, this
agent has an action sequence by which it is again connected after K steps, if its
neighbors do not move. So if the assumption does not hold and the problem is
such that the neighbors do stay still, the agent will indeed lose some connections
and topology cannot be preserved. Of course, in general the neighbors will
move, but as we will show Assumption 2 is nevertheless sufficient to ensure
connectivity.

K-step controllability properties are thoroughly studied in the literature,
e.g. [18] provide Lie-algebraic conditions to guarantee them. We make a simi-
lar assumption in our previous paper [17], where it is however much stronger,

4

requiring that the control is able to move the agent between any two arbitrary
states in a bounded region. With a sufficiently fine action discretization, such
an assumption would locally imply Assumption 2 in the present paper.

When making the assumption, we could also use the following definition for
the links:

Ek = {(i, j)|i 6= j, ‖xc
i,k − xc

j,k‖ ≤ P, and if k > 0, (i, j) ∈ Ek−1} (2)

so that the agents never gain new neighbors, and only need to stay connected
to their initial neighbors. The analysis will also hold in this case, which is
important because with (1), as k grows many or all the agents may become
interconnected. For simplicity we use (1) in the sequel. �

3 Background: Optimistic planning for deter-
ministic systems

Consider a (single-agent) optimal control problem for a deterministic, discrete-
time nonlinear system xd+1 = f(xd, ud) with states x and actions u. Define an
infinitely-long action sequence u∞ = (u0, u1, . . .) and its truncation to d initial
actions, ud = (u0, . . . , ud−1). Given an initial state x0, the return of a sequence
is:

v(u∞) =

∞∑
d=0

γdρd+1(ud+1) (3)

where ρd : Ud → [0, 1] gives the reward after d steps and γ ∈ [0, 1) is a
discount factor, which given the bounded rewards ensures bounded returns.
For example, an approximately quadratic problem is obtained if ρd(ud) =
1 − max{xd>Qxd, 1}, where xd is the result of applying ud from initial state
x0 and Q is properly chosen so that the rewards are sensitive to the interesting
region of x. Denote v∗ = supu∞ v(u∞) the optimal return. Note that reinforce-
ment learning [19] and adaptive dynamic programming [20] also aim to solve
this type of optimal control problem.

Optimistic planning for deterministic systems (OP) [6, 21] explores a tree
representation of the possible action sequences from the current system state,
as illustrated in Figure 1. It requires a discrete action space U =

{
u1, . . . , uM

}
;

recall Assumption 1, which ensures this is true for our agents. OP starts with
a root node representing the empty sequence, and iteratively expands T well-
chosen nodes. Expanding a node adds M new children nodes for all possible
discrete actions. Each node at some depth d is reached via a unique path
through the tree, associated to a unique action sequence ud of length d. We
will denote the nodes by their corresponding action sequences. Denote also the
current tree by T , and its leaves by L(T).

For a leaf node ud, the following gives an upper bound on the returns of all

5

ρ x u(,)0 0

1

ρ x u(,)0 0

2

f x u(,)0 0

2

u
2

0u
1

0

f x u(,)0 0

1

u
1

1 u
2

1

Figure 1: Illustration of an OP tree T . Nodes are labeled by actions, arcs repre-
sent transitions and are labeled by the resulting states and rewards. Subscripts
are depths, superscripts index the M possible actions/transitions from a node
(here, M = 2). The leaves are enclosed in a dashed line, while the thick path
highlights a sequence.

infinite action sequences having in common the initial subsequence up to ud:

b(ud) =

d−1∑
e=0

γeρe+1(ue+1) +
γd

1− γ
=: ν(ud) +

γd

1− γ

where ν(ud) is a lower bound. These properties hold because all the rewards at
depths larger than d are in [0, 1].

OP optimistically explores the space of action sequences, by always expand-
ing further the most promising sequence: the one with the largest upper bound,
u† = arg maxu∈L(T) b(u). After T node expansions, a sequence that maximizes
ν among the leaves is returned, intuitively seen as a safe choice, see Algorithm
1.

Algorithm 1 Optimistic planning for deterministic systems.

1: initialize tree: T ← {empty sequence u0}
2: for t = 1, . . . , T do
3: find optimistic leaf: u† ← arg maxu∈L(T) b(u)

4: add to T the children of u†,
labeled by u1, . . . , uM

5: end for
6: return u∗d∗ , where u∗d∗ = arg maxu∈L(T) ν(u)

Usually OP and its analysis are developed for time-invariant reward functions
[6, 21], such as the quadratic reward exemplified above. However, this fact is

6

not used in the development, which therefore entirely carries over to the time-
varying case explained here. We provide the algorithm and results directly in
the time-varying case, since this will be useful in the consensus context.

To characterize the complexity of finding the optimal sequence from a given
state x, we use the asymptotic branching factor of the near-optimal subtree:

T ∗ = {ud | d ≥ 0, v∗ − v(ud) ≤
γd

1− γ
} (4)

where the value of a finitely long sequence is defined as v(ud) = supu∞∈ud v(u∞)
and u∞ ∈ ud means that u∞ starts with ud. Let T ∗d be the set of nodes at
depth d on T ∗ and |·| denote set cardinality, then the asymptotic branching

factor is defined as κ = lim supd→∞ |T ∗d |
1/d

.
A sequence ud is said to be ε-optimal when v∗ − v(ud) ≤ ε. The upcoming

theorem is a consequence of the analysis in [6, 21]. It is given here in a form that
brings out the role of the sequence length, useful later. Part (i) of the theorem
shows that OP returns a long, near-optimal sequence, while part (ii) quantifies
this length and near-optimality, via branching factor κ.

Theorem 3 When OP is called with budget T :

(i) The length d∗ of the sequence u∗d∗ returned is at least d(T)−1 where d(T)

is the depth of the tree developed. This sequence is γd
∗

1−γ -optimal.

(ii) If κ > 1 OP will reach a depth of d∗ = Ω(log T
log κ), and its near-optimality

will be O(T−
log 1/γ
log κ). If κ = 1, d∗ = Ω(T) and near-optimality is O(γcT),

where c is a problem-dependent constant. �

Proof:Part (i) follows from the proof of Theorem 2 in [6], and (ii) from the proofs
of Theorems 2 and 3 in [6]. A sketch for part (ii) is given here, since it will be
useful later in our analysis. A core property of OP is that it only expands
nodes in T ∗. According to item (i), performance is dominated by the depth
reached. Thus the worst case is when nodes in T ∗ are expanded in the order
of their depth. Now, T ∗ contains T = O(κd) nodes up to depth d when κ > 1,
and T = O(d) otherwise. Inverting these relationships obtains the formulas for

d∗ in the Theorem statement, and replacing these expressions for d∗ into γd
∗

1−γ
provides the corresponding near-optimality bounds.

The smaller κ, the better OP does. The best case is κ = 1, obtained e.g.
when a single sequence always obtains rewards of 1, and all the other rewards
on the tree are 0. In this case the algorithm must only develop this sequence,
and suboptimality decreases exponentially. In the worst case, κ = M , obtained
e.g. when all the sequences have the same value, and the algorithm must explore
the complete tree in a uniform fashion, expanding nodes in order of their depth.

7

4 Flocking algorithm and analysis

The OP-based approach to the flocking problem in Section 2 works as follows.
At every time step k, a local optimal control problem is defined for each agent
i, using information locally available to it. The goal in this problem is to align
the agreement states xa with those of the neighbors Ni,k, while maintaining
the connection topology by staying close to them in terms of xc. OP is used
to near-optimally solve this control problem, and an initial subsequence of the
sequence returned is applied by the agent. Then the system evolves, and the
procedure is applied again, for the new states and possibly changed graph.

To construct its optimal control problem, each agent needs the predicted be-
havior of its neighbors. Here, agents will exchange the predicted state sequences
resulting from the near-optimal action sequences returned by OP. Because the
agents must act at the same time, how they exchange predictions is nontrivial. If
predictions do not match, a coordination problem may arise where mismatching
actions are applied. Coordination is a difficult challenge in multi-agent systems
and is typically solved in model-predictive control by explicit, iterative nego-
tiation over successive local solutions, e.g. [22]. However, it is unlikely that
the agents can computationally afford to repeatedly communicate and reopti-
mize their solutions at every step. Thus we adopt a sequential communication
procedure in which agents optimize once per step, similar to the procedure
for distributed MPC in [23]. We show in Section 4.1 that connectivity can be
guaranteed despite this one-shot solution.

To implement the sequential procedure, each agent needs to know its index
i as well as the indices of its neighbors. One way to ensure this is an initial,
centralized assignment of indices to the agents. Agent i waits until the neighbors
j with j < i have solved their local optimal control problems and found their
predicted state sequences. These agents communicate their predictions to i. For
j > i, agent i constructs other predictions as described later. Agent i optimizes
its own behavior while coordinating with the predictions. It then sends its own,
newly computed prediction to neighbors j > i.

To formalize the approach, first note that when Algorithm 1 is called, we
internally relabel time k to 0, so that indices/depths d in OP and the analysis
of Section 3 are relative to k. Externally, we denote quantities that depend on
the time step by superscript k. Then, the planner of some agent i returns at
step k an action sequence denoted uki = (uki,0, u

k
i,1, ..., u

k
i,d−1), which leads to

predicted state sequence xki = (xki,0, x
k
i,1, . . . , x

k
i,d). Here xki,0 = xi,k is the state

measurement, and the other states are predictions. Sequences found at different
time steps may have different actions at corresponding positions (e.g., uki,1 may

be different from uk+1
i,0 even though they correspond to the same time index,

k + 1 = (k + 1) + 0).
Consider now a specific agent i. At every step k, it receives the states xj,k

of its neighbors j ∈ Ni,k. For neighbors j ∈ Ni,k, j < i, it directly receives
their prediction at k and uses this as an estimation of their future behavior:
x̂i,kj = (x̂i,kj,0, x̂

i,k
j,1, . . .) = xkj . For j ∈ Ni,k, j > i, updated predictions are not

8

available, instead a different prediction x̂i,kj is formed in a way that we specify
later. We add i to the superscript to highlight that the predictions are from the
point of view of agent i.

The local optimal control problem of agent i is then defined using the reward
function:

ρki,d(ui,d) = (1− β)∆k
i,d(ui,d) + βΓki,d(ui,d) (5)

where ∆k
i,d : Udi → [0, 1] rewards the alignment between agreement states and

Γki,d : Udi → [0, 1] rewards the preservation of neighbor connections, with β
weighing the relative importance of these terms. Typically, β ≥ 1 − β so that
connectivity is given priority. Recall that depth d in the planning tree is equiv-
alent to a time index relative to k. Both ∆ and Γ may use the predictions
x̂i,kj . Note that d may exceed the length of the available predictions; when
that happens the predictions are heuristically kept constant at the last value
available.

In the implementation, if the agents have their neighbors’ models, they could
also exchange predicted action sequences instead of states. Since actions are
discrete and states usually continuous, this saves some bandwidth at the cost of
extra computation to resimulate the neighbor’s transitions up to the prediction
length. In any case, it should be noted that agents do not optimize over the
actions of their neighbors, so complexity does not directly scale with the number
of neighbors.

So far, we have deliberately left open the specific form of the rewards and
predictions for neighbors j > i. Next, we instantiate them in a theoretical
algorithm for which we guarantee the preservation of the interconnection topol-
ogy and certain computational properties. However, this theoretical variant has
shortcomings, so we additionally present a different instantiation which is more
suitable in practice and which we later show works well in experiments.

4.1 A theoretical algorithm with guaranteed topology preser-
vation

Our aim in this section is to exploit Assumption 2 to derive an algorithm that
preserves the communication connections. We first develop the flocking proto-
col for each agent, shown as Algorithm 2. Our analysis proceeds by showing
that, if sequences preserving the connections exist at a given step, the rewards
can be designed to ensure that the algorithm will indeed find one such sequence
(Lemma 4). This property is then used to prove topology preservation in closed
loop, in Theorem 5. Finally, Theorem 6 shows an interesting computational
property of the algorithm: under certain conditions the extra connectivity re-
ward does not increase the complexity from the case where only agreement
would be required.

Define a prediction for agents j > i held constant to the latest exchanged
state, x̂i,kj = (xj,k, xj,k, . . .). Then, the connectivity reward for agent i is an
indicator function that becomes 0 only if agent i breaks connectivity with some

9

neighbor(s) after K steps:

Γki,d(ui,d) =

0 if d = K and

∃j ∈ Ni,k, ‖x̂i,k,cj,d − x
k,c
i,d‖ > P

1 otherwise

(6)

The agreement reward is left general, but to fix ideas, it could be for instance:

∆k
i,d(ui,d) = 1− 1

|Ni,k|
∑
j∈Ni,k

max{‖x̂i,k,aj,d − x
k,a
i,d ‖, 1} (7)

where the distance measure ‖ · ‖ (which may be a norm or more general) is
properly weighted to be sensitive to the relevant regions of xa. Then, the agents
always apply in open loop the first K actions from their computed sequences,
after which they close the loop, measure the state, and repeat the procedure,
see Algorithm 2.

Algorithm 2 OP flocking at agent i – theoretical variant.

1: set initial prediction x−1
i to an empty sequence

2: for ` = 0, 1, 2, . . . do
3: current step is k ← `K
4: exchange state at k with all neighbors j ∈ Ni,k
5: send xk−1

i to j < i

6: wait to receive new predictions x̂i,kj from all j < i

7: form predictions x̂i,kj for j > i

8: run OP with (5) and (6), obtaining uki and xki
9: send xki to j > i

10: execute K actions uki,0, . . . , u
k
i,K−1 in open loop

11: end for

The reader may wonder why we do not simply redefine the optimal control
problem in terms of the multistep dynamics f̃i. The answer is that this would
introduce exponential complexity in K: instead of Mi actions, we would have
MK
i , and this would also be the number of children created with each node

expansion in OP. In contrast, applying OP directly to the 1-step problem leads
to significantly decreased computation – in some cases no more than solving a
1-step problem without connectivity constraints, as shown in Theorem 6 below.

Moving on to the analysis now, we first show that when it is possible, each
agent preserves connectivity with respect to the predicted states of its neighbors.

Lemma 4 Take β ≥ 1/(1−γ)+ε
1/(1−γ)+γK−1 for some ε ∈ (0, γK−1). Assume that there

exists a sequence that preserves connectivity with the neighbors at step K, i.e.
Γki,K(ui,K) = 1. Then for any agent i, given a sufficiently large budget T , the
solution returned by OP contains at least K actions and does indeed preserve
connectivity.

10

Proof: The value of a solution that preserves connectivity at step K is at least
v1 = β

1−γ , while for a solution that does not it is at most v2 = 1
1−γ − βγ

K−1,
since the β reward is not received at step K. We have:

v1 − v2 ≥
β

1− γ
− 1

1− γ
+ βγK−1 ≥ ε

obtained by replacing the value of β. Therefore, the optimal value satisfies

v∗ ≥ v1, and as soon as the OP reaches depth d + 1 for which γd

1−γ < ε, due

to Theorem 3(i) it will return a solution that is closer than ε to v∗ and which
therefore preserves connectivity. For sufficiently large T , depth max{d,K}+1 is
reached which guarantees both that the precision is ensured and that the length
of the solution at least K. The proof is complete.

Putting the local guarantees together, we have topology preservation for the
entire system, as follows.

Theorem 5 Take β and T as in Lemma 4, then under Assumption 2 and if
the graph is initially connected, Algorithm 2 preserves the connections at any
step k = `K.

Proof: The intuition is very simple: each agent i will move so as to preserve
connectivity with the previous state of any neighbor j > i, and then in turn j
will move while staying connected with the updated state of i, which is what is
required. However, since Assumption 2 requires connectivity to hold globally
for all neighbors, the formal proof is somewhat technical.

To make it easier to understand, define relation C(i, j1, . . . , jNi), where in-
dices jl are all the neighborsNi,k at k sorted in ascending order, and Ni = |Ni,k|.
This relation means that i is connected with all jl, i.e. ‖xc

i,k − xc
jl,k
‖ ≤ P , for

l = 1, . . . , Ni. When some agents have superscript ‘+’ in the relation, this means
that the relation holds with their updated states after K steps.

Assume the agents are connected via edges Ek at step k, a multiple of K. We
will show by induction that
C(i+, j+

1 , . . . , j
+
l(i), jl(i)+1, jNi) where l(i) is the last neighbor smaller than i. For

the base case i = 1, we have
C(1, j1, . . . , jN1

) by the fact that (1, jl) ∈ Ek. Hence the conditions of As-
sumption 2 are satisfied and there exists some u1,K that preserves connectivity
with the previous states of all neighbors. By Lemma 4 the algorithm finds and
applies such a sequence, which implies C(1+, j1, . . . , jN1). For the general case,
we have that C(i, j+

1 , . . . , j
+
l(i), jl(i)+1, . . . , jNi) by simply looking at earlier cases

stated where the first argument of relation C is m = j1, . . . , jl(i) (they are ear-
lier cases since jl(i) < i). As above, this means the conditions of Assumption 2

and therefore Lemma 4 are satisfied for the updated states of j+
1 , . . . , j

+
l(i), and

therefore that C(i+, j+
1 , . . . , j

+
l(i), jl(i)+1, . . . , jNi) which completes the induction.

Take any (i, j) ∈ Ek for which i > j, which is sufficient since the graph is
undirected. Then, j ≤ jl(i) and the already shown relation

C(i+, j+
1 , . . . , j

+
l(i), jl(i)+1, . . . , jNi) implies (i, j) ∈ Ek+K . So all the links are

11

preserved, and since the derivation holds for arbitrary k, they are preserved in
closed loop.

Theorem 5 guarantees that the topology is preserved when the initial agent
states correspond to a connected network. However, this result does not concern
the stability of the agreement. In practice, we solve the agreement problem by
choosing appropriately the rewards ∆, such as in (7), so that by maximizing
the discounted returns the agents achieve agreement. In Section 5, we illustrate
that this approach performs well in experiments. Note that Theorem 5 holds
whether the graph is defined with (1) or (2).

It is also interesting to study the following result about the performance of
OP. Consider some agent i at step k. Since we need to look into the details of OP
for a single agent i at fixed step k, for readability we suppress these indices in the
sequel, so we write ρd(ud) = (1− β)∆d(ud) + βΓd(ud) for reward function (5).
We define two optimal control problems derived from this reward function. The
first removes the connectivity constraint, so that ρd,u(ud) = (1−β)∆d(ud) +β.
The second is the agreement (only) problem with ρd,a(ud) = ∆d(ud), i.e. for
β = 0. Denote v∗u = supu∞ vu(u∞) and v∗a = supu∞ va(u∞) where vu and va

are the discounted returns under the new reward functions.
We will compare performance in the original problem with that in the agree-

ment problem.

Theorem 6 Assume v∗ = v∗u. For OP applied to the original problem, the
near-optimality bounds of Theorem 3(ii) hold with the branching factor κa of
the agreement problem.

Proof: We start with a slight modification to the analysis of OP. For any prob-
lem, define the set:

T̃ = {ud | d ≥ 0, v∗ ≤ b(ud)}

Note that T̃ ⊆ T ∗ of (4), since:

v(ud) +
γd

1− γ
≥ ν(ud) +

γd

1− γ
= b(ud)

and so the condition in T̃ implies the one in (4). Further, OP only expands
nodes in T̃ , since in any tree considered, there always exists some sequence u
with b(u) ≥ v∗ (e.g., the initial subsequence of an optimal sequence), and OP
always expands a sequence that maximizes b.

Denote now T̃u and T̃a the corresponding sets for the unconstrained and
agreement cases. Take a sequence ud ∈ T̃ , the set in the original problem.
By assumption v∗ = v∗u, and by construction b(ud) ≤ bu(ud), so v∗ ≤ b(ud)
implies v∗u ≤ bu(ud), and T̃ ⊆ T̃u. Next, v∗u = (1 − β)v∗a + β

1−γ and bu(ud) =

νu(ud) + γd

1−γ = (1− β)νa(ud) + γd

1−γ = (1− β)ba(ud) + βγd

1−γ . Replacing these in

condition v∗u ≤ bu(ud), we obtain:

(1− β)v∗a + β
1− γd

1− γ
≤ (1− β)ba(ud)

12

which implies v∗a ≤ ba(ud), and so T̃u ⊆ T̃a.
Therefore, finally:

T̃ ⊆ T̃u ⊆ T̃a ⊆ T ∗a
Given budget T , the smallest possible depth reached by OP in the original
problem is that obtained by exploring the set T̃ uniformly, in the order of depth.
Due to the inclusion chain above, this depth is at least as large as that obtained
by exploring T ∗a uniformly. The latter depth is Ω(log T/ log κa) if κa > 1, or
else Ω(T). The bounds follow immediately as in the proof of Theorem 3.

Theorem 6 can be interpreted as follows. If the unconstrained optimal so-
lution would have naturally satisfied connectivity (which is not unreasonable),
adding the constraint does not harm the performance of the algorithm, so that
flocking is as easy as solving only the agreement problem. This is a nice property
to have.

4.2 A practical algorithm

Algorithm 2 has an important shortcoming in practice: it requires knowing a
value of K for which Assumption 2 is satisfied. Further, keeping predictions
constant for j > i is safe, but conservative, since better predictions are usually
available: those made by the neighbors at previous steps, which may not be
expected to change much, e.g. when a steady state is being approached.

Next, we present a more practical variant that does not have these issues.
It works in increments of 1 step (rather than K), and at step k, it forms the

predictions for neighbors j > i as follows: x̂i,kj = (xj,k, x
k−1
j,2 , ..., xk−1

j,d); Thus for
the present step xj,k is used since it was already measured and exchanged, while
for future steps the previously communicated trajectories are used.

Since K is unknown, the agent will try preserving connectivity at every step,
with as many neighbors as possible:

Γki,d(ui,d) =
1

|Ni,k|
∑
j∈Ni,k

{
1 if ‖xk,ci,d − x̂

i,c
j,d‖ ≤ P

0 otherwise
(8)

For the links, definition (1) is used, since old neighbors may be lost but the
graph may still remain connected due to new neighbors. So the aim here is only
connectivity, weaker than topology preservation. For the agreement component,
(7) is employed. Algorithm 3 summarizes the resulting protocol for generic agent
i.

Algorithm 3 OP flocking at agent i – practical variant.

1: set initial prediction x−1
i to an empty sequence

2: for step k = 0, 1, 2, . . . do
3: exchange state at k with all neighbors j ∈ Ni,k
4: send xk−1

i to j < i, receive xk−1
j from j > i

5: wait to receive new predictions x̂i,kj from all j < i

6: form predictions x̂i,kj for j > i

13

7: run OP with (5) and (8), obtaining uki and xki
8: send xki to j > i
9: execute action uki,0

10: end for

The main advantage of our approach, in both Algorithm 2 and Algorithm 3,
is the generality of the agent dynamics it can address. This generality comes
at the cost of communicating sequences of states, introducing a dependence of
the performance on the action discretization, and a relatively computationally
involved algorithm. The time complexity of each individual OP application is
between O(T log T) and O(T 2) depending on κ. The overall complexity for all
agents, if they run OP in parallel as soon as the necessary neighbor predictions
become available, is larger by a factor equal to the length of the longest path
from any i to any j > i. Depending on the current graph this length may be
significantly smaller than the number of agents n.

5 Experimental results

The proposed method is evaluated in two problems with nonlinear agent dy-
namics. The first problem concerns flocking for a simple type of nonholo-
nomic agents, where we also study the influence of the tuning parameters of
the method. In the second experiment, full-state consensus for two-link robot
arms is sought. This experiment illustrates that the algorithm can on the one
hand handle rather complicated agent dynamics, and on the other hand that it
also works for standard consensus on a fixed graph, even though our analytical
focus was placed on the flocking problem.

While both types of agents have continuous-time underlying dynamics, they
are controlled in discrete time, as is commonly done in practical computer-
controlled systems. The discrete-time dynamics are then the result of integrating
the continuous-time dynamics with zero-order-hold inputs. Then, in order for
the analysis to hold for Algorithm 2, Assumption 2 must be satisfied by these
discretized dynamics. Note that in practice we apply Algorithm 3, and the
numerical integration technique introduces model errors that our analysis does
not handle.

5.1 Flocking of nonholonomic agents

Consider homogeneous agents that evolve on a plane and have the state vector
x = [X,Y, v, θ] with X,Y the position on the plane [m], v the linear velocity
[m/s], and θ the orientation [rad]. The control inputs are the rate of change a

14

−10 0 10 20

−4

−2

0

2

4

6

8

p
1

p
2

0 5 10 15
0

0.5

1

1.5

k*T
s
 [s]

v

0 5 10 15
−4

−2

0

2

4

k*T
s
 [s]

θ

Figure 2: Results for nonholonomic agents. Top: initial configuration, with the
agents shown as colored dots, their initial velocities and orientations symbolized
by the thick lines, and their initial graph with thin gray lines. Middle: trajec-
tories on the plane, also showing the final configuration of the agents. Bottom:
evolution of agreement variables.

of the velocity and ω of the orientation. The discrete-time dynamics are:

Xk+1 = Xk + Tsvk cos θk

Yk+1 = Yk + Tsvk sin θk

vk+1 = vk + Tsak

θk+1 = θk + Tsωk

where Euler discretization with sampling time Ts was employed. The aim is to
agree on xa = [v, θ]

>
, which represent the velocity vector of the agent, while

maintaining connectivity on the plane by keeping the distances between the
connectivity states xc = [X,Y]

>
below the communication range P .

The specific multiagent system we experiment with consists of 9 agents ini-
tially arranged on a grid with diverging initial velocities, see Figure 2, top. Their
initial communication graph has some redundant links. In the reward function,
β = 0.5 so that agreement and connectivity rewards have the same weight, and
the agreement reward is (7) with the distance measure being a 2-norm weighted
so that it saturates to 1 at a distance 5 between the agreement states. The
range is P = 5. The sampling time is Ts = 0.25 s.

Figure 2 shows that the OP method preserves connectivity while achieving
flocking, up to errors due mainly to the discretized actions. The discretized ac-
tion set was {−0.5, 0, 0.5} m/s

2×{−π/3, 0, π/3} rad/s, and the planning budget
of each agent is T = 300 node expansions. For all the experiments, the discount
factor γ is set to 0.95, so that long-term rewards are considered with significant
weight.

Next, we study the influence of the budget T and a cutoff length L for
the communicated state predictions, a crucial parameter for the communica-
tion requirements of the algorithm. With a finite L, even if OP provides a
longer sequences of predicted states, only the first L values are communicated

15

0 100 200 300 400 500 600
0.22

0.24

0.26

0.28

0.3

budget

d
is

a
g
re

e
m

e
n
t

Figure 3: Influence of the expansion budget.

to the neighbors, and they set subsequent state predictions constant at the
last known values. To characterize performance in each experiment with a
single number, a mean inter-agent disagreement is computed at every step:
δk = 2

n(n−1)

∑
i<j ‖xa

i,k − xa
j,k‖, and the average of δk across all steps in the

trajectory is reported.
The following budgets are used: T = 25, 50, 75, 100, 200, . . . , 600, and the

length of the predictions is not limited. As shown in Figure 3 and as expected
from the theoretical guarantees of OP, disagreement largely decreases with T
although the decrease is not monotonic. 1

The influence of the prediction length is studied for fixed T = 300, by tak-
ing L = 0, 1, 3, 4 and then allowing full predictions.2 Figure 4 indicates that
performance is not monotonic in L, and medium-length predictions are bet-
ter in this experiment. While it is expected that too long predictions will not
increase performance since they will rarely be actually be followed, the good re-
sults for communicating just the current state without any prediction are more
surprising, and need to be studied further.

5.2 Consensus of robotic arms

Consider next the full-state consensus of two-link robotic arms operating in a
horizontal plane. The state variables for each agent are the angles and angular
velocities of the two links, xi = [θi,1, θ̇i,1, θi,2, θ̇i,2], and the agreement vari-
ables comprise the entire state, xa

i = xi, without a connectivity state or reward
component. The actions are the torques of the motors actuating the two links
ui = [τi,1, τi,2]. The model is standard so we omit the details and just note that
the sampling time is Ts = 0.05 s; the other parameters can be found in [25]. Ap-

1See [24], footnote 4 for an example showing how nonmonotonicity can happen.
2In effect, predictions with this budget do not exceed length 4 so the last two results will

be identical.

16

0 1 2 3 4 Inf
0.2

0.3

0.4

0.5

0.6

0.7

length of communicated predictions

d
is

a
g
re

e
m

e
n
t

Figure 4: Influence of the maximal prediction length (“Inf” means it is not
limited).

plications of this type of consensus problem include decentralized manipulation
and teleoperation.

Three robots are connected on a fixed undirected communication graph in
which robot 1 communicates with both 2 and 3, but 2 and 3 are not connected.
The initial angular positions are taken random with zero initial velocities, see
Figure 5. The distance measure is the squared Euclidean distance, weighted
so that the angular positions are given priority. The discretized actions are
{−1.5, 0, 1.5} Nm × {−1, 0, 1} Nm, and the budget of each agent is T = 400.
Consensus is achieved without problems.

6 Conclusions

We have provided a flocking technique based on optimistic planning (OP), which
under appropriate conditions is guaranteed to preserve the connectivity topology
of the multiagent system. A practical variant of the technique worked well in
simulation experiments.

An important future step is to develop guarantees also on the agreement
component of the state variable. This is related to the stability of the near-
optimal control produced by OP, and since the objective function is discounted
such a stability property is a big open question in the optimal control field [26].
It would also be interesting to apply optimistic methods to other multiagent
problems such as gossiping or formation control.

References

[1] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings of the IEEE,
95(1):215–233, 2007.

17

0 2 4 6 8 10
−1

0

1

2

3

t [s]

θ
1

robot 1

robot 2

robot 3

0 2 4 6 8 10
−4

−2

0

2

t [s]

θ
’ 1

0 2 4 6 8 10
−4

−2

0

2

4

t [s]

θ
2

0 2 4 6 8 10
−4

−2

0

2

4

t [s]

θ
’ 2

Figure 5: Leaderless consensus of multiple robotic arms: angles and angular
velocities for the two links, overimposed for all the robots. Angles wrap around
in the interval [−π, π).

18

[2] Wei Ren and Randal W. Beard. Distributed Consensus in Multi-Vehicle
Cooperative Control: Theory and Applications. Communications and Con-
trol Engineering. Springer, 2008.

[3] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on Automatic Control, 51(3):401–420, 2006.

[4] H.G. Tanner, A. Jadbabaie, and G.J. Pappas. Flocking in fixed and switch-
ing networks. IEEE Transactions on Automatic Control, 52(5):863–868,
2007.

[5] Wenjie Dong. Flocking of multiple mobile robots based on backstepping.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 41(2):414–424, 2011.

[6] Jean-François Hren and Rémi Munos. Optimistic planning of deterministic
systems. In Proceedings 8th European Workshop on Reinforcement Learning
(EWRL-08), pages 151–164, Villeneuve d’Ascq, France, 30 June – 3 July
2008.

[7] Claudio De Persis and Paolo Frasca. Robust self-triggered coordina-
tion with ternary controllers. IEEE Transactions on Automatic Control,
58(12):3024–3038, 2013.

[8] Jie Mei, Wei Ren, and Guangfu Ma. Distributed coordinated tracking with
a dynamic leader for multiple Euler-Lagrange systems. IEEE Transactions
on Automatic Control, 56(6):1415–1421, 2011.

[9] M.M. Zavlanos and G.J. Pappas. Distributed connectivity control of mobile
networks. IEEE Transactions on Robotics, 24(6):1416–1428, 2008.

[10] M. Fiacchini and I.-C. Moruarescu. Convex conditions on decentralized
control for graph topology preservation. IEEE Transactions on Automatic
Control, 59(6):1640–1645, 2014.

[11] F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic
Networks. A Mathematical Approach to Motion Coordination Algorithms.
Princeton University Press, 2009.

[12] Jiandong Zhu, Jinhu Lu, and Xinghuo Yu. Flocking of multi-agent non-
holonomic systems with proximity graphs. IEEE Transactions on Circuits
and Systems I: Regular Papers, 60(1):199–210, 2013.

[13] Housheng Su, Guanrong Chen, Xiaofan Wang, and Zongli Lin. Adaptive
second-order consensus of networked mobile agents with nonlinear dynam-
ics. Automatica, 47(2):368–375, 2011.

[14] Jin Zhou, Xiaoqun Wu, Wenwu Yu, Michael Small, and Junan Lu. Flock-
ing of multi-agent dynamical systems based on pseudo-leader mechanism.
Systems & Control Letters, 61(1):195–202, 2012.

19

[15] Herbert Tanner, Ali Jadbabaie, and George Pappas. Flocking in teams
of nonholonomic agents. In Vijay Kumar, Naomi Leonard, and A. Morse,
editors, Cooperative Control, volume 309 of Lecture Notes in Control and
Information Sciences, pages 458–460. Springer, 2005.

[16] Lucian Buşoniu and Constantin Morarescu. Optimistic planning for consen-
sus. In Proceedings American Control Conference 2013 (ACC-13), Wash-
ington, DC, 17–19 June 2013.

[17] Lucian Buşoniu and Constantin Morarescu. Consensus for black-box non-
linear agents using optimistic optimization. Automatica, 50(4):1201–1208,
2014. .

[18] Bronislaw Jakubczyk and Eduardo D. Sontag. Controllability of nonlinear
discrete-time systems: A lie-algebraic approach. SIAM Journal of Control
and Optimization, 28:1–33, 1990.

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[20] Frank Lewis and Derong Liu, editors. Reinforcement Learning and Adaptive
Dynamic Programming for Feedback Control. Wiley, 2012.

[21] Remi Munos. The optimistic principle applied to games, optimization and
planning: Towards foundations of Monte-Carlo tree search. Foundations
and Trends in Machine Learning, 7(1):1–130, 2014.

[22] Rudy R. Negenborn, Bart De Schutter, and Hans Hellendoorn. Multi-agent
model predictive control for transportation networks: Serial versus parallel
schemes. Engineering Applications of Artificial Intelligence, 21(3):353–366,
2008.

[23] Jinfeng Liu, Xianzhong Chen, David Munoz de la Peña, and Panagio-
tis D. Christofides. Sequential and iterative architectures for distributed
model predictive control of nonlinear process systems. American Institute
of Chemical Engineers (AIChE) Journal, 56(8):2137–2149, 2010.

[24] Lucian Buşoniu, Rémi Munos, and Robert Babuška. A review of optimistic
planning in Markov decision processes. In Frank Lewis and Derong Liu,
editors, Reinforcement Learning and Adaptive Dynamic Programming for
Feedback Control. Wiley, 2012.

[25] Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška.
Approximate dynamic programming with a fuzzy parameterization. Auto-
matica, 46(5):804–814, 2010.

[26] Bahare Kiumarsi, Frank Lewis, Hamidreza Modares, Ali Karimpour, and
Mohammad-Bagher Naghibi-Sistani. Reinforcement Q-learning for optimal
tracking control of linear discrete-time systems with unknown dynamics.
Automatica, 50(4):1167–1175, 2014.

20

