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ABSTRACT

Selection of moving targets is a common, yet complex task in hu-
man–computer interaction (HCI) and virtual reality (VR). Predict-
ing user intention may be beneficial to address the challenges inher-
ent in interaction techniques for moving-target selection. This arti-
cle extends previous models by integrating relative head-target and
hand-target features to predict intended moving targets. The fea-
tures are calculated in a time window ending at roughly two-thirds
of the total target selection time and evaluated using decision trees.
With two targets, this model is able to predict user choice with up
to∼ 72% accuracy on general moving-target selection tasks and up
to ∼ 78% by also including task-related target properties.

Index Terms: H.5.2 [Information interfaces and presentation]:
User Interfaces—Interaction Styles, Theory and methods. I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Virtual Reality. I.5.4 [Pattern Recognition]: Applications.—

1 INTRODUCTION

Selection of moving targets is a common manipulation in hu-
man–computer interaction (HCI) and more specifically in virtual
reality (VR). Targets may move autonomously, as in interactive
video [12, 14, 36] or air traffic control displays [12, 22], and, as
pointed by Mould and Gutwin [22], targets may move with respect
to the user, like in VR or Augmented Reality navigation [41]. In
some applications, including video games [22, 31] and interactive
3D simulations [12, 22], both kinds of movements are present.

In spite of the many applications of moving-target selection, HCI
and VR studies have largely focused on static-target selection. In
the seminal book for 3D User Interfaces (3DUI) [3], a taxonomy
for 3D manipulation (itself based on a previous 2D taxonomy [8])
is presented, in which none of the canonical tasks—Selection, Po-
sitioning and Rotation—include target motion among their parame-
ters. This example is, perhaps, reflective of the numerous HCI stud-
ies on static selection based on Fitts’ Law [7] (for a compendium,
see, for example [10]), which continues to be “extended” and dis-
puted [35].

Recently, however, new performance models [1] and interaction
techniques [12, 29, 41] have been proposed to address the speci-
ficities of moving-target selection. Interestingly, these models and
interaction techniques are inspired or derived on their static Fitts’
counterparts.
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Moving-target selection poses special challenges compared to
static selection. The nature of the task requires the user to con-
tinually and simultaneously track targets and plan to reach for
them [12], even if the targets’ motions may be unpredictable
[12, 14, 29, 31, 41]. Furthermore, common HCI challenges, such as
end-to-end latency, are exacerbated in moving-target selection [31].

In general, moving-target selection techniques, such as Comet
and Ghost [12], enhance pointing by expanding selectable targets or
creating easier-to-reach proxies for each target, respectively. Never-
theless, these techniques may suffer from clutter and overlap when
the number of selectable objects is increased [12]. A possible solu-
tion to these limitations, also present in static selection, is to predict
the intended targets [12, 20]. Unfortunately, to the authors’ knowl-
edge, most predictive techniques are tailored toward static-target
selection, except for [5, 29].

Based on the promising results of using target size [5] and dis-
tance [29] to predict intended moving-targets, the present work ex-
plores the integration of head pose with target size and distance to
generate a new moving-target predictive model. Due to the inherent
visuomotor nature of moving-target selection, it is expected that this
model will outperform the existing predictive models. The scope of
this work, however, is limited to the simple, two-target-with-linear-
trajectory selection task from [5]. The data from [5] is reevaluated
and its predictive model, together with the one from [29] are used
as a baseline for the new, proposed model.

2 RELATED WORK

2.1 Predictive techniques
Predicting intended targets has been proposed as a solution to clut-
ter and overlap in static-target selection techniques. Current static-
target prediction techniques are based on the trajectory and velocity
profiles of the pointer [19, 20, 28, 40]. The peak accuracy rates for
prediction using these techniques require a wide window of user
input—at least 80% of the pointing movement—but some of them
are intended to predict endpoints [19, 40], rather than intended
targets [20, 28]. These techniques, however, are not adapted for
moving-target prediction, in particular due to the apparent depen-
dency of the users’ velocity profiles on the targets’ movement [4].

The studies from de Haan et al. [6] and Ortega [29] have demon-
strated the feasibility of predicting intended moving-targets in com-
plex VR scenes. Their predictive model assigns a score to each tar-
get during execution based on their angular and euclidean distance
from the virtual pointer, respectively.

These functions are easy to implement and their scoring is en-
hanced as the user follows each target with the pointer; however, as
it happens with the task in the present work, users may not always
be following the intended target with their pointer. Additionally,
there is no concrete data on the predictive accuracy (i.e., the per-
centage of correctly predicted targets) of such functions, or how
such accuracy is affected by the target distance—it is possible that
users may have made their decision before starting their pointer
movement, so the prediction could be done in advance.



Taking this idea to the extreme, Casallas and colleagues [5] for-
mulated a moving-target prediction technique based only on the
initial physical states of both the user and the targets. With two
targets, their model predicts user choice with approximately 71%
accuracy. However, since targets changed only in size and position,
this prediction technique is not generalizable to targets with other,
or, additional parameters.

Expanding on the work from [5], the present work introduces rel-
ative head-target and hand-target features calculated during a time
window, to predict intended target. These features can be general-
izable to different moving-target selection tasks. Ortega’s scoring
function is used as a baseline to validate the predictive accuracy of
these features.

Additionally, these features are integrated with the previous
initial-target-state model [5] to demonstrate enhanced predictive
performance.

2.2 Gaze
Knowing where a person is looking is considered as an indicator of
what is at the “top of the stack” of a cognitive process [17]. With
respect to object manipulation, research has shown that gaze leads
hand (or effector) motions [15]. Gaze is composed of head orienta-
tion and eye orientation relative to the head [39].

In the context of target selection, eye gaze has proven to be ben-
eficial in assisting users during static-target selection tasks, con-
currently with “traditional” input, such as a mouse [2, 42]. Eye-
trackers, however, are expensive and may be technically challeng-
ing to integrate in CAVE-like immersive VR systems [23], like the
one in this experiment. Furthermore, this integration may be cum-
bersome, due to the complex calibration procedures required or the
cabling limitations of certain eye trackers [23]. Some modern so-
lutions address these problems and allow eye-tracking in VR, but
their adoption is still limited and costly.

Head tracking, on the other hand, is readily available in most
CAVE-like systems and has been successfully integrated in large-
display [24], video-conference [38], mobile [37], surface [9] and
floor-projected [32] interactive systems. In a real-life scenario,
Stiefelhagen and Zhu [38] showed that head orientation contributed
68.9% to the overall gaze direction and could estimate attention
focus with 88.7% accuracy. Additionally, Nickel and Stiefelha-
gen [25] demonstrated that head orientation was a good estimate
of pointing direction, with 75% accuracy.

3 METHODS

The methods described in this section are the same as those
from [5].

3.1 Participants
Twenty-six unpaid participants—18 males and 8 females—were re-
cruited for the experiment. Their ages ranged from 23 to 47 years
old (mean 30.8, median 29); two of them were left handed.

3.2 Apparatus
The experimental application was developed in VR Jugglua [30]
and deployed in a 3× 3× 2.67 m, 4-sided—left, front, right, and
floor—CAVE-like environment. Each face was projected with
1160× 1050 pixels, passive Infitec [16] stereo. Each participant’s
head and wand were tracked using reflective markers mounted on
Infitec glasses and an ART Flystick2, respectively, using four ART
cameras.

3.2.1 Coordinate system

A y-up coordinate system was used, with its origin placed in the
middle of the virtual environment at ground level, z decreasing to-
wards the front wall, and x increasing towards the right wall.

Figure 1: Experimental setup with an array of two spheres

3.3 Procedure

After filling a small survey, each participant was asked to stand
on a circular landmark (r = 0.25 m) placed at (0,0,0), facing the
front wall, and complete a series of target reaching tasks. In each
trial, a horizontal array of spherical targets would appear in front of
the participant and start moving towards him in z. In order to avoid
distracting the participant from the primary task of undirected target
selection, targets only varied in radius and position; a single texture
was used for all targets, scaled according to their radius.

The participant was instructed to touch each of the targets be-
fore it got past his head, by extending his arms to reach each target,
without stepping out of the landmark. Each target would disappear
after being touched by the participant or getting 0.5 m past the par-
ticipant’s head in z. Once all spheres disappeared, the trial would
end.

To motivate each participant and indicate his performance, visual
and auditory feedback were used. Whenever a target was touched,
a sound would be played at the target’s center; when one or more
targets got past the participant, a different sound would be played,
co-localized with the overall centroid of the remaining targets. Ad-
ditionally, the number of missed targets was displayed on a virtual
counter placed at ground level, 5 m in front of the participant; the
counter was reset to zero at the start of each block of trials.

During each trial, at each frame of the application, the elapsed
time (t), head pose (Ph,Qh), wand pose (Pw,Qw), target positions
(Pi) and possible collisions between the wand and the targets were
recorded.

3.4 Design

A within-subjects factorial design was used, with two blocks of tri-
als, Each block had a different number of conditions, each pre-
sented in a random order. In each trial, spheres appeared 5 m
in front of the participant, 0.3 m below his initial head position
(Pi,y = Ph,y−0.3, Pi,z =−5).

In the first block, one target per trial was presented. Factors were
target radius (r1 = [0.1,0.2]), and target position (left: P1,x =−0.5,
center: P1,x = 0, and right: P1,x = 0.5); in every trial, the target
moved with a constant velocity of (0,0,2.5) m/s. There were five
trials for each of the 6 conditions (30 total). This block was in-
tended to familiarize the participant with the environment and the
moving-target reaching task.

In the second block, two targets per trial were presented, sph1,
and sph2. Factors were target radius (ri = [0.1,0.2]), and target-
pair position [left: (P1,x = −0.5, P2,x = 0), center: P1,x = −0.25,
P2,x = 0.25), and right: P1,x = 0, P2,x = 0.5)] (see Fig. 2); in every
trial, both targets moved concurrently with a constant velocity of
(0,0,1.5) m/s. There were five trials for each of the 12 conditions
(60 total).
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Figure 2: Possible row positions: left, center and right, with respect
to the user in the two-sphere block. Based on Fig. 2 from [5].

4 ANALYSIS

A between–subjects analysis was done, based on each of the per-
formed trials. Trials in which participants did not touch any sphere
were discarded. At each frame, measurements that could relate the
target positions to the participant’s head pose (Ph,Qh) and wand po-
sition (Pw) were calculated. Posteriorly, the mean of these measure-
ments in a time window was computed and different feature–sets
were evaluated to predict the intended sphere.

4.1 Relative user–target features

First, the head vector (~H) was calculated, based on the head orien-
tation (Qh). For this, consider that the zero-rotation corresponds to
a person looking at (0,0,−1), thus, to calculate ~H, the unit vector
−k̂ must be rotated by the current head orientation1,

~H = rotate(−k̂,Qh) (1)

Next, the sphere positions in head coordinates (P1h,P2h) were cal-
culated,

Pih = Pi−Ph (2)

Subsequently, instead of calculating the angle between ~H and P1h,
and between ~H and P2h, the dot products between the normalized
vectors were calculated,

doti = Ĥ · P̂ih (3)

The dot product (doti) has the advantage of being an easy to in-
terpret, normalized scalar: the closer it gets to 1, the more the
user’s head orientation is aligned with sphi. Furthermore, since
the spheres are not overlapping in the user’s field of view, the dot-
product difference was calculated,

∆dot = dot1−dot2 (4)

This quantity serves to determine the relative pose of the user’s
head with respect to the spheres: the closer the quantity gets to 1,
the more the user’s head is aligned with sph1; the closer the quantity
gets to -1, the more the user’s head is aligned with sph2—0 implies
that the user’s head is oriented right in the middle of both spheres.

Finally, the wand–sphere distances (Di) were calculated, as
in [5], as well as a distance difference (∆D),

Di = |Pw−Pi| (5)

∆D = D1−D2 (6)

Similar to ∆dot, ∆D serves to determine the relative position of
the user’s wand with respect to the spheres: a positive quantity im-
plies that the wand is farther from sph1; a negative quantity im-
plies that the wand is farther from sph2—0 implies that the wand is
equidistant from both spheres.

1The rotate(~V ,Q) function was implemented in R, based on OpenScene-
Graph’s osg :: Quat ::operator∗(osg ::Vec3) method

4.1.1 Distance Score Feature
To validate the usefulness of the proposed features, their predictive
accuracy is compared to the distance scoring function proposed by
Ortega [29] Following his methodology, at each frame (t) of the
application, each target is ordered ascendingly by distance, its or-
der is given by j. The scores for each of the N closest targets are
increased following,

dScore j(t) = dScore j(t−1)+(N− j)∆t; i f ( j < N) (7)

where t−1 is the previous frame and ∆t is the time elapsed be-
tween t−1 and t.

For the remaining targets, their scores are instead decreased fol-
lowing,

dScore j(t) = dScore j(t−1)− (0.9N)∆t; i f ( j ≥ N) (8)

dScore j(t)≥ 0

Since the experimental environment was composed of two tar-
gets, N = 1 is chosen, such that only the closest target’s score is
increased. Note that the decay rate (0.9N) in Equation (8) is much
higher than that of Ortega’s original formulation (N/2). This is be-
cause the chosen task involved a big amount of time in which par-
ticipants were waiting for the target to be reachable, so most of the
movement happened late in the trial; therefore, a big decay rate was
necessary to minimize the score inertia when starting the reaching
motion.

4.2 Time-window selection
Due to the instability and inaccuracy of human movements [34] it is
best to average the values for both ∆dot and ∆D in a time window,
instead of using discrete values.

In interactive usage contexts, both the feature averaging and
the scoring function start running upon user activation. Since the
present analysis is done post-hoc, the functions are applied to the
data during a graphically determined time window. Ideally, the time
window would start before the beginning of the reaching action,
while the user is specifying his intentions and actions [27], and end
before the target is reached. In the scope of this study, the ∆dot
profile was analyzed graphically over time, to determine an appro-
priate window heuristically, as shown in Figure 3. Other possible
approaches are discussed in the future work section.
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Figure 3: ∆dot vs. time. Each line corresponds to a trial, colored
according to the selected sphere. The graphic has been trimmed to
the 5thpercentile of the selection times (2.35s).

Because there is no time between trials, the starting non-zero
∆dot values in Figure 3 are probably due to participants fixating



the last sphere they touched on the previous trial. The subsequent
convergence towards zero, between 0 and 1 seconds suggests that
their regard is shared between both spheres, probably while making
their decision. After 1 second, ∆dot starts diverging again, sug-
gesting that participants’ heads are oriented towards one of the two
spheres; if this is the case, the increased divergence could be related
to the increased separation of the spheres in the participant’s field
of view, as they get closer to him. Furthermore, after one second,
sphere 1 and 2 selection labels seem to be more clearly clustered
above and below zero, respectively.

This graphical evidence suggests that roughly 1 second is a good
start for the time window; based on that, 1.5 seconds was chosen
empirically as the ending time for the window. These times roughly
correspond to 42.5% and 63.8% of the 5thpercentile of the selection
times (2.35s).

Within this window, both the mean dot product difference (∆dot)
and the mean wand–target distance (∆D) were calculated. The
dScore scoring function is also run through the time window. Based
on its final score, each target i is ranked 0 or 1.

4.3 Evaluation
Feature-sets {∆dot}, {∆D}, {∆dot, ∆D}, {∆dot, r1, r2},
{∆D,r1,r2} and {∆dot, ∆D,r1,r2} were evaluated to predict the first
sphere selected by the user (sphi).

The results are compared to the accuracy of previous classifiers
separately. Models generated from generalizable user–target fea-
tures (i.e., the feature-sets 1–3) are compared to the scoring classi-
fier bestDRank, which always predicts the chosen sphere as the one
with the best dRank given by Equations (7) and (8).

In the case of target-based features (i.e., feature-sets 4–6), which
are specific to this task, the baseline classifier is the decision tree
generated from “best” features of [5], i.e. target radii, {r1,r2}.

Consistently with [5], all the feature-sets were evaluated using
the J48 classifier (open source implementation of the C4.5 decision
tree algorithm [33]) from the Weka machine-learning suite [11].
The classifier chooses its decision nodes recursively, based on
the feature that yields the greatest Information Gain (a general
overview of how the classifier works is given in [5]).

The advantage of this classifier is that it produces easy to in-
terpret rules, choosing the simplest decision tree from the input
attributes. Additionally, the C4.5 algorithm is robust to attribute
errors, which may originate from noisy sensor readings. In this
study’s scope, the decision trees allowed representation and analy-
sis of the possible participant strategies to solve each task.

The performance of bestDRank is simply evaluated by calculat-
ing the predictive accuracy, i.e. the proportion of correct predic-
tions over the number of trials. The accuracy of each decision-tree
classifier, on the other hand, is estimated using 10-fold cross vali-
dation. According to Mitchell [21, p. 141], given that numTrials≥
30, the 95% Confidence Interval of the accuracy (acc) of each
model can be approximated using

acc± z95

√
acc∗ (1−acc)

numTrials
(9)

5 RESULTS AND DISCUSSION

5.1 Generalizable moving-target features
As shown in Table 1, all feature-sets performed better than chance
and a frequentist predictor2 (∼ 64%±2.4%). In average, all of the
proposed feature-sets performed better than the bestDRank baseline
classifier, however, since all the confidence intervals overlap, it was
necessary to do an additional test to verify whether or not these
differences are significant. Based on Equation (5.13) from [21, p.

2A frequentist predictor always predicts the most frequent class, with an
accuracy equivalent to the relative frequency of the class.

144] the 95% Confidence Interval for the difference between the
accuracies of two classifiers is given by

(acca−accb)± z95

√
acca ∗ (1−acca)

numTrials
+

accb ∗ (1−accb)

numTrials
(10)

If the resulting interval does not contain 0, the null hypothesis
that the accuracies are the same, should be rejected. Note, however,
that all feature-sets are tested on the same trials, thus, the Confi-
dence Intervals given by Equation (10) may be too conservative [21,
p. 144]. Results are presented in Table 2.

Table 1: Tree size, number of leaves, accuracy and 95% confidence
intervals for the evaluated generalizable moving-target feature-sets

Feature-set Size Leaves acc 95% CI
bestDRank 1 1 68.09% [65.77%,70.42%]

∆dot 3 2 70.69% [68.42%, 72.96%]
∆D 5 3 68.42% [66.10%, 70.74%]

∆dot, ∆D 11 6 71.72% [69.48%, 73.97%]

Table 2: Accuracy difference and 95% confidence intervals for the
evaluated generalizable moving-target feature-sets. Asterisks (*) de-
note a significant difference (α = 0.05).

Feature-seta Feature-setb ∆acc 95% CI
bestDRank ∆dot 2.59% [−5.85%,0.65%]
bestDRank ∆dot,∆d 3.63% [−6.87%,−0.40%]*

∆dot ∆dot,∆D 1.04% [−2.16%,4.23%]
∆D ∆dot,∆D 3.31% [−6.54%,−0.08%]*

Even though the model generated using feature ∆dot did not
prove to be significantly better than the model using ∆D, the lat-
ter yielded less average accuracy with a more complex tree, making
it less practical and perhaps over-fitted to the data [21, p. 67]. The
combination of both features in feature-set {∆dot,∆D}, however,
yielded a significantly better result than the isolated ∆D feature.
This model is presented in Figure 4.
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Figure 4: Generated decision tree for feature-set {∆dot, ∆D}. The
numbers in parenthesis within the leaves represent the total num-
ber of instances that fall into that leaf, over the number of incorrectly
predicted instances among these instances.



The fact that feature-set {∆dot,∆D} yielded the greatest aver-
age accuracy, which was significantly better than both the baseline
bestDRank and feature ∆D confirms the value of using head–target
and wand–target relative features to predict intention in moving-
target selection. As previously statede, this is probably due to the
inherent visuomotor nature of the moving-target selection tasks,
where users need to fixate on the chosen target while moving their
hands towards them.

Due to the task and evaluation differences with previous work,
the results are not directly comparable to the latter, but suggest a
great potential of the presented approach. The time-window limits
are likely to change according to the task (for example, if the user
has to search for his intended target in a cluttered environment), but
it may be possible to detect patterns similar to Figure 3 when the
intended target is fixated upon, which is better than considering a
large portion of the entire pointer trajectory. Furthermore, in other
tasks the generated tree nodes will likely have different split values
than those presented in Figure 4, although it is possible that these
split values will also be close to zero in binary selection tasks.

Finally, using a single head–target relative parameter, such as
∆dot, and a single wand–target relative parameter, such as ∆D, may
not be useful or viable in tasks with more and differently positioned
targets. A solution could be to create similar features for every
possible pair of targets.

5.2 Target-based features

Tables 3 and 4 3 show that Feature-set {∆dot, ∆D,r1,r2} performed
significantly better than all of the other feature-sets, surpassing the
baseline {r1,r2} average accuracy by almost 7%. Unfortunately,
the generated tree was too big (21 nodes) to fit in this paper.

Surprisingly, and contrary to the results from the previous sec-
tion, combining the ∆dot relative feature with the sphere radii
(r1,r2) did not yield better accuracy than feature-set {∆D,r1,r2}.

The fact that feature-set {∆D,r1,r2} performed marginally bet-
ter than the baseline could be complementary to the hypothesis
from [5], that suggests that a function of target size and distance
can adequately predict the selected sphere in this type of task. In
the results from Casallas and colleagues, however, the distance
D0—measured at the beginning of each trial—was deemed to yield
less information gain than the sphere radii. The apparent increase in
information gain by integrating ∆D, observed in the present work,
reflects a correlation between wand and object position (as sug-
gested by [29]), but only after a certain preparation time [26].

Table 3: Tree size, number of leaves, accuracy and 95% confidence
intervals for the evaluated target-based feature-sets.

Feature-set Size Leaves acc 95% CI
r1,r2 5 3 71.21% [68.95%, 73.46%]

∆dot,r1,r2 7 4 73.35% [71.14%, 75.55%]
∆D,r1,r2 27 14 74.19% [72.01%, 76.37%]

∆dot, ∆D,r1,r2 21 11 78.02% [75.95%, 80.08%]

Table 4: Accuracy difference and 95% confidence intervals for the
target-based feature-sets. Asterisks (*) denote a significant differ-
ence (α = 0.05), dots (.) denote a marginal difference (α = 0.1).

Feature-seta Feature-setb ∆acc 95% CI
r1,r2 ∆dot,r1,r2 2.14% [−5.30%,1.02%]
r1,r2 ∆D,r1,r2 2.98% [−6.13%,0.16%].

∆dot,r1,r2 ∆D,r1,r2 0.84% [−3.95%,2.26%]
∆D,r1,r2 ∆dot, ∆D,r1,r2 3.83% [−6.83%,−0.82%]∗

6 CONCLUSION AND FUTURE WORK

The feasibility of integrating relative head–target and wand–target
features (∆dot and ∆D, respectively) for predicting user intention
in moving-target selection tasks was demonstrated. The features
were calculated within a time-window ending at about two-thirds
of the selection time. Combined, the features yielded a signifi-
cantly better accuracy (∼ 4%) than the baseline scoring predictor
from [29]. The combined features also yielded significantly bet-
ter accuracy (∼ 3%) than the isolated ∆D. These results should be
generalizable to different moving-target selection tasks, provided
that additional factors (like number of objects) are taken into con-
sideration. Further work should evaluate such extended models on
multiple-target-with-changing-trajectory selection tasks like [29].

Additionally, the integration of these features in the model pro-
posed by [5], significantly improved their prediction accuracy in
moving-target selection by almost ∼ 7%. Future work in this type
of task should explore variations different from physical size, like
color, on otherwise identical objects; it is possible that the results
from [5] could be further generalized to object salience, rather than
object size.

The relative head–target feature, ∆dot, proved to be useful not
only for prediction, but also for establishing the adequate time win-
dow. Currently, the window is established empirically, from the
∆dot vs. t plot (Figure 3). Future work could explore automat-
ing this process by finding the optimal start and end window limits,
by measuring different inputs. Furthermore, these times could be
related to existing models, such as Hick-Hyman’s Law [13].

Alternatively, instead of choosing a time window, predictions
could be done using a temporal learner, such as TClass [18]. This
type of learner seems relevant for the evaluated task, since it can
process multiple inputs that vary in time.

These results show the flexibility and usefulness of decision trees
for predicting intended targets in 3D moving-target selection.Their
biggest advantage in this study was their ability to integrate mul-
tiple inputs to enhance predictive accuracy. Decision trees can be
interpreted as simple if-else rules, allowing them to be implemented
in real-time. However, if the predictions were to be adapted during
execution, the major difficulty would be to recalculate the trees in
real-time without impacting performance. This is still a mayor ar-
gument in favor of the usage of scoring functions, which add a very
small computational overhead to real-time applications.

An interesting trade-off, however, would be to integrate the scor-
ing functions in a decision tree model, to make predictions more
robust within each trial and between all trials. That way, real-time
predictions could adapt to each user and be integrated with different
moving-target selection techniques, like [12, 29, 41].
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