
HAL Id: hal-01133865
https://hal.science/hal-01133865v4

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refinement to Certify Abstract Interpretations,
Illustrated on Linearization for Polyhedra

Sylvain Boulmé, Alexandre Maréchal

To cite this version:
Sylvain Boulmé, Alexandre Maréchal. Refinement to Certify Abstract Interpretations, Illustrated on
Linearization for Polyhedra. Journal of Automated Reasoning, 2019, 62 (4), �10.1007/s10817-018-
9492-2�. �hal-01133865v4�

https://hal.science/hal-01133865v4
https://hal.archives-ouvertes.fr

Refinement to Certify Abstract Interpretations
Illustrated on Linearization for Polyhedra

Sylvain Boulmé and Alexandre Maréchal
Univ. Grenoble-Alpes, VERIMAG, F-38000 Grenoble, France

{sylvain.boulme,alex.marechal}@imag.fr

September 2018

Abstract
Our concern is the modular development of a certified static analyzer in the Coq proof

assistant. We focus on the extension of the Verified Polyhedra Library – a certified abstract
domain of convex polyhedra – with a linearization procedure to handle polynomial guards.
Based on ring rewriting strategies and interval arithmetic, this procedure partitions the vari-
able space to infer precise affine terms which over-approximate polynomials.

In order to help formal development, we propose a proof framework, embedded in Coq,
that implements a refinement calculus. It is dedicated to the certification of parts of the
analyzer – like our linearization procedure – whose correctness does not depend on the im-
plementation of the underlying certified abstract domain. Like standard refinement calculi,
it introduces data-refinement diagrams. These diagrams relate “abstract states” computed by
the analyzer to “concrete states” of the input program. However, our notions of “specification”
and “implementation” are exchanged w.r.t. standard uses: the “specification” (computing on
“concrete states”) refines the “implementation” (computing on “abstract states”).

Our stepwise refinements of specifications hide several low-level aspects of the computa-
tions on abstract domains. In particular, they ignore that the latter may use hints from ex-
ternal untrusted imperative oracles (e.g. a linear programming solver). Moreover, refinement
proofs are naturally simplified thanks to computations of weakest preconditions. Using our re-
finement calculus, we elegantly define our partitioning procedure with a continuation-passing
style, thus avoiding an explicit datatype of partitions. This illustrates that our framework is
convenient to prove the correctness of such higher-order imperative computations on abstract
domains.

Keywords: Proof Assistants, Result Certification, Abstract Interpretation.

Acknowledgements This work was partially supported by French Agence Nationale de la
Recherche under the VERASCO project (INS 2011) and by the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
nr. 306595 “STATOR”.
We thank Alexis Fouilhé, Michaël Périn, David Monniaux and the other members of the Verasco
project for their continuous feedback all along this work.

1

{sylvain.boulme,alex.marechal}@imag.fr
http://www.agence-nationale-recherche.fr
http://www.agence-nationale-recherche.fr
http://verasco.imag.fr/
http://erc.europa.eu/
http://stator.imag.fr

1 Introduction
This paper presents two contributions: first, a certified linearization procedure for a certified
abstract domain of convex polyhedra; second, a refinement calculus to help in mechanizing this
proof in Coq [31]. We detail below the context and features of these two contributions.

1.1 A Certified Linearization for the Abstract Domain of Polyhedra
We consider the certification of an abstract interpreter, which aims at ensuring absence of unde-
fined behaviors such as division by zero or invalid memory access in an input source program.
This analyzer computes for each program point an invariant: a property that must hold in all
executions at that point. Such invariants belong to datatypes called abstract domains [9] which are
syntactic classes of properties on memory states. For instance, in the abstract domain of convex
polyhedra [10], invariants are conjunctions of affine constraints written

∑
i aixi ≤ b where ai, b ∈ Q

are scalar values and xi are integer program variables. This domain is able to capture relations
between program variables (e.g. x + 2 ≤ y + x − 2z). However, it cannot deal directly with
non-linear invariants, such as x2 − y2 ≤ x× y. This is why linearization techniques are necessary
to analyze programs with non-linear arithmetic.

Our certified linearization procedure is based on intervalization [26]. It consists in replacing
some variables of nonlinear products by intervals of constants. For instance, Example 1 replaces
variable x by interval [0, 10] in product “x.(y − z)”. The interval is then eliminated by analyzing
the sign of y − z, leading to affine constraints usable by the polyhedra domain.

Example 1 (Intervalization using a sign-analysis) In any state where x∈ [0, 10], assignment
“r := x.(y − z) + 10.z” is approximated by the affine program below. Here operator :∈ performs
a non-deterministic assignment.

if y − z ≥ 0 then r :∈ [10.z, 10.y] else r :∈ [10.y, 10.z]

In other words, r is updated to any value of [min(10.y, 10.z),max(10.y, 10.z)].

Let us clearly delimit the scope of our work. Our linearization procedure is part of the Ver-
ified Polyhedra Library (VPL) [13, 14, 22], which provides a certified polyhedra domain to Ve-
rasco [18, 19, 17], a certified abstract interpreter for CompCert C [20]. Verasco is a static
analyzer that checks that C programs have no undefined behavior. Hence, our refinement calculus
focuses on abstract interpretations that overapproximate sets of reachable states and that reject
reachable error states. For example, our refinement calculus cannot prove the correctness of an
abstract interpretation bounding execution times of programs. Second, the VPL abstract domain
in Verasco is limited to integer variables and rational constants. It could also support rational
variables. But supporting floating-point operators would be a non-trivial extension.

Following a design proposed in [2], the VPL is organized as a two-tier architecture: an un-
trusted oracle, combining Ocaml and C code, performs most complex computations and outputs
a Farkas certificate used by a certified front-end to build a correct-by-construction result. As or-
acles may have side-effects and bugs, they are viewed in Coq as non-deterministic computations
of an axiomatized monad [13].

Built on a similar design, our linearization procedure invokes an untrusted oracle1 that selects
strategies for linearizing an arithmetic expression and produces a certificate that is checked by
the certified part of the procedure. It leads to a correct-by-construction over-approximation of
the expression. It is convenient to see such strategies as program transformations, because their
correctness is independent from the implementation of the underlying abstract domain and is
naturally expressed using concrete semantics of programs. Indeed, a linearization is correct if,

1There are several kinds of oracles in the VPL: those based on Farkas certificate for basic polyhedra computations;
the linearization strategy in the linearization procedure; etc. In the Coq code, each of these oracles is declared as a
“non-deterministic” function in parameter of the code (through an axiom). Here, “non-determinism” is formalized
by requiring the results of such functions to inhabit a may-return monad. Section 4.1 recalls the axioms of may-
return monads, initially proposed in [13].

2

in the current context of the analysis, any postcondition satisfied by the output program is also
satisfied by the input one (see Example 1). In such a case, we say that the input program refines
the output one. This paper aims to explain how refinement helps to develop certified procedures
on abstract domains, and in particular our linearization algorithm.

1.2 Refinement to Certify Computations on Abstract Domains
Program refinement [1, 27] consists in decomposing proofs of complex programs by stepwise appli-
cations of correctness-preserving transformations. We provide a framework in Coq to apply this
methodology for certifying the correctness of computations combining operators of an existing ab-
stract domain: our goal is to compositionally build correct-by-construction abstract computations,
by reasoning only on the concrete semantics of programs.

Typically, an affine program – like in Example 1 – is both interpreted in our abstract and
concrete semantics. We thus reduce the proof that the abstract interpretation of this affine pro-
gram computes a correct overapproximation of the input program to the proof that its concrete
interpretation refines the input program. This proof may be itself composed of several stepwise
refinements in the concrete semantics. Indeed, the development of our linearization procedure ex-
tends concrete semantics with affine interval arithmetic [26] (i.e. affine arithmetic where constants
are replaced by intervals of constants). In this approach, refinement of Example 1 is decomposed
into two refinement steps given in Example 2. Here, assumption x ∈ [0, 10] is reflected in the input
program syntax thanks to an assume command (formally defined in Section 2.1).

Example 2 (Refinement steps) The affine program

if y − z ≥ 0 then r :∈ [0 + 10.z, 10.(y − z) + 10.z] else r :∈ [10.(y − z) + 10.z, 0 + 10.z]

is refined by

r :∈ [0, 10].(y − z) + 10.z

itself refined by

assume x ∈ [0, 10];
r := x.(y − z) + 10.z

On Example 2, the first refinement step reduces to two properties of interval multiplication

y − z ≥ 0 ⇒ [0, 10].(y − z) = [0, 10.(y − z)]
y − z < 0 ⇒ [0, 10].(y − z) = [10.(y − z), 0]

The program in the middle just aims at simplifying proofs. Indeed, the second refinement step
reduces to

x ∈ [0, 10] ⇒ x.(y − z) + 10.z ∈ [0, 10].(y − z) + 10.z

This property trivally results from composition properties of interval arithmetic operators. Thus,
this whole proof completely ignores that our abstract intepretation of the first program involves
imperative computations using a given representation of polyhedra.

1.3 Overview of our Refinement Calculus
Our framework defines a Guarded Command Language (GCL) called †K that contains the basic
operators of the abstract domain. A computation †K in †K comes with two types of semantics:
an abstract and a concrete one. Concrete semantics of †K is a transformation on memory states.
Abstract semantics of †K is a transformation on abstract states, i.e. on values of the abstract
domain. A †K computation also embeds a proof that abstract semantics is correct w.r.t. concrete
one: each †K operator thus preserves correctness by definition. Moreover, an Ocaml function is
extracted from abstract semantics, which is certified to be correct w.r.t. concrete semantics. Hence,

3

concrete semantics of †K acts as a specification which is implemented by its abstract semantics.
In the following, a transformation on abstract (resp. memory) states is called an abstract (resp.
concrete) computation.

Taking a piece of code as input, our linearization procedure outputs a †K computation. Its
correctness is ensured by proving that concrete semantics of its input refines concrete semantics
of its output. This means that the output does not forget any behaviour of the input. Our
procedure being developed in a modular way from small intermediate functions, its proof reduces
itself to small refinement steps.2 Each of these refinement steps is only proved by reasoning on
the concrete semantics. Our framework provides a tactic simplifying such refinement proofs by
computational reflection of weakest-preconditions. The correctness of abstract semantics w.r.t.
concrete semantics is ensured by construction of †K operators.

Our framework supports impure abstract computations, i.e. abstract computations that invoke
imperative oracles giving them hints to build their certified results. It also allows to reason
conveniently about higher-order abstract computations. In particular, our linearization procedure
uses a Continuation-Passing-Style (CPS) [29] in order to partition its analyzes according to the
sign of affine sub-expressions. For instance in Example 2, the approximation of the non-linear
assignment depends on the sign of y − z. In our procedure, CPS is a higher-order programming
style that avoids introducing an explicit datatype handling partitions: this simplifies both the
implementation and its proof. This also illustrates the expressive power of our framework, since a
simple Hoare logic does not suffice to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of linearization strate-
gies: it could be applied for any part of the analyzer that combines computations of existing
abstract domains. In particular, the top-level interpreter of the analyzer could also be proved
correct in this way. Indeed, the interpreter invokes operations on abstract domains in order to
over-approximate any execution of the program, but its correctness does not depend on abstract
domains implementations (as soon as these implementations are themselves correct). We illustrate
this claim on a toy analyzer, also implemented in Coq. Let us explain this contribution w.r.t. the
certification of the top-level interpreter of Verasco developed by Jacques-Henri Jourdan [17].

The interpreter of Verasco analyzes C]minor [20] – an intermediate structured language of
CompCert frontend [20] – w.r.t. its small-step semantics. Actually, this small-step semantics
(from CompCert) introduces many low-level details that are tedious to deal with in the proof
of the analyzer.3 Thus, Jourdan has introduced a higher-level semantics of C]minor in order
to simplify his proof. This semantics is a Hoare logic because such a logic is better suited to
structured languages than usual collecting semantics which are dedicated to Control Flow Graph
representations [17]. Hence, Jourdan’s proof is realized in a framework combining a Hoare logic
as concrete semantics, with a theory of abstract domains. But Jourdan’s framework assumes that
operators of abstract domains are pure functions. Actually, this is not the case of VPL operators.4

Our refinement calculus sketches an alternative to Jourdan’s framework in order to support
impure operators in abstract domains. Our toy analyzer illustrates how the refinement calculus
helps to mechanize the correctness proof of the interpreter. Moreover, it also illustrates that alarm
handling of Verasco is very easy to support in our framework. However, our interpreter does not
support many other features of Verasco interpreter: control-flow statements such as “break”
and “continue”, the inference mechanism of loop invariants5, communication between several

2Thus, we do not use our refinement calculus in a decompositional (i.e. “top-down”) approach, that builds an
implementation by stepwise derivation from a specification. On the contrary, we use our refinement calculus in a
compositional (i.e. “bottom-up”) approach, that builds larger “bricks” from smaller “bricks”.

3Typically, C]minor small-step semantics distinguishes infinite loops depending on whether they invoke system
calls or not. But, by definition, an infinite loop cannot have runtime errors. Hence, all infinite loops are equivalent
for Verasco analyzer. Even better, the analyzer can safely prune any control-flow branch where they appear,
exactly like unreachable code.

4Thus, the embedding of VPL in Verasco coerces its imperative operators into pure ones. Logically, this
coercion remains to assume that VPL oracles are observationally pure. This is potentially wrong, because of
potential bugs in these untrusted oracles [13].

5Our toy analyzer does not infer loop invariants but requires them from the user. It does not seem too hard
to extend our analyzer with inference of loop invariants since the VPL provides a standard (untrusted) widening
operator. But, this feature is quite orthogonal to the certification of the analyzer itself. For example, Laporte [19]

4

abstract domains, etc.

1.4 Comparison with Related Works
The mathematics involved in our refinement calculus, relating operational semantics to the lattice
structure of monotone predicate transformers, are well-known in abstract interpretation theory [8].
In parallel to our work, the idea to use a refinement calculus in formal proofs of abstract interpreters
was proposed in [30]. Therefore, our contribution is more practical than theoretical. On the
theoretical side, we propose a refinement calculus dedicated to the certification of impure abstract
computations (w.r.t. big-step operational semantics). On the practical side, we show how to get
a concise implementation of such a refinement in Coq and how it helps on a realistic case study:
a linearization technique inspired from [26] within the abstract interpreter Verasco.

There are alternatives to our approach for computing polyhedral approximations of semi-
algebraic sets. Let us briefly compare them with intervalization. A linearization procedure based
on Handelman representation of polynomials [16] has also been implemented in the VPL [23]. It
is more precise than intervalization, but at a high cost: it requires solving costly parametric linear
problems. Albeit powerful, Handelman’s linearization does not scale properly to large polynomials
and polyhedra, this is why we need a cheaper algorithm such as intervalization. Another precise
approach consists in converting the polynomial into Bernstein’s basis and extract the generators of
the resulting polyhedron from the polynomial’s coefficients [12]. Like Handelman’s linearization,
it offers a tunable precision: either by partitioning the variable space or by elevating the degree
of the Bernstein’s basis considered. However, in order to ease the certification, the VPL uses a
constraint-only representation of polyhedra. Using Bernstein’s linearization would thus involves
costly conversions from constraints into generators, and backwards [24].

There are also linearizations dedicated to other target domains. For instance, a decision pro-
cedure for arithmetic that uses affine forms instead of polyhedra has been proven in PVS [28].
In their approach, affine approximations of polynomials are combined with partitioning through a
branch-and-bound algorithm. The expressiveness of affine forms is strictly between intervals and
polyhedra, but our linearization procedure would probably be greatly improved by incorporating
their techniques.

1.5 Overview of the Paper
Our refinement calculus is implemented in only 350 lines of Coq (proof scripts included), by a
shallow-embedding of our GCL †K which combines computational reflection of weakest-precondi-
tions [11] with monads [32]. However, it can be understood in a much simpler setting using binary
relations instead of monads and weakest-preconditions, and classical set theory instead of Coq.

Section 2 introduces our refinement calculus in this simplified setting, where computations are
represented as binary relations. Section 3 presents our certified linearization procedure and how its
proof benefits from our refinement calculus. Section 4 explains how we mechanize this refinement
calculus in Coq by using smart encodings of binary relations introduced in Section 2.

This paper is intended to be self-contained. Assuming that the reader is familiar with higher-
order logic, big-step semantics and Hoare logic, it attempts to introduce as simply as possible
all other notions: refinement, abstract interpretation, convex polyhedra, monads and weakest-
preconditions. A less detailed version of this paper has been published in [5]. Our Coq sources
are available as a standalone library:

• either at http://www-verimag.imag.fr/~boulme/vpl201503 (first release)

• or at http://github.com/VERIMAG-Polyhedra/VPL (current release)

The version integrated with Verasco 1.3 is available at
http://compcert.inria.fr/verasco/release/verasco-1.3.tgz

shows how to program such an untrusted oracle, in order to produce invariants checked by the certified analyzer.

5

http://www-verimag.imag.fr/~boulme/vpl201503
http://github.com/VERIMAG-Polyhedra/VPL
http://compcert.inria.fr/verasco/release/verasco-1.3.tgz

2 A Refinement Calculus for Abstract Interpretation
We consider an analyzer correct if and only if it rejects all programs that may lead to an error state.
Due to lack of precision, it may also reject safe programs. Section 2.1 defines the notion of error
state and semantics of concrete computations, which combines big-steps operational semantics
with Hoare Logic. After introducing the notion of abstract computation and its correctness w.r.t.
a concrete computation, Section 2.2 presents our refinement calculus. Section 2.3 shows how to
apply refinement to the certification of higher-order abstract computations.

Notations on Relations. Although our formalization is in the intuitionistic type theory of
Coq without axioms, the paper abusively uses more common notations of classical set theory.
In particular, we identify the type A → Prop of predicates on A with the set P(A). Hence, we
define the set of binary relations on A × B by R(A,B) , P(A × B). Given R of R(A,B), we
note x R−→ y instead of (x, y) ∈ R. We use operators on R(A,A) inspired from regular expressions:
ε is the identity relation on A, R1 · R2 means “relation R2 composed with R1” (i.e. x R1 · R2−−−−−→ z ,

∃y, x R1−−→ y ∧ y R2−−→ z) and R∗ is the reflexive and transitive closure of R. Through all the paper,
A→ B is a type of total functions.

2.1 Stepwise Refinement of Concrete Computations
Given a domain D representing the type of memory states, we add a distinguished element to
D in order to represent the error state: we define D , D] { }.

Concrete Computations With Runtime Errors. We define the set of computations on
memory states, called here concrete computations, as K , R(D,D). Hence, an element K of K
corresponds to a (possibly) non-deterministic or non-terminating computation from an input state
of type D to an output state of type D . Typically, the empty relation represents a computation
that loops infinitely for any input. It also represents unreachable code i.e. dead code (as explained
in Footnote 3).

In the following, an input d ∈ D is said to be erroneous for a concrete computation K if
and only if d K−→ . Informally speaking, we consider that an abstract computation is correct
w.r.t. a concrete computation K at two conditions: first, it overapproximates the set of erroneous
inputs of K as a set E; second, for each input of D\E, it overapproximates the set of its related
outputs through K. Section 2.2 formalizes this notion of abstract computation. Before that, we
introduce structures on concrete computations in order to use them as specifications of abstract
computations.

Refinement Pre-order. GivenK1 andK2 inK, we say that “K1 refines K2” (writtenK1 v K2)
if, informally, each abstract computation correct forK2 is also correct forK1. Let us now formalize
this refinement relation.

First, we introduce ↓K the normalization of K that returns any output for erroneous inputs.
It is defined by d

↓K
−−→ d′ , (d K−→ d′ ∨ d K−→). Informally speaking, “adding” some outputs to K

on its erroneous inputs does not change the set of abstract computations that are correct w.r.t.
K. In other words, an abstract computation is correct for K if and only if it is correct w.r.t.
↓K. Moreover, ↓K is the maximal relation which is equivalent to K w.r.t. (correct) abstract
interpretation.

Then, normalization enables us to define refinement from inclusion. Formally, we define K1 v
K2 as K1 ⊆↓K2 (or equivalently, ↓K1 ⊆↓K2). Relation v is called refinement and is a pre-order on
K. The equivalence relation ≡ associated with this pre-order is given by K1 ≡ K2 iff ↓K1 =↓K2.

Hoare Specifications. Hoare logic is a standard and convenient framework to reason about
imperative programs. Let us explain how computations in K are equivalent to specifications of
Hoare logic. A computation K corresponds to a Hoare specification (pK , qK) of P(D)×R(D,D),

6

where pK is a precondition ensuring the absence of error, and qK a postcondition relating the input
state to a non-error output state6. They are defined by pK , D\{d | d K−→ } and qK , K∩(D×D).
Conversely, any Hoare specification (P,Q) corresponds to a computation `P ;Q – defined below
– such that K≡`pK ; qK . Moreover, the refinement pre-order K1 v K2 is equivalent to the usual
refinement of specifications in Hoare logic, which is pK2 ⊆ pK1 ∧ qK1∩ (pK2×D) ⊆ qK2 .

Algebra of Guarded Commands. Initially proposed by [11], guarded commands are also
equivalent to Hoare specifications, but with an algebraic style, more suited for the methodology
of stepwise refinement[1]. Inspired by this methodology, we equip K with an algebra of guarded
commands.7 It combines a complete lattice structure with operators inspired from regular expres-
sions. Here, we present this algebra in our simplified setting, where K is defined as R(D,D).
Our Coq implementation, described in Section 4.2, has a different representation of K in order to
mechanize refinement proofs.

First, the complete lattice structure of K (for pre-order v) is given by operator u defined as
“∩ after normalization” (i.e.

d
iKi ,

⋂
i ↓Ki) and by operator t defined as ∪. In our context,

t represents alternatives that may non-deterministically happen at runtime: the analyzer must
consider that each of them may happen. Symmetrically, u represents some choice left to the
analyzer. The empty relation ∅ is the bottom element and is written ⊥. The relation D×{ } is
the top element. Given d ∈ D , we implicitly coerce it as the constant relation D×{d}. Hence,
the top element of the K lattice is simply written . The notation ↑f explicitly lifts function f
from D → D to K.

Given a relation K ∈ R(D,D), we define its lifting �K in R(D , D) by �K , K ∪ {(,)}.
This allows us to define the sequence of computations by K1 ;K2 , K1· �K2, and the unbounded
iteration of this sequence (i.e. a loop with a runtime-chosen number of iterations) by

K∗ , (�K)∗ ∩ (D ×D)

Given a predicate P ∈ P(D), we define the notion of assumption (or guard) as aP , (P×D)uε.
Informally, if P is satisfied on the current state then a P skips: it behaves like ε. Otherwise,
a P produces no output: it behaves like ⊥. We also define the dual notion of assertion as
` P , (a ¬P ;) t ε. If P is not satisfied on the current state, then ` P produces an error.
Otherwise, it skips.

With these operators, K provides a convenient language to express specifications: any Hoare
specification (P,Q) of P(D)×R(D,D) is expressed as the computation `P ;Q. Moreover, refine-
ment allows to express usual Verification Conditions (VC) of Hoare Logic, for partial and total
correctness. For our toy analyzer (described later), we only need VC for partial correctness. Typi-
cally, we use the usual partial correctness VC of unbounded iteration: K∗ is equivalent to produce
an output satisfying every inductive invariant I of K.

K∗ ≡
l

I∈{I∈P(D) |Kv Ì;D×I}
`I;D×I

In this equivalence, the v-way corresponds to the soundness of the VC, whereas the w-way cor-
responds to its completeness. In our context, such a soundness proof typically ensures that the
specification of an abstract computation is refined by concrete semantics of the analyzed code. It
guarantees that the analysis is correct w.r.t. semantics of the analyzed code.

Example on a Toy Language. Let t stands for an arithmetic term and c be a condition over
numerical variables, whose syntax is c ::= t1 ./ t2 | ¬c | c1∧c2 | c1∨c2 with ./∈ {=, 6=,≤,≥, <,>}.
Semantics JtKof t and JcKof c work with a domain of integer memories D , V→ Z where V is the
type of variables. Hence, JtK∈ D → Z and JcK∈ P(D). We omit their definition here.

6A postcondition is thus in P(D×D) instead of the original P(D): this standard generalization avoids introducing
“auxiliary variables” to represent the input state.

7However, in our algebra, v corresponds to “refines”, whereas in standard refinement calculus it dually corre-
sponds to “is refined by”. Actually, our convention follows lattice notations of abstract interpretation.

7

Let us now introduce a small imperative programming language named S for which we will
describe a toy analyzer in Section 2.2. The syntax of a S program s is described on Figure 1
together with its big-steps semantics JsK in K. This semantics is defined recursively on the syntax
of s using guarded commands derived fromK. First, we define ac ,aJcKand `c ,`JcK. We also use
command “x := t” defined as ↑λd.d[x := JtK(d)], where the memory assignment written “d[x := n]”
– for d ∈ D, x ∈ V and n ∈ Z – is defined as the function λx′ :V, ifx′ = x thenn else d(x′).

s assert(c) x← t s1 ; s2 if(c){s1}else{s2} while(c){s}

JsK `c x := t Js1K ; Js2K
ac ; Js1K

t a¬c ; Js2K
(ac ; JsK)∗ ;a¬c

Figure 1: Syntax and concrete semantics of S

At this point, we have defined an algebra K of concrete computations: a language that we use to
express specifications – for instance, in the form of Hoare specifications – on abstract computations.
This algebra also provides denotations for defining big-steps semantics (like in Figure 1). Hence,
K is aimed at providing an intermediate level between operational semantics of programs and their
abstract interpretations (with the same purpose than the intermediate Hoare Logic in Verasco
[17]). The next section defines how we certify correctness of abstract computations w.r.t. K
computations.

2.2 Composing Diagrams to Certify Abstract Computations
Rice’s theorem states that the property d K−→ d′ is undecidable. In the theory of abstract interpreta-
tion, we approximate K by a computable (terminating) function]K working on an approximation
]D of P(D). Set]D is called an abstract domain and it is related to P(D) by a concretization
function γ :]D → P(D). Function]K is called an abstract interpretation (or abstract computation)
of K. This paper considers two abstract domains, intervals and convex polyhedra, associated with
the concrete domain D , V→ Z involved in Figure 1.

1. Given Z∞ , Z] {−∞,+∞}, an abstract memory]d of the interval domain is a finite map
associating each variable x with an interval [ax, bx] of Z∞×Z∞. Its concretization is the set
of concrete memory states satisfying the constraints of]d, i.e.

γ(]d) , {d ∈ D | ∀x, ax ≤ d(x) ≤ bx}

2. The concretization of a convex polyhedron]d =
∧
i

∑
j aij .xj ≤ bi, where aij ’s and bi’s are

rational constants and xj ’s are integer program variables, is

γ(]d) , {d ∈ D |
∧
i

∑
j

aij .d(xj)≤bi}

Correctness Diagrams of Impure Abstract Computations. Our framework only deals
with partial correctness: we do not prove that abstract computations terminate, but only that they
are a sound over-approximation of their corresponding concrete computation. Moreover, abstract
computations may invoke untrusted oracles, whose results are verified by a certified checker. A
bug in those oracles may make the whole computation non-deterministic or divergent. Thus, it
is potentially unsound to consider abstract computations as pure functions. In this simplified
presentation of our framework, we define abstract computations as relations in]K , R(]D,]D). A
more elaborate representation – based on monads – is defined in Section 4.1, in order to extract
abstract computations from Coq to Ocaml functions.

We express correctness of abstract computations through commutative diagrams defined as
follows.

8

Definition 1 (Correctness of abstract computations) An abstract computation]K of]K is
correct w.r.t. a concrete computation K of K iff
∀]d,]d′ ∈]D, ∀d ∈ D,∀d′ ∈ D ,

]d
]K−→]d′ ∧ d

K−→ d′ ∧ d ∈ γ(]d) ⇒ d′ ∈ γ(]d′)

Note that d′ ∈ γ(]d′) implies itself that d′ 6= because is
not in the image of γ.

]d]d′
]K

d

γ

d′
K

γ

Such a diagram thus corresponds to a pair of an abstract and a concrete computation, with
a proof that the abstract one is correct w.r.t. the concrete one. As illustrated on the example
below, these diagrams allow to build compositional proofs that an abstract computation, composed
of several simpler parts, is correct w.r.t. a concrete computation. Diagrams are indeed preserved
by several composition operators, and also by refinement of concrete computations.

As an example, consider two abstract com-
putations]K1 and]K2 that are correct w.r.t.
concrete K1 and K2. In order to show that
the sequential composition]K1 ·]K2 is correct
w.r.t. concrete K, it suffices to prove that
K v K1 ;K2, as illustrated on the right hand
side scheme.

]K1
]K2

γ
K1

γ
K2

γ

= K v K1 ;K2

K

=

In the following, we introduce a datatype written †K to represent these diagrams: a diagram
†K ∈ †K represents an abstract computation]K which is correct w.r.t. its associated concrete
computation K. The core of our approach is to lift guarded-commands on K involved in Figure 1
to guarded-commands on †K. For instance, our toy analyzer]JsK for s in S is defined similarly to
JsKof Figure 1, but from †K operators instead of K ones. For a given diagram †K, we can prove the
correctness of an abstract computation]K w.r.t. a concrete computationK ′ simply by proving that
K ′ v K. In practice, such refinement proofs are simplified using a weakest-liberal-precondition
calculus (see Section 4.2).

Our Interface of Abstract Domains. The (simplified) theory of our abstract domains is
defined in Figure 2. This theory is not included in Verasco’s one because it allows impure
operators (operators are relation, and not pure functions). Besides its concretization function γ,
an abstract domain]D provides constants]> and]⊥, representing respectively predicate true and
false. It also provides abstract computations]ac and x]:=t of R(]D,]D), which are respectively
correct w.r.t. concrete computations a c and x := t. It provides operator]t of R(]D×]D,]D),
which over-approximates the binary union on P(D). At last, it provides inclusion test]v of
R(]D×]D, bool).

D ⊆ γ(]>) γ(]⊥) ⊆ ∅]d
]ac−−→]d′ ⇒ γ(]d) ∩ JcK ⊆ γ(]d′)

]d
x]:=t−−−→]d′ ∧ d ∈ γ(]d)⇒ d[x := JtK(d)] ∈ γ(]d′)

(]d1,
]d2)

]t−→]d′ ⇒ γ(]d1) ∪ γ(]d2) ⊆ γ(]d′) (]d1,
]d2)

]v
−→ true⇒ γ(]d1) ⊆ γ(]d2)

Figure 2: Correctness specifications of our abstract domains

Abstract Computations of Guarded-commands. We derive our guarded-commands on †K
in a generic way from any abstract domain satisfying the interface of Figure 2. As explained above,
we lift each K guarded-command appearing in Figure 1 into a †K guarded-command. This lifting

9

is detailed in Figure 3: a †K operator has the same notation as its corresponding K operator and
maps it to an abstract computation of]K. The diagrammatic proof relating them is straightforward
from correctness specifications given in Figure 2. We now detail the ideas behind this mapping.

Concrete commands a c and x := t are trivially associated with]ac and x]:=t. Concrete
command K1 ;K2 is associated with]K1 ·]K2 – where]K2 returns]⊥ if the current abstract state
is included in]⊥, or runs]K2 otherwise. Concrete K1 tK2 is lifted by applying operator]t to the
results of]K1 and]K2.

Concrete assertion ` c is associated with checking that the result of]a¬c is included in]⊥:
otherwise, the abstract computation fails. In our refinement proofs of abstract computations, “to
fail” means “to give no result”. Hence, concrete is associated with abstract computation ∅ (and
concrete ⊥ is associated with]⊥). However, for our implementation of abstract computations
in Section 4.1, “to fail” means “to raise an alarm for the user”. In other words, our notion of
correctness on abstract computations only gives some guarantee when no alarm is raised. In our
proofs, we do not make distinction between an abstract computation that raises an alarm and an
one that diverges.

At last, concrete K∗ is associated with an abstract computation that invokes an untrusted
oracle proposing an inductive invariant]di of]K for the current abstract state. Thus, using
inclusion tests,](K∗) checks that]di is actually an inductive invariant (otherwise, it fails), before
returning it as the output abstract state.

†K Spec. in K Impl. in]K
ac ac]ac
x := t x := t x]:=t
†K1 ; †K2 K1 ;K2 K1.{(]d1,

]d2) | ∃b, (]d1,
]⊥)

]v
−→ b

∧ if b then]d2 =]⊥ else]d1
]K2−−→]d2}

†K1 t †K2 K1 tK2 {(]d,]d′) | ∃]d1,∃]d2,
]d

]K1−−→]d1 ∧]d
]K2−−→]d2 ∧ (]d1,

]d2)
]t−→]d′}

`c `c {(]d,]d) | ∃]d′,]d
]a¬c−−−→]d′ ∧ (]d′,]⊥)

]v
−→ true}

†K
∗

K∗ (]d,]di) | (]d,]di)
]v
−→ true ∧ ∃]d′,]d

]K−→]d′ ∧ (]d′,]di)
]v
−→ true}

Figure 3: Guarded-commands of †K involved in S analysis

2.3 Higher-order Programming with Correctness Diagrams
Our linearization procedure detailed in Section 3.2 illustrates how we use GCL †K as a programming
language for abstract computations. GCL K is our specification language. Each program †K of
†K is associated with a specification K of K syntactically derived from its code through mapping
of Figure 3 and Figure 4. Indeed, Figure 4 details two other operators of †K invoked by our
linearization procedure. First, operator (cast †KK ′) casts a diagram †K to a given specification
K ′: it requires K ′ v K in order to produce a new valid †K diagram. This cast operator thus
leads to a modular design of the certified development since it allows stepwise refinement of †K
diagrams. Second, operator (π†�=Q

†g) – where, for a given type A, π is of type R(]D,A) and †g
of type A → †K – binds the results of π to †g. This operator requires a concrete postcondition Q
of A→ P(D) on the results of π (see Figure 4).

More specifically, Section 3.2 applies our refinement calculus to certify higher-order abstract
computations. Indeed, our linearization procedure partitions abstract states in order to in-
crease precision. Continuation-Passing-Style (CPS) [29] is a higher-order pattern that provides a
lightweight and modular style to program and certify simple partitioning strategies. Let us now
detail this idea.

Given an abstract state]d, our linearization procedure invokes a sub-procedure]f that splits
]d into a partition (]di)i∈I and computes a value ri (of a given type A) for each cell]di. Then, the
linearization procedure continues the computation from each cell (ri,]di) to finally return the join

10

†K Spec. in K Impl. in]K Under precondition
cast †KK ′ K ′]K K ′ v K
π†�=Q

†g
d
x `Qx ; g x {(]d1,

]d2) | ∃x,]d1
π−→ x ∧]d1

]g x
−−→]d2} ∀]d,∀x ∈ A,

]d
π−→ x⇒ γ(]d) ⊆ Qx

Figure 4: †K operators that generate proof obligations

of all cells. In other words, from]d,]f computes (ri,]di)i∈I . The main procedure finally computes
]
⊔
i∈I(]g ri]di) – where]g is a given function of A →]K. In order to avoid explicit handling of

partitions, we make]g a parameter of]f to perform the join inside]f . In this style,]f is of type
(A→]K)→]K and the parameter]g of]f is called their continuation.

However, specifying directly the correctness of computations that use CPS is not obvious
because of the higher-order parameter. Actually, we define †f of type (A → †K) → †K and
work with a continuation †g of type A→ †K. This allows us to specify CPS abstract computations
w.r.t. CPS concrete computations. An example of such a specification is detailed later in Figure 8.
Therefore, we keep implicit the notion of partition, both in specification and in implementation.

Similarly, CPS enables to implement some dynamic strategies of trace partitioning[25]. In ab-
stract interpretation, “trace partitioning” corresponds to partition the set of all possible execution
traces of the analyzed program in order to improve accuracy. Controlling the partitioning process
is motivated by the fact that (]K1 ·]K3)]t(]K2 ·]K3)]v (]K1

]t]K2) ·]K3, but the opposite inclusion
does not hold. Hence, the left side is more precise whereas the right one is faster, as computation
]K3 is factorized. In practice, dynamic trace partitioning strategies select one of these two alterna-
tives according to information of the current abstract state. The trace partitioning domain of [25]
provides a functor able to extend a given abstract domain with dynamic partitioning management.
More modestly, CPS allows to select some trace partitioning strategy at each function call through
the choice of its continuation. For instance, we define †f , λ†g, (†g †K1) t (†g †K2). Then, the pre-
cise alternative derives from †f λ†K, (†K ; †K3) whereas the fast one derives from (†f λ†K, †K) ; †K3.
The CPS approach has the advantage to be very lightweight: there is no need to define and certify
a data-structure to manage partitions. But it is less expressive than a trace partitioning domain.
Indeed, a trace partitioning domain provides two kinds of partitioning operations: one to split par-
titions and one to merge partitions. Thus, the decision of merging partitions is quite independent
of the decision to split partitions. On the contrary, with CPS, there is a single decision for each
split/merge pair. Hence, a trace partitioning domain enables more dynamic merging strategies.

3 Interval-based Linearization Strategies for Polyhedra
The VPL works with affine terms given by the abstract syntax t ::= n | x | t1 + t2 | n.t where x
is a variable and n a constant of Z [13]. We now extend VPL operators of Figure 2 to support
polynomial terms, where the product “n.t” is generalized into “t1 × t2”.

The VPL derives assignment operator]:= from guard]aand two low-level operators: projection
and renaming. It also derives the guard operator from a restricted one where conditions have the
form 0 ./ t with ./∈ {≤,=, 6=}. Hence, we only need to linearize the restricted guard]a0 ./ p,
where p is a polynomial. Below, we use letter p for polynomials and only keep letter t for affine
terms.

Roughly speaking, we approximate a guard]a0 ./ p by guards]a0 ./ [t1, t2] – where t1 and t2
are affine or infinite bounds – such that, in the current abstract state, p ∈ [t1, t2]. Approximated
guards]a0 ./ [t1, t2] are defined by cases on ./:

./ ≤ = 6=
]a 0./ [t1, t2]]a 0≤ t2]a 0≤ t2∧ t1≤0]a 0<t2∨ t1<0

Affine intervals are computed using heuristics inspired from [26], except that in order to increase

11

(a) Constant intervalization (b) Focusing & affine intervalization

Figure 5: Two intervalizations of p = (3.x−15)×(4.x−3) with x ∈ [3, 10]. Constant intervalization
leads to p ∈ [−54, 555], whereas focusing gives p ∈ [3.x− 63, 87.x− 315].

precision, we dynamically partition the abstract state according to the sign of some affine subterms.
This process will be detailed further.

Our certified linearization is built on a two-tier architecture: an untrusted oracle uses heuristics
to select linearization strategies and a certified procedure applies them to build a correct-by-
construction result. These strategies, which are listed in Section 3.1, allow to finely tune the
precision-versus-efficiency trade-off of the linearization. Section 3.2 details the design of our oracle
and illustrates our lightweight handling of partitions using CPS in our certified procedure.

3.1 Our List of Interval-Based Strategies
Constant Intervalization. Our fastest strategy applies a constant intervalization operator of
the abstract domain. Given a polynomial p, this operator, written]π(p), over-approximates p by
an interval where affine terms are reduced to constants. More formally,]π(p) is a computation
of R(]D,Z2

∞) such that if]d
]π(p)
−−−→ [n1, n2], then γ(]d) ⊆ {d | n1 ≤ JpKd ≤ n2}. It uses a naive

interval domain, where arithmetic operations + and × are approximated by their correspondence
on intervals:
[n1, n2] + [n3, n4] , [n1 + n3, n2 + n4], and
[n1, n2]× [n3, n4] , [min(E),max(E)] where E = {n1.n3, n1.n4, n2.n3, n2.n4}.

Example 3 (Constant intervalization) On x ∈ [3, 10], constant intervalization of (3.x−15)×
(4.x− 3) gives (3.[3, 10]− 15)× (4.[3, 10]− 3) = ([9, 30]− 15])× ([12, 40]− 3) = [−6, 15]× [9, 37] =
[−54, 555], as shown on Figure 5(a).

Ring Rewriting. A weakness of operator]π is its sensitivity to ring rewriting. For instance,
consider a polynomial p1 such that]π(p1) returns [0, n], n ∈ N+. Then]π(p1 − p1) returns [−n, n]
instead of the precise result 0. Such imprecision occurs in barycentric computations such as
p2 , p1 × t1 + (n − p1) × t2 where affine terms t1, t2 are bounded by [n1, n2]. Indeed]π(p2)
returns 2n.[n1, n2] instead of n.[n1, n2]. Moreover, if we rewrite p2 into an equivalent polynomial
p′2 , p1 × (t1 − t2) + n.t2, then]π(p′2) returns n.[2.n1 − n2, 2.n2 − n1]. If n1 > 0 or n2 < 0, then
]π(p′2) is strictly more precise than]π(p2). The situation is reversed otherwise. Consequently,
our oracle begins by simplifying the polynomial before trying to factorize it conveniently. But as
illustrated above, it is difficult to find a factorization minimizing]π results. We give more details
on the ring rewriting heuristics of our oracle in the following.

12

Figure 6: A wrong affine intervalization of p = (3.x− 15)× (4.x− 3) with x ∈ [3, 10].

Sign Partitioning. In order to find more precise bounds of polynomial p than those given by
]π(p), we look for an interval of two affine terms [t1, t2] bounding p. Assume p is of the form
p′ × t, with t an affine term and p′ a polynomial. Let [n′1, n′2] be the constant intervalization of p′
obtained from]π(p′). Depending on the sign of t, we deduce affine bounds of p in the following
way:

• if 0 ≤ t, then p′ × t ∈ [n′1.t, n′2.t]

• if t < 0, then p′ × t ∈ [n′2.t, n′1.t]

When the sign of t is known, we discard one of these two cases and thus have a fast affine
approximation of p′× t. This is the case in Figure 5(b) (the underlying computations are detailed
in Example 6). When the sign of t is unknown, we split the analysis for each sign of t.

More generally, we split the current abstract state]d into a partition (]di)i∈I according to the
sign of some affine subterms of polynomial p, such that each cell]di leads to its own affine interval
[ti,1, ti,2]. Finally,]a0 ./ p is over-approximated by computing the join of all]a0 ./ [ti,1, ti,2]. The
main drawback of sign partitioning is a worst-case exponential blow-up if applied systematically.

Example 4 (Sign partitioning) Consider p = (4.x − 3) × (3.x − 15) with x ∈ [3, 10], as in
Example 3. First, we compute the constant intervalization of the left term (4.x−3), which gives p =
(4.[3, 10]−3)×(3.x−15) = ([12, 40]−3)×(3.x−15) = [9, 37]×(3.x−15) = [9.(3.x−15), 37.(3.x−15)].
We obtain the two affine terms 9.(3.x − 15) and 37.(3.x − 15). But as shown on Figure 6, for
x ∈ [3, 10], these two terms are not comparable. Indeed, 9.(3.x − 15) is not always lower than
37.(3.x−15) on x ∈ [3, 10]. Thus, [9.(3.x−15), 37.(3.x−15)] is not a well-defined interval of affine
forms. In order to get an affine interval bounding p, we need to partition the space at the point
where these two terms are equal, i.e. at the point where 3.x − 15 = 0 which is x = 5. Then, by
intervalizing in both cells 3.x− 15 < 0 and 3.x− 15 ≥ 0, we get:

p =

[

37.(3.x− 15) , 9.(3.x− 15)
]

if 3.x− 15 < 0[
9.(3.x− 15) , 37.(3.x− 15)

]
if 3.x− 15 ≥ 0

The result is shown on Figure 7(a). To obtain the final result of the linearization, it is necessary
to compute the convex hull of both sides. Here, the result is p ∈ [51.x − 375, 87.x − 315], and it
appears as the blue dotted polyhedron on the figure.

Let us also illustrate sign partitioning for the previous barycentric-like computation of p′2. By
convention, our certified procedure partitions the sign of right affine subterms (here, the sign of
t1− t2). Hence, it founds p′2 ∈ [n.t2, n.t1] in cell 0 ≤ t1− t2, and p′2 ∈ [n.t1, n.t2] in cell t1− t2 < 0.

13

(a) Static partitioning (b) Dynamic partitioning

Figure 7: Sign partitioning of p = (3.x− 15)× (4.x− 3) with x ∈ [3, 10]. Static partitioning gives
p ∈ [51.x− 375, 87.x− 315], whereas dynamic one gives p ∈ [51.x− 255, 87.x− 315].

When it joins the two cells,]a0 ./ p′2 is computed as]a0 ./ n.[n1, n2] as we expect for such a
barycentre. Note that sign partitioning is also sensitive to ring rewriting. In particular, the oracle
may rewrite a product of affine terms t1 × t2 into t2 × t1, in order to discard t1 instead of t2 by
sign partitioning.

Static vs Dynamic Intervalization During Partitioning. Computing the constant bounds
of an affine term inside a given polyhedron invokes a costly linear programming procedure. Hence,
for a given polynomial p to approximate, we start by computing an environment σ that associates
each variable of p with a constant interval: as detailed later, this environment is indeed used by
heuristics of our oracle. By default, operator]π is called in dynamic mode, meaning that each
bound is computed dynamically in the current cell – generated from sign partitioning – using
linear programming. If one wants a faster use of operator]π, he may invoke it in static mode,
where bounds are computed using σ.

For instance, let us consider the sign partitioning of p , t1 × t2 in the context 0 < n1, n2 and
−n1 ≤ t2 ≤ t1 ≤ n2. In cell 0 ≤ t2, static mode bounds p by [−n1.t2, n2.t2], whereas dynamic
mode bounds p by [0, n2.t2]. In cell t2 < 0, both modes bound p by [n2.t2,−n1.t2]. On the join
of these cells, both modes give the same upper bound. But the lower bound is −n1.n2 for static
mode, whereas it is n1.n2

n1+n2
(t2 + n1)− n1.n2 for dynamic mode, which is strictly more precise.

Example 5 (Static vs Dynamic Intervalization) In Example 4, we saw that partitioning on
the sign of (3.x− 15) gave

p = (4.x− 3)× (3.x− 15)
= [9, 37]× (3.x− 15)

=

[

37.(3.x− 15) , 9.(3.x− 15)
]

if 3.x− 15 < 0[
9.(3.x− 15) , 37.(3.x− 15)

]
if 3.x− 15 ≥ 0

This intervalization is in fact a static one because (4.x−3) was intervalized in the same way in both
cells, using x ∈ [3, 10]. Instead, using dynamic intervalization during partitioning will improve
the precision by finding better bounds of (4.x − 3). Indeed, building on the fact that x ∈ [3, 5]
on cell (3 ≤ x ∧ 3.x − 15 < 0), intervalizing (4.x − 3) gives (4.[3, 5] − 3) = ([12, 20] − 3) = [9, 17].
Similarly, on cell (x ≤ 10 ∧ 3.x − 15 ≥ 0), x ∈ [5, 10] hence an intervalization of (4.x − 3) by

14

(4.[5, 10]− 3) = ([20, 40]− 3) = [17, 37]. Thus,

p =
{

[9, 17]× (3.x− 15) if 3.x− 15 < 0
[17, 37]× (3.x− 15) if 3.x− 15 ≥ 0

=

[

17.(3.x− 15) , 9.(3.x− 15)
]

if 3.x− 15 < 0[
17.(3.x− 15) , 37.(3.x− 15)

]
if 3.x− 15 ≥ 0

As explained before, the final result is obtained by computing the convex hull of both cells. Here,
we get p ∈ [51.x − 255, 87.x − 315]. The difference between static and dynamic partitioning is
shown on Figure 7. We can see that the lower bound of p has been significantly improved by the
dynamic partition. The upper bound resulting from static partitioning was already optimal.

Focusing. Focusing is a ring rewriting heuristic that may increase the precision of sign partition-
ing. Given a product p , t1× t2, we define the focusing of t2 in center n as the rewriting of p into
p′ , n.t1 +t1×(t2−n). Thanks to this focusing, the affine term n.t1 appears whereas t1 would oth-
erwise be discarded by sign partitioning. Let us simply illustrate the effect of this rewriting when
0 ≤ n ≤ n′1 with t1 (resp. t2) bounded by [n1, n2] (resp. [n′1, n′2]). Sign partitioning bounds p in
affine interval [n1.t2, n2.t2] whereas p′ is bounded by interval [n1.t2 +n.(t1−n1), n2.t2−n.(n2−t1)].
The former contains the latter since t1−n1 and n2−t1 are nonnegative. Under these assumptions,
the precision is maximal when n = n′1.

Applied carelessly, focusing may also decrease the precision. Consequently, on products p′′×t2,
our oracle uses the following heuristic, which cannot decrease the precision: if 0 ≤ n′1, then focus
t2 in center n′1; if n′2 ≤ 0, then focus t2 in center n′2; otherwise, do not change the focus of t2.

Example 6 (Focusing) Consider p = (3.x − 15) × (4.x − 3) with x ∈ [3, 10], as in previous
examples. The focusing of term (4.x−3) on 4.3−3 = 9 is p′ = 9.(3.x−15)+(3x−15)× (4.x−12).
Affine intervalization of p′ is done by sign partitioning of (4.x − 12), where cell 4.x − 12 < 0 is
empty. Finally, by intervalization,

p = 9.(3.x− 15) + (3x− 15)× (4.x− 12)
= (27.x− 135) + (3.[3, 10]− 15)× (4.x− 12)
= (27.x− 135) + [−6, 15]× (4.x− 12)
= (27.x− 135) + [−24.x+ 72, 60.x− 180]
= [3.x− 63, 87.x− 315]

Figure 5(b) shows its result. Intervalizations of Figure 5(a) and of Figure 5(b) have similar running
times, but this latter gives strictly more precise results. Intervalizations of Figures 7(b) and 5(b)
are not comparable: Figure 7(b) is more precise on a significative part of the domain x ∈ [3, 10],
but Figure 5(b) is better around the lower-left corner. The precision of Figure 7(b) comes at a
cost: it requires two constant intervalizations and a convex-hull instead of one single constant
intervalization.

Conjunction of strategies. As we saw by comparing Figures 5(b) and 7(b), two distinct
linearization strategies may lead to incomparable polyhedra. Here, we can improve precision
by computing the intersection of these polyhedra. In our stepwise refinement approach, this
corresponds indeed to remark that ac v (ac ;ac), and to implement each of these guards ac with
a distinct linearization strategy. Let us remark here that a sequence of two strategies gives more
precise results than intersecting independent runs of these strategies: the second one may benefit
from informations discovered by the first one. This is illustrated in Example 7 below. We use this
trick in order to ensure that our linearization necessarily improves and benefits from results of a
naive but quick constant intervalization.

15

Given †π p of (Z2
∞→ †K)→ †K defined by †π p †g0 ,]π(p) †�=λ[n1,n2],{d |n1≤JpKd≤n2}

†g0
the †K program on the right-hand
side satisfies the specification be-
low:
l

[t1,t2]
`{d | t1 ≤ Jp×tKd ≤ t2} ; g[t1, t2]

if static then
†π p (λ[n1, n2], (a0 ≤ t ; †g[n1.t, n2.t])

t (a t < 0 ; †g[n2.t, n1.t]))
else

(a0 ≤ t ; †π p λ[n1, n2], †g[n1.t, n2.t])
t (a t < 0 ; †π p λ[n1, n2], †g[n2.t, n1.t])

Figure 8: Sign partitioning for p×t with continuation †g

3.2 Design of Our Implementation
We now decribe our procedure in detail. For a guard]a0 ./ p, our certified procedure first rewrites
p into p′ + t where t is an affine term and p′ a polynomial. This may keep the non-affine part p′
small compared to the affine one t. Typically, if p′ is syntactically equal to zero, we simply apply
the standard affine guard]a0 ./ t. Otherwise, we compute environment σ for p′ variables. Then,
we compute]a0 ./ [n1 + t, n2 + t] where [n1, n2] is the result of]π(p′) for static environment σ. As
mentioned earlier, this ensures that the resulting linearization necessarily improves and benefits
from this first constant intervalization. In particular, if this guard is unsatisfiable at this point,
the rest of the procedure is skipped. Otherwise, we invoke our external oracle on p′ and σ. This
oracle returns a polynomial p′′ enriched with tags on subexpressions. We handle three tags to
direct the intervalization: AFFINE expresses that the subexpression is affine; STATIC expresses that
the subexpression has to be intervalized in static mode; INTERV expresses that intervalization is
done using only]π (instead of sign partitioning). At last, a special tag SKIP_ORACLE inserted at
the root of p′′ indicates that it is not worth attempting to improve naive constant intervalization
(e.g. because p′ is a too big polynomial, any attempt would be too costly). After that, when this
special tag is absent, our certified procedure checks that p′ = p′′ using a normalization procedure
defined in the standard distribution of Coq [15]. If p′ 6= p′′, our procedure simply raises an
error corresponding to a bug in the oracle. If p′ = p′′, it invokes a CPS affine intervalization of
p′′ for continuation λ[t1, t2],a 0 ./ [t1 + t, t2 + t]. The next paragraphs detail this certified CPS
intervalization and then, our external oracle.

Certified CPS Affine Intervalization. We implement and prove our affine intervalization
using the CPS technique described in Section 2.3. On polynomial p′′ and continuation †g, the
specification of our CPS intervalization is

ε u
l

[t1,t2]
`{d | t1 ≤ Jp′′Kd ≤ t2]} ; g[t1, t2]

The ε case corresponds to a failure of our procedure: typically, a subexpression is not affine as
claimed by the external oracle. In case of success, the procedure selects non-deterministically
some affine intervals [t1, t2] bounding p′′ before merging continuations on them. The procedure
is implemented recursively over the syntax of p′′. Figure 8 sketches the implementation and the
specification of the sign partitioning subprocedure. The figure deals with a particular case where
p′′ is a polynomial written p×t with t affine. In the implementation part, boolean static indicates
the mode of]π. In static mode, we indeed factorize the computation of]π on both cells of the
partition.

Our linearization procedure is written in around 2000 Coq lines, proofs included. Among them,
the CPS procedure and its subprocedures take only 200 lines. The bigger part – around 1000 lines
– is thus taken by arithmetic operators on interval domains (constant and affine intervals).

Design of Our External Oracle. Our external oracle ranks variables according to their priority
to be discarded by sign partitioning. Then, it factorizes variables with the highest priority. The

16

priority rank is mainly computed from the size of intervals in the precomputed environment σ:
unbounded variables must not be discarded whereas variables bounded by a singleton are always
discarded by static intervalization. Our oracle also tries to minimize the number of distinct
variables that are discarded: variables appearing in many monomials have a higher priority. The
oracle also interleaves factorization with focusing. Our oracle is written in 1300 lines of Ocaml
code.

Example 7 (A full run of the certified procedure) Let us consider the effect of our lin-
earization procedure on guard a x × (y − 2) ≤ z in a context where (0 ≤ x) ∧ (x + 1 ≤ y ≤
1000) ∧ (z ≤ −2). First, note that a constant intervalization of z − x× (y − 2) would bound it in
]−∞, 997], and thus would not deduce anything useful from this guard.

Instead, our procedure rewrites the guard into a0 ≤ p′+t with p′ , −x×y and t , z+2x. Then,
it computes environment σ , {x 7→ [0, 999], y 7→ [1, 1000]} and applies constant intervalization
on p′, leading to p′ ∈] − ∞, 0]. As you may notice, approximating this guard requires only an
upper-bound on p′, and our procedure does not compute the useless lower bound. From this first
approximation of a0 ≤ p′ + t, it deduces 0 ≤ t.

Then, our oracle, invoked on p′ and σ, decides to focus y in center 1 and thus rewrites p′ as
p′′ , x×(1−y)−x. Here, our CPS subprocedure only intervalizes the nonlinear part x×(1−y) using
sign partitioning on 1−y. Because we know 1 ≤ x from 2 ≤ −z ≤ 2x, we deduce 1−y ≤ −x ≤ −1.
Therefore, because 1−y < 0 and 1 ≤ x, sign partitioning on 1−y bounds x×(1−y) by]−∞, 1−y].
At last, CPS intervalization now approximates a 0 ≤ p′ + t in a 0 ≤ 1 − y − x + t. In fact, this
implies 0 ≤ z which contradicts z ≤ −2. Hence, our polyhedral approximation of ax× (y−2) ≤ z
detects that this guard is unsatisfiable in the given context.

As a conclusion, let us remark that the first approximation leading to 0 ≤ t is necessary to the
full success of the second one.

4 A Lightweight Refinement Calculus in Coq
Our implementation in Coq reformulates Section 2 with more computational representations of
binary relations. Section 4.1 presents the representation change of impure computations, which
include abstract computations. Section 4.2 presents that of concrete ones. Finally, Section 4.3
presents our datatypes for correctness diagrams of abstract computations. Sections 4.1 and 4.3
also detail how the framework is adapted in order to handle alarms during the analysis.

4.1 Monadic Representations of Impure (and Abstract) Computations
In VPL, all computations involving oracles (including abstract computations) are “impure” – in
the sense defined in [13]. This section recalls the representation of impure computations from [13]
and links it their representation by relations from Section 2.

A relation R of R(A,B) can be equivalently seen as the function λx, {y |x R−→ y} of A→ P(B).
This curryfied representation is the basis of VPL representation for impure computations. Indeed,
this latter aims to provide a Coq representation of relations that can be turned into an Ocaml
function at extraction. To this end, type “P(B)” is axiomatized in Coq as type “ ??B” where
“ ??.” is a notation for the type transformer of may-return monads introduced in [13] and recalled
below. Hence, all impure computations of R(A,B) in Figure 2 are actually expressed in our Coq
development as functions of A→ ??B in a given may-return monad. Indeed, the interface of may-
return monads also allows to hide data-structure details – such as handling of alarms – for the
correctness proof of abstract computations. The next paragraphs detail these ideas.

Definition 2 (May-return monad) For any type A, type ??A represents impure computations
returning values of type A. Type transformer “ ??. ” is equipped with a monad [32] providing a
may-return relation [13].

• Operator �=A,B : ??A→ (A→ ??B)→ ??B encodes an impure sequence “letx = k1 in k2” as
“k1 �= λx, k2”.

17

c??A,A k1
c≡k2 , k1=k2 k c a , k=a cε a , a k1

c�= k2 , k2 k1

Figure 9: Identity implementation of the core monad

c??A , S → A→ S → Prop k1
c≡k2 , ∀s0,∀a,∀s1, k1 s0 a s1 ↔ k2 s0 a s1

k c a , ∃s0,∃s1, k s0 a s1
cε a , λs0, λa

′, λs1, a = a′ ∧ s0 = s1

k1
c�= k2 , λs0, λb, λs1, ∃a,∃s1, k1 s0 a s1 ∧ k2 a s1 b s2

Figure 10: A model of the core monad as big-steps over a global state S

• Operator εA : A→ ??A lifts a pure computation to an impure one.

• Relation ≡A: ??A → ??A → Prop is a congruence (w.r.t. �=) representing equivalence of
semantics between impure computations. Moreover, operator �= is associative and admits
ε as neutral element (w.r.t. ≡).

• Relation A: ??A→ A→ Prop, where “k a” means that “k may return a”. This relation
must be compatible with ≡A and satisfies the axioms

ε a1 a2 ⇒ a1 =a2 k1 �= k2 b ⇒ ∃a, k1 a ∧ k2 a b

Correspondence with Set Theory Notations of Section 2. Abstraction of set “P(A)” as
type “ ??A” is given by the following definitions:

??A,P(A) k1≡k2 , ∀x, x∈k1⇔x∈k2 k a , a∈k ε a , {a}

k1 �= k2 ,
⋃
a∈k1

(k2 a)

Conversely, for any may-return monad, a computation k of A → ??B represents a relation of
R(A,B) defined by d

k−→ d′ , k d d′. Given two abstract computations k1 and k2 in]D →
??]D, then “λx, (k1 x) �= k2” corresponds to a subrelation of “k1 · k2”. Actually, our Coq
implementation generalizes Section 2 when we compose abstract computations, because we use
operator “�=” instead of the less precise “·”.

Impure Computations of the Core May-return Monad. The VPL is parametrized by a
core may-return monad that axiomatizes external computations. This monad avoids a potential
unsoundness by expressing that external oracles are not pure functions, but encode relations. It
is instantiated at extraction by providing the identity implementation given in Figure 9.

Of course, this implementation of the core monad remains hidden for our Coq proofs: they
are thus valid for any instance of a may-return monad. As an example, big-step semantics of
imperative computations over a global state S induces such an instance, defined in Figure 10.
Actually, our Coq proofs are sound under the hypothesis that there exists a may-return monad
able to denote any typesafe Ocaml computation. But, formalizing the soundness of Coq-certified
code embedding untrusted Ocaml oracles through may-return monads is still an open issue: see
[4, 6].

Alarm Handling in the Analyzer. Our toy analyzer, specified in Figure 1, handles alarms
in the style of Verasco [17]. On a potential error, it does not stop its analysis, but writes an

18

w??A, c??(A×bool) k1
w≡k2 , k1

c≡k2 k w a , k c (a, true) wε a , cε (a, true)

k1
w�= k2 , k1

c�= λ(a1, l1), (k2 a1)c�=λ(a2, l2), cε (a2, l1∧ l2)

lift k , k c�= λa, cε (a, true) wwritema , cwritem c�= λ_, cε (a, false)

Figure 11: Alarm writer monad and its specific operators

alarm – represented here as a value of type alarm – and continues the analysis. Technically,
this corresponds to lifting the core monad through a writer monad transformer [21]. Actually,
we assume that the core monad has already an operation to write alarms cwrite : alarm →
c??unit, which is efficiently extracted as Ocaml external code. On the Coq side, our alarm
writer monad thus only encodes the underlying list of alarms as a boolean: true corresponds to
an empty list of alarms. It is defined in Figure 11 where alarm writer (resp. core) constructs are
prefixed by a “w” (resp. “ c”). The implementation of w means that the formal correctness of
abstract computations with at least one alarm holds trivially. Hence, on a †K diagram, an abstract
computation fails (i.e. produces no result) as soon as it produces an alarm. On the contrary, in
the actual implementation, it produces a result that may be used to find more alarms (without
formal guarantee on their meaning).

Figure 11 also defines operator liftA : c??A → w??A. Using lift, it is straightforward
to lift VPL abstract domains with computations in the core monad to abstract domains with
computations in the alarm writer monad. At last, operator wwriteA : alarm → A → w??A
encodes that wwritema writes alarm m and returns value a. It is invoked in the implementation
of †K commands that may fail: assert (operator “` .”) and loop (operator “.∗”).

For example, let us assume here that function]a¬c :]D → c??]D and function]v :]D →]D →
c??bool are VPL operators from the core monad corresponding to those of Figure 2. Operator
]`c, described in Figure 3, is implemented in the alarm writer monad by the function of type
]D → w??]D given below:

λ]d, (lift (]a¬c]d))w�= λ]d′,
(lift (]v]d′]⊥))w�= λb,
if b then wε]d else (wwrite "assert failure"]d)

In order to prove that operator]`c is correct w.r.t. its specification ` c, it suffices to prove the
property “]`c]d]d′ ⇒ γ(]d) ⊆ JcK∧]d =]d′”. The proof that this property implies a correct
abstraction of `c is independent of the underlying monad.

In summary, the alarm writer monad instantiates our notion of analyzer correctness into “if the
analyzer terminates without raising any alarm8, then the analyzed program has no runtime error”.
Thanks to our compositional design through monads, reasonings on alarm handling appear only in
the implementation of the alarm writer monad. Indeed, “raising an alarm” is logically equivalent
to a computation that never returns. Actually, Verasco also manages alarms through a writer
monad [17]. We have just shown that this feature is very easy to deal with in our framework.

4.2 Representation of Concrete Computations
We consider the issue of mechanizing refinement proofs of K computations. Definition of K in
Section 2.1 uses operators inspired from regular expressions. Formally, K embeds the Kleene
algebra9 of R(D,D): if K1 and K2 are in R(D,D), then K1 ;K2 = K1 · K2. However, K does

8Formally, the status “no alarm is raised” is given by the boolean of our alarm writer monad
9A Kleene algebra is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It

generalizes the operations known from regular expressions: the set of regular expressions over an alphabet is a free
Kleene algebra.

19

not satisfy itself all properties of a Kleene algebra. In particular, “ ;” has two distinct left-zeros ⊥
and . Thus, it has no right-zero. This forbids applying directly existing Coq tactics for Kleene
algebras[7].

Like in standard refinement calculus [1], we simplify refinement proofs by computations of
weakest-preconditions [11]. More exactly, we use weakest-liberal-preconditions (WLP) because
they appear naturally in correctness diagrams of abstract computations (illustrated by Figure 14
below). Fundamentally, this comes from the fact that weakest-liberal-preconditions do not aim
to ensure termination of programs – like our static analyzes – contrary to original weakest-
preconditions of Dijkstra.

Definition 3 (Weakest-liberal-preconditions) Given K ∈ R(D,D), the WLP of K, written
here [K], is a function of P(D)→ P(D) defined by

[K]P , {d ∈ D | ∀d′ ∈ D , d
K−→ d′ ⇒ d′ ∈ P}

To Simplify Refinement Goals by WLP. The main benefit of WLP is to propagate func-
tion computations through sequences of relations. Indeed, WLP transforms a sequence into a
function composition: [K1 ;K2]P = [K1]([K2]P). And, given f a function of type D → D,
[↑f]P = {d | f(d) ∈ P}. This allows for instance to compute [↑f1 ; ↑f2]P as {d | f2(f1(d)) ∈ P}.
To understand the benefit of WLP, let us compare this to the direct definition of “x K1 ;K2−−−−−→ z”. It
induces a formula with an existantial quantifier “∃y, x K1−−→ y∧ y �K2−−→ z”, which, when K1 is ↑f1, can
be simplified into a formula without existential quantifier “f1(x) K2−−→ z”. In a sense, WLP compu-
tations achieve such a simplification for free. Another benefit of WLP is to perform an implicit
normalization of computations, in the sense that [K]P = [↓K]P holds.

We embed WLP computations in refinement proofs using the equivalence between K1 v K2
and ∀P, [K2]P ⊆ [K1]P . We list below WLP of main guarded-commands:

[⊥]P = D []P = ∅ [ε]P = P

[`P ′]P = P ′ ∩ P [aP ′]P = (D \ P ′) ∪ P[⊔
a∈A

Ka

]
P =

⋂
a∈A

[Ka]P
[
l

a∈A
Ka

]
P =

⋃
a∈A

[Ka]P

The methodology of stepwise refinement relies on the fact that K1 v K2 implies K1 ;K v
K2 ;K and K ;K1 v K ;K2. While trying to prove these two properties only from WLP properties
above, we observe that the first one derives from ∀P, [K2]([K]P) ⊆ [K1]([K]P), itself implied by
K1 v K2. However, in order to prove the second one, we need to establish an additional property
on [K]: it is a monotone predicate transformer. This means that if P1 ⊆ P2 then [K]P1 ⊆ [K]P2.

A Shallow Embedding of WLP Computations. In the style of [3], we use a shallow em-
bedding of WLP computations, meaning that we avoid the introduction of abstract syntax trees
for K computations, which would induce many difficulties because of binders in

⊔
and

d
opera-

tors. Instead, we represent K computations directly as monotone predicate transformers. In other
words, our syntax for K guarded commands is directly provided by a given set of Coq operators
on monotone predicate transformers (corresponding to some WLP computations).

Actually, by exploiting type isomorphism P(D) → P(D) ' D → P(P(D)), we encode mono-
tone predicate transformers as functions D → P(D) where P is the monad of monotone predicates
of predicate (that we define below). Indeed, they are simpler and more general than monotone
predicate transformers: all composition operators of predicate transformers can be derived by
combining only atomic operators with the �= operator of monad P. For instance, in Figure 13,
the A-indexed meet operator of K is derived from the atomic operator

A
u of P.

Figure 12 sketches the Coq definitions of monad P. An element of type (PA) is a record
with two fields: a field app representing a predicate of P(P(A)), and a field app_monot that is a

20

Record P(A:Type) := {
app:> (A → Prop) → Prop;
app_monot (P Q:A → Prop): app P → (∀ d, P d → Q d) → app Q}.

k1
Pvk2 , ∀P, (k2 P)→ (k1 P)

Pε a , {app := λP, (P a)} k1
P�= k2 , {app := λP, (k1 λa, (k2 aP))}

P`P ′ , {app := λP, P ′ ∧ (P tt)} PaP ′ , {app := λP, P ′ → (P tt)}

A
t, {app := λP,∀a :A, (P a)}

A
u, {app := λP,∃a :A, (P a)}

Figure 12: Coq definitions for main operators of monad P

K , D → PD K1 v K2 , ∀d, (K1 d) Pv (K2 d)

↑f , λd, Pε (f d) K1 ;K2 , λd, (K1 d) P�= K2

`P ′ , λd, P`(P ′ d) P�= λ_, (Pε d) aP ′ , λd, Pa(P ′ d) P�= λ_, (Pε d)⊔
a:A

Ka , λd,
A
t P�= λa :A, (Ka d)

l

a:A
Ka , λd,

A
u P�= λa :A, (Ka d)

Figure 13: Coq definitions for main K operators

proof that app is monotone. Here, elements of (PA) are implicitly coerced into functions through
field app. In Figure 12, each record definition generates a proof obligation for the missing field
app_monot. Assert (resp. assume) operator of P monad is written P`P ′ (resp. PaP ′) where
P ′ is of type Prop. These operators are of type “P unit” where unit is a singleton type which
inhabitant is tt. Operators

A
u and

A
t are of type PA.

A Lightweight Formalization of K in Coq. Figure 13 illustrates how we derive guarded-
commands of K from operators of P monad.

With this representation change, a relation Q in R(D,D) is now embedded in K as Q ,⊔
d′∈Da{d | d

Q
−→ d′} ; d′. We can thus still express Hoare specifications (P,Q) of P(D) ×R(D,D)

by `P ;Q. Hence, we express unbounded iteration by a meet over inductive invariants as explained
in Section 2.1.

On the contrary to [3], we have not proved in Coq the properties of K algebra. On refinement
goals, we let Coq compute weakest-preconditions and simply solve the remaining goal with stan-
dard Coq tactics. This gives us well-automated proof scripts in practice. Thus, Coq code for K
operators (with P included) remains very small (around 150 lines, proofs and comments included).

4.3 Representations of Correctness Diagrams
The Coq definition of †K datatype, sketched in Figure 14, is actually parametrized by a structure
of may-return monad: abstract computations are functions of]D → ??]D. Here,]D equipped
with its operators (satisfying the interface given at Figure 2) is also a parameter of the definition.
Thus, our modular design allows to have abstract computations that do handle alarms, like in our
toy analyzer, or that do not, like in our linearization procedure. Indeed, in abstract interpreters,
detection of runtime errors (and handling of alarm) is generally done at the top-level interpreter

21

Record †K: Type := {
impl:]D →??]D; spec:K;
impl_correct : ∀]d]d′, (impl]d)]d′ → ∀d, d ∈ γ(]d)→ (spec d γ(]d′)) }.

Figure 14: Sketch of the Coq definition for †K datatype

of the analyzer, but not in the internal levels. Our notion of diagram can handle both cases in a
generic way.

Therefore, Figure 14 defines values of †K as triples with a field impl being an abstract com-
putation, a field spec being a concrete computation and a field impl_correct being a proof that
impl is correct w.r.t spec. Such proofs are simplified by applying together the WLP embedded
in spec and the WLP already designed by [13]. The latter indeed simplifies reasonings with
relation. At last, impl being the only informative10 field of †K record, type †K is extracted as
Ocaml type]D →]D. Similarly, a †K command is extracted exactly as its underlying abstract
computation. Here again, the Coq code for †K operators (diagrammatic proofs included) is small
(around 200 lines, without the implementation of the alarm writer monad).

5 Conclusion & Perspectives
We extended the VPL with certified handling of non-linear multiplications by a modular and
novel design. Our computations are performed by an untrusted oracle delivering a certificate
to a certified front-end. Our proofs use diagrammatic constructs based on stepwise refinement
calculus. Refinement proofs are finally made clear and concise by the computations of Weakest-
Liberal-Preconditions.

Our linearization procedure is able to give a fast over-approximation of integer polynomials
thanks to variable intervalization. The precision is increased by domain partitioning (implicitly
done with a Continuation-Passing-Style design) and the dynamic computation of bounding affine
terms, enabling to finely tune the precision-versus-efficiency trade-off in the oracle.

Because floating arithmetic requires to explicitly handle error terms at each operation, VPL
does not currently support floating points variables, and our linearization neither. Most non-linear
arithmetic used in real-life programs involve floating points. Therefore, it is hard to evaluate our
method on real-life programs. Hence, our experiments are limited to small handmade examples
inspired by polynomials often encountered in real-life code, such as parabola or barycentres. On
these cases, our oracle is able to give much more precise approximations than the Verasco interval
domain.

Our linearization procedure needs also to be extended with others arithmetic operators like
integer division and integer modulo. A simple approach in this direction would: 1) replace each
call to these operators by a fresh temporary variable; 2) express the meaning of these operations
as non-deterministic assignments of their corresponding variables, using only polynomials, i.e. if
t1 and t2 are positive then q := t1/t2 is replaced by q :∈ {x | t1 − t2 < x× t2 ≤ t1}; 3) eliminate
temporary variables out of approximated guards. The VPL already provides the bricks for such
an approach.

At last, we certified a toy analyzer from big-steps semantics of Figure 1, by interpreting the
operators of concrete semantics in abstract semantics, according to the correspondence of Figure 3.
We detailed how this toy analyzer handles alarms in the style of Verasco. This could give some
hints to adapt Jourdan’s framework for Verasco [17] with impure operators on abstract domains
and some dynamic strategies of trace partitioning.

10In Coq jargon, something is “informative” if it is “not a piece of proof” (thus, it remains at extraction).

22

References
[1] Back, R.J., von Wright, J.: Refinement calculus - a systematic introduction. Graduate texts

in computer science. Springer (1999)

[2] Besson, F., Jensen, T.P., Pichardie, D., Turpin, T.: Certified result checking for polyhedral
analysis of bytecode programs. In: TGC, pp. 253–267 (2010)

[3] Boulmé, S.: Intuitionistic Refinement Calculus. In: TLCA, LNCS, vol. 4583. Springer (2007)

[4] Boulmé, S.: What is the Foreign Function Interface of the Coq Programming Language?
Talk at the Coq Workshop 2018 (2018). URL https://coqworkshop2018.inria.fr/files/
2018/07/coq2018_talk_boulme.pdf

[5] Boulmé, S., Maréchal, A.: Refinement to Certify Abstract Interpretations, Illustrated on
Linearization for Polyhedra. In: ITP, LNCS, vol. 9236. Springer (2015)

[6] Boulmé, S., Maréchal, A.: Toward Certification for Free! Preprint on HAL (2017). URL
https://hal.archives-ouvertes.fr/hal-01558252

[7] Braibant, T., Pous, D.: Deciding Kleene Algebras in Coq. Logical Methods in Computer
Science 8(1) (2012)

[8] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. TCS 277(1-2) (2002)

[9] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL. ACM (1977)

[10] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL. ACM (1978)

[11] Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM 18(8), 453–457 (1975)

[12] Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Computer Aided
Geometric Design 29(6) (2012)

[13] Fouilhé, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract domains. In:
VSTTE, LNCS, vol. 8471. Springer (2014)

[14] Fouilhé, A., Monniaux, D., Périn, M.: Efficient Generation of Correctness Certificates for the
Abstract Domain of Polyhedra. In: SAS, vol. 7935. Springer (2013)

[15] Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In:
TPHOL, LNCS, vol. 3603, pp. 98–113. Springer (2005)

[16] Handelman, D.: Representing polynomials by positive linear functions on compact convex
polyhedra. Pacific Journal of Mathematics 132(1) (1988)

[17] Jourdan, J.H.: Verasco: a Formally Verified C Static Analyzer. Theses, Universite Paris
Diderot-Paris VII (2016). URL https://hal.archives-ouvertes.fr/tel-01327023

[18] Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C static
analyzer. In: POPL. ACM (2015)

[19] Laporte, V.: Verified static analyzes for low-level languages. Theses, Université Rennes 1
(2015). URL https://tel.archives-ouvertes.fr/tel-01285624

[20] Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7)
(2009)

23

https://coqworkshop2018.inria.fr/files/2018/07/coq2018_talk_boulme.pdf
https://coqworkshop2018.inria.fr/files/2018/07/coq2018_talk_boulme.pdf
https://hal.archives-ouvertes.fr/hal-01558252
https://hal.archives-ouvertes.fr/tel-01327023
https://tel.archives-ouvertes.fr/tel-01285624

[21] Liang, S., Hudak, P.: Modular denotational semantics for compiler construction. In: ESOP,
vol. 1058, pp. 219–234. Springer (1996)

[22] Maréchal, A.: New algorithmics for polyhedral calculus via parametric linear programm ing.
Ph.D. thesis, Université Grenoble Alpes (2017)

[23] Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approximation of
multivariate polynomials using Handelman’s theorem. In: VMCAI, pp. 166–184 (2016)

[24] Maréchal, A., Périn, M.: Three linearization techniques for multivariate polynomials in static
analysis using convex polyhedra. Tech. Rep. TR-2014-7, Verimag Research Report (2014)

[25] Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers.
In: ESOP’05, LNCS, vol. 3444 (2005)

[26] Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In:
VMCAI, LNCS, vol. 3855. Springer (2006)

[27] Morgan, C.: Programming from specifications, 2nd Edition. Prentice Hall International series
in computer science. Prentice Hall (1994)

[28] Moscato, M.M., Muñoz, C.A., Smith, A.P.: Affine arithmetic and applications to real-number
proving. In: ITP, LNCS, vol. 9236. Springer (2015)

[29] Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic Computation 6(3-4)
(1993)

[30] Spiwack, A.: Abstract interpretation as anti-refinement. CoRR abs/1310.4283 (2013). URL
http://arxiv.org/abs/1310.4283

[31] The Coq Development Team: The Coq proof assistant reference manual – version 8.4. INRIA
(2012-2014)

[32] Wadler, P.: Monads for functional programming. In: AFP, LNCS, vol. 925. Springer (1995)

24

http://arxiv.org/abs/1310.4283

	Introduction
	A Certified Linearization for the Abstract Domain of Polyhedra
	Refinement to Certify Computations on Abstract Domains
	Overview of our Refinement Calculus
	Comparison with Related Works
	Overview of the Paper

	A Refinement Calculus for Abstract Interpretation
	Stepwise Refinement of Concrete Computations
	Composing Diagrams to Certify Abstract Computations
	Higher-order Programming with Correctness Diagrams

	Interval-based Linearization Strategies for Polyhedra
	Our List of Interval-Based Strategies
	Design of Our Implementation

	A Lightweight Refinement Calculus in Coq
	Monadic Representations of Impure (and Abstract) Computations
	Representation of Concrete Computations
	Representations of Correctness Diagrams

	Conclusion & Perspectives

