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Abstract

Our concern is the modular development of a certified static analyzer in the CoqQ proof
assistant. We focus on the extension of the Verified Polyhedra Library — a certified abstract
domain of convex polyhedra — with a linearization procedure to handle polynomial guards.
Based on ring rewriting strategies and interval arithmetic, this procedure partitions the vari-
able space to infer precise affine terms which over-approximate polynomials.

In order to help formal development, we propose a proof framework, embedded in CoQ,
that implements a refinement calculus. It is dedicated to the certification of parts of the
analyzer — like our linearization procedure — which correctness do not depend on the imple-
mentation of the underlying certified abstract domain. It allows to hide for proofs several
low-level aspects of the computations on abstract domains. In particular, it safely hides that
computations on abstract domains may use hints from external untrusted imperative ora-
cles (e.g. a linear programming solver). Moreover, refinement proofs are naturally simplified
thanks to computations of weakest preconditions.

Using our refinement calculus, we also elegantly describe our partitioning procedure using
a continuation-passing style, thus avoiding an explicit datatype of partitions. This illustrates
that our framework is convenient to prove the correctness of such higher-order abstract com-
putations.

Keywords: Proof Assistants, Result Certification, Abstract Interpretation.

Acknowledgements This work was partially supported by French Agence Nationale de la
Recherche under the VERASCO project (INS 2011) and by the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
nr. 306595 “STATOR”.

We thank Alexis Fouilhé, Michaél Périn, David Monniaux and the other members of the VERASCO
project for their continuous feedback all along this work.


{sylvain.boulme,alex.marechal}@imag.fr
http://www.agence-nationale-recherche.fr
http://www.agence-nationale-recherche.fr
http://verasco.imag.fr/
http://erc.europa.eu/
http://stator.imag.fr

1 Introduction

This paper presents two contributions: first, a certified linearization procedure for a certified
abstract domain of convex polyhedra; second, a refinement calculus to help in mechanizing this
proof in Coq [26]. We detail below the context and the features of these two contributions.

1.1 A Certified Linearization for the Abstract Domain of Polyhedra

We consider the certification of an abstract interpreter, which aims to ensure absence of undefined
behaviors such as division by zero or invalid memory access in an input source program. This
analyzer computes for each program point an invariant: a property that the state at that point
must satisfy in all executions. Such invariants belong to datatypes called abstract domains [8]
which are syntactic classes of properties on memory states. For instance, in the abstract domain
of convex polyhedra [9], invariants are conjunctions of affine constraints written ), a;x; < b where
a;,b € Q are scalar values and z; are integer program variables. This domain is able to capture
relations between program variables (e.g. 42 < y+x —2z). However, it cannot deal directly with
non-linear invariants, such as #2 — y? < x x y. This is why linearization techniques are necessary
to analyze programs with non-linear arithmetic.

Our certified linearization procedure is based on intervalization [22]. It consists in replacing
some variables of the nonlinear products by intervals of constants. For instance in Example 1,
variable x is replaced by interval [0,10] in assignment 7 := z.(y — z) + 10.z. The interval is then
eliminated by analyzing the sign of y — z, leading to affine constraints usable by the polyhedra
domain.

Example 1 (Intervalization using a sign-analysis) In any state where x €0, 10], assignment
“r:=x.(y — z) + 10.27 is approximated by the affine program below. Here operator :€ performs
a non-deterministic assignment.

if y—22>0 then r:€[10.2,10.y] else r:€[10.y,10.2]

Our linearization procedure is now part of the Verified Polyhedra Library (VPL) [12, 13],
which provides a certified polyhedra domain to VERASCO [16], a certified abstract interpreter
for CoMPCERT C [17]. Following a design proposed in [2], the VPL is organized as a two-
tier architecture: an untrusted oracle, combining OcAML and C code, performs most complex
computations and outputs a Farkas certificate used by a certified front-end to build a correct-
by-construction result. As oracles may have side-effects and bugs, they are viewed in CoQ as
non-deterministic computations of an axiomatized monad [12].

Built on a similar design, our linearization procedure invokes an untrusted oracle that selects
strategies for linearizing an arithmetic expression and produces a certificate that is checked by
the certified part of the procedure. It leads to a correct-by-construction over-approximation of
the expression. It is convenient to see such strategies as program transformations, because their
correctness is independent from the implementation of the underlying abstract domain and is
naturally expressed using concrete semantics of programs [20]. Indeed, a linearization is correct
if, in the current context of the analysis, any postcondition satisfied by the output program is also
satisfied by the input one (see Example 1). In such a case, we say that the input program refines
the output one. This paper aims to explain how refinement helps to develop certified procedures
on abstract domains, and in particular our linearization algorithm.

1.2 Refinement to Certify Computations on Abstract Domains

Program refinement [1] consists in decomposing proofs of complex programs by stepwise applica-
tions of correctness-preserving transformations. We provide a framework in CoQ to apply this
methodology for certifying the correctness of computations combining operators of an existing
abstract domain. Our framework defines a Guarded Command Language (GCL) called K that
contains these operators. A computation 'K in 1K comes with two types of semantics: an abstract




and a concrete one. Concrete semantics of K is a transformation on memory states. Abstract
semantics of 'K is a transformation on abstract states, i.e. on values of the abstract domain. A K
computation also embeds a proof that abstract semantics is correct w.r.t. concrete one: each K
operator thus preserves correctness by definition. Moreover, an OCAML function is extracted from
abstract semantics, which is certified to be correct w.r.t. concrete semantics. Hence, concrete
semantics of TK acts as a specification which is implemented by its abstract semantics. In the fol-
lowing, a transformation on abstract (resp. memory) states is called an abstract (resp. concrete)
computation.

Taking a piece of code as input, our linearization procedure outputs a K computation. Its
correctness is ensured by proving that concrete semantics of its input refines concrete semantics
of its output. This means that the output does not forget any behaviour of the input. Our
procedure being developed in a modular way from small intermediate functions, its proof reduces
itself to small refinement steps. Each of these refinement steps involves only concrete semantics.
Our framework provides a tactic simplifying such refinement proofs by computational reflection of
weakest-preconditions. The correctness of abstract semantics w.r.t. concrete semantics is ensured
by construction of K operators.

Our framework supports impure abstract computations, i.e. abstract computations that invoke
imperative oracles giving them hints to build their certified results. It also allows to reason
conveniently about higher-order abstract computations. In particular, our linearization procedure
uses a Continuation-Passing-Style (CPS) [24] in order to partition its analyzes according to the
sign of affine sub-expressions. For instance in Example 1, the approximation of the non-linear
assignment depends on the sign of y — z. In our procedure, CPS is a higher-order programming
style that avoids introducing an explicit datatype handling partitions: this simplifies both the
implementation and its proof. This also illustrates the expressive power of our framework, since a
simple Hoare logic does not suffice to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of linearization strate-
gies: it could be applied for any part of the analyzer that combines computations of existing
abstract domains. In particular, the top-level interpreter of the analyzer could also be proved
correct in this way. Indeed, the interpreter invokes operations on abstract domains in order to
over-approximate any execution of the program, but its correctness does not depend on abstract
domains implementations (as soon as these implementations are themselves correct). We illustrate
this claim on a toy analyzer, also implemented in COQ.

1.3 Comparison with Related Works

The mathematics involved in our refinement calculus, relating operational semantics to the lattice
structure of monotone predicate transformers, are well-known in abstract interpretation theory [7].
In parallel with our work, the idea to use a refinement calculus in formal proofs of abstract
interpreters was proposed in [25]. Therefore, our contribution is more practical than theoretical.
On the theoretical side, we propose a refinement calculus dedicated to certification of impure
abstract computations. On the practical side, we show how to get a concise implementation of
such a refinement in CoQ and how it helps on a realistic case study: a linearization technique
inspired from [22] within the abstract interpreter VERASCO.

There are alternatives to what we implemented for computing polyhedral approximations of
semi-algebraic sets. Let us briefly compare them with intervalization. A linearization procedure
based on Handelman representation of polynomials [15] has also been implemented in the VPL [19].
It is more precise than intervalization, but at a high cost: it requires to solve parametric linear
problems and to choose a list of candidate products among the input polyhedron constraints.
Albeit powerful, Handelman’s linearization does not scale properly for large polynomials and
polyhedra, this is why we need a cheaper algorithm such as intervalization. Another precise
approach consists in converting the polynomial into Bernstein’s basis and extract the generators
of the resulting polyhedron from the polynomial’s coefficients [11]. Like Handelman’s linearization,
it offers a tunable precision: either by partitioning the variable space or by elevating the degree
of the Bernstein’s basis considered. However, in order to ease the certification, the VPL uses a



constraint-only representation of polyhedra. Using Bernstein’s linearization would thus involves
costly conversions from constraints into generators, and backwards.

There are also linearizations dedicated to other target domains. For instance, a PVS decision
procedure for arithmetic that uses affine forms instead of polyhedra has been proven in PVS [23].
In their approach, affine approximations of polynomials are combined with partitioning through a
branch-and-bound algorithm. The expressiveness of affine forms is strictly between intervals and
polyhedra, but our linearization procedure would probably be greatly improved by incorporating
their techniques.

1.4 Overview of the Paper

Our refinement calculus is implemented in only 350 lines of CoQ (proof scripts included), by a
shallow-embedding of our GCL 'K which combines computational reflection of weakest-precondi-
tions [10] with monads [27]. However, it can be understood in a much simpler setting using binary
relations instead of monads and weakest-preconditions, and classical set theory instead of CoQ.

Section 2 introduces our refinement calculus in this simplified setting, where computations are
represented as binary relations. Section 3 presents our certified linearization procedure and how its
proof benefits from our refinement calculus. Section 4 explains how we mechanize this refinement
calculus in CoQ by using smart encodings of binary relations introduced in Section 2.

This paper is intended to be self-contained. Assuming that the reader is familiar with higher-
order logic, big-step semantics and Hoare logic, it attempts to introduce as simply as possible
all other notions: refinement, abstract interpretation, convex polyhedra, monads and weakest-
preconditions. A less detailed version of this paper has been published in [5]. Our CoqQ sources
are available on [4].

2 A Refinement Calculus for Abstract Interpretation

We consider an analyzer correct if and only if it rejects all programs that may lead to an error state.
Due to lack of precision, it may also reject safe programs. Section 2.1 defines the notion of error
state and semantics of concrete computations, which combines big-steps operational semantics
with Hoare Logic. After introducing the notion of abstract computation and its correctness w.r.t.
a concrete computation, Section 2.2 presents our refinement calculus. Section 2.3 shows how to
apply refinement to the certification of higher-order abstract computations.

Notations on Relations. Although our formalization is in the intuitionistic type theory of
CoqQ without axioms, the paper abusively uses more common notations of classical set theory. In
particular, we identify type A — Prop of predicates on A with set P(A). Hence, we define the set
of binary relations on A x B by R(A, B) £ P(A x B). Given R of R(A, B), we note z % y instead
of (z,y) € R. We use operators on R(A, A) inspired from regular expressions: ¢ is the identity
relation on A, Ry - Ry means “relation Ry composed with Ry” (i.e. BBy 2 Jy,x By YAy b 2)
and R* is the reflexive and transitive closure of R. Through all the paper, A — B is a type of
total functions.

2.1 Stepwise Refinement of Concrete Computations

Given a domain D representing the type of memory states, we add a distinguished element 4 to
D in order to represent the error state: we define D; £ D W {4}.

Concrete Computations With Runtime Errors. We define the set of computations on
memory states, called here concrete computations, as K £ R(D, D). Hence, an element K of K
corresponds to a (possibly) non-deterministic or non-terminating computation from an input state
of type D to an output state of type D,. Typically, the empty relation represents a computation
that loops infinitely for any input. It also represents unreachable code (i.e. dead code).



In the following, an input d € D is said to be erroneous for a concrete computation K if and
only if d X 4. Informally, we consider that an abstract computation is correct w.r.t. a concrete
computation K at two conditions: first, it overapproximates the set of erroneous inputs of K as a
set E; second, for each input of D\ E, it overapproximates the set of its related outputs through K.
Section 2.2 formalizes this idea. Before that, we introduce structures on concrete computations in
order to use them as specifications of abstract computations.

Refinement Pre-order. Given K; and K5 in K, we say that “K refines Ko” (written K1 C Ko)
if, informally, each abstract computation correct for K is also correct for K7. Let us now formalize
this refinement relation.

First, we introduce |K the normalization of K that returns any output for erroneous inputs. It

is defined by d Woye (d L avat 4). Informally speaking, “adding” some outputs on erroneous
inputs of K does not change the set of abstract computations that are correct w.r.t. K. In other
words, an abstract computation is correct for K if and only if it is correct w.r.t. JK.

Then, we define Ky C Ky as Ky CJKs (or equivalently, | K7 CJ]K>). Relation C is called
refinement and is a pre-order on K. The equivalence relation = associated with this pre-order is
given by K; = K iff |[K; =]Ks.

Hoare Specifications. Hoare logic is a standard and convenient framework to reason about
imperative programs. Let us explain how computations in K are equivalent to specifications of
Hoare logic. A computation K corresponds to a Hoare specification (px, qx) of P(D) x R(D, D),
where pg is a precondition ensuring the absence of error, and gx a postcondition relating the input
state to a non-error output state!. They are defined by px 2 D\{d | d ™ 4} and qx £ KN(Dx D).
Conversely, any Hoare specification (P, Q) corresponds to a computation - P; @Q — defined below
— such that K =Fpg; qx. Moreover, the refinement pre-order K; = K5 is equivalent to the usual
refinement of specifications in Hoare logic, which is px, C pr, A g, N (pr,xD) C gk, -

Algebra of Guarded Commands. Initially proposed by [10], guarded commands are also
equivalent to Hoare specifications, but with an algebraic style, more suited for the methodology of
stepwise refinement[1]. Inspired by this latter, we equip K with an algebra of guarded commands.?
It combines a complete lattice structure with operators inspired from regular expressions. Here,
we present this algebra in our simplified setting, where K is defined as R(D,D;). Our CoqQ
implementation, described in Section 4.2, has a different representation of K in order to mechanize
refinement proofs.

First, the complete lattice structure of K (for pre-order C) is given by operator M defined as
“N after normalization” (i.e. [, K; £ (), }K;) and by operator U defined as U. In our context,
LI represents alternatives that may non-deterministically happen at runtime: the analyzer must
consider that each of them may happen. Symmetrically, M represents some choice left to the
analyzer. Empty relation ) is the bottom element and is noted L. Relation Dx{4} is the top
element. Given d € D,, we implicitly coerce it as the constant relation Dx{d}. Hence, the top
element of the K lattice is simply noted 4. The notation 1f explicitly lifts function f of D — D
in K.

Given a relation K € R(D, D;), we define its lifting 1K in R(D;,D;) by 1K £ KU{(4,4)}.
This allows us to define the sequence of computations by K7 ; Ko £ K,-1K>,, and the unbounded
iteration of this sequence (i.e. a loop with a runtime-chosen number of iterations) by

K* 2 (IK)" (D x Dy)

Given a predicate P € P (D), we define the notion of assumption (or guard) as P = (PxD)MMe.
Informally, if P is satisfied on the current state then - P skips like €. Otherwise, 4 P produces

L A postcondition is thus in (DxD) instead of the original P(D): this standard generalization avoids introducing
“auxiliary variables” to represent the input state.

2However, in our algebra, C corresponds to “refines”, whereas in standard refinement calculus it dually corre-
sponds to “is refined by”. Actually, our convention follows lattice notations of abstract interpretation.



no output like L. We also define the dual notion of assertion as P 2 (4=P; ) Ue. If P is not
satisfied on the current state, then - P produces an error. Otherwise, it skips.

With these operators, K provides a convenient language to express specifications: any Hoare
specification (P, Q) of P(D) x R(D, D) is expressed as the computation - P; Q). Moreover, refine-
ment allows to express usual Verification Conditions (VC) of Hoare Logic. For our toy analyzer —
described later — we use the usual partial correctness VC of unbounded iteration: K* is equivalent
to produce an output satisfying every inductive invariant I of K.

K* = FI;DxI
Ie{I€P(D)| K CH;DxI}
In this equivalence, the C-way corresponds to the soundness of the VC, whereas the J-way cor-
responds to its completeness. In our context, such a soundness proof typically ensures that the
specification of an abstract computation is refined by concrete semantics of the analyzed code. It
guarantees that the analysis is correct w.r.t. semantics of the analyzed code.

Example on a Toy Language. Let ¢t stands for an arithmetic term and ¢ be a condition over
numerical variables, whose syntax is ¢ ::=t; I ta | =¢ | c1 Ace | ¢1Veg with e {=,#, <, >, <, >},
Semantics [t] of ¢ and [c] of ¢ work with a domain of integer memories D £ V — Z where V is the
type of variables. Hence, [t]€ D — Z and [¢] € P(D). We omit their definition here.

Let us now introduce a small imperative programming language named S for which we will
describe a toy analyzer in Section 2.2. The syntax of a S program s is described on Figure 1
together with its big-steps semantics [[s] defined as an element of K. This semantics is defined
recursively on the syntax of s using guarded commands derived from K. First, we define 4c £-4[c]
and Fc 2k [¢]. We also use command “z := t” defined as tAd.d[z := [t](d)], where the memory
assignment noted “dfx := n]” — for d € D, x € V and n € Z — is defined as the function
Az':V,if 2’ = zthennelsed(z’).

s || assert(c) |zt | s1;s2 | if(c){sl}e[;se]]{@} | while(c){s}
= s1] 5 [s el e;[s)* 5 H-e
N e S N eI

Figure 1: Syntax and concrete semantics of S

At this point, we have defined an algebra K of concrete computations: a language that we use to
express specifications — for instance, in the form of Hoare specifications — on abstract computations.
This algebra also provides denotations for defining big-steps semantics (like in Figure 1). Hence,
K is aimed at providing an intermediate level between operational semantics of programs and
their abstract interpretations. The next section defines how we certify correctness of abstract
computations w.r.t. K computations.

2.2 Composing Diagrams to Certify Abstract Computations

Rice’s theorem states that the property d K & is undecidable. In the theory of abstract interpreta-
tion, we approximate K by a computable (terminating) function *K working on an approximation
D of P(D). Set *D is called an abstract domain and it is related to (D) by a concretization
function v : ¥D — P (D). Function *K is called an abstract interpretation (or abstract computation)
of K. This paper considers two abstract domains, intervals and convex polyhedra, associated with
the concrete domain D £V — Z involved in Figure 1.

1. Given Zy, 2 Z W {—00,+oc}, an abstract memory “d of the interval domain is a finite map
associating each variable z with an interval [ay, b;] of Zoo X Zso. Its concretization is the set
of concrete memory states satisfying the constraints of i, i.e.

v(*d) £ {d € D|Vz,a, < d(z) <b,}



2. The concretization of a convex polyhedron fd = N > j@ijTj < b;, where a;;’s and b;’s are
rational constants and x;’s are integer program variables, is

v(d) £ {de D | /\ Zaz‘j-d(l‘j)ébz‘}

Correctness Diagrams of Impure Abstract Computations. Our framework only deals
with partial correctness: we do not prove that abstract computations terminate, but only that they
are a sound over-approximation of their corresponding concrete computation. Moreover, abstract
computations may invoke untrusted oracles, whose results are verified by a certified checker. A
bug in those oracles may make the whole computation non-deterministic or divergent. Thus, it
is potentially unsound to consider abstract computations as pure functions. In this simplified
presentation of our framework, we define abstract computations as relations in K £ R(*D, D).
In order to extract abstract computations from CoQ to OCAML functions, we will improve this
representation of abstract computations in Section 4.1.

We express correctness of abstract computations through commutative diagrams represented
on the right hand side and defined as follows.

Definition 1 (Correctness of abstract computations) An abstract computation 'K of K is
correct w.r.t. a concrete computation K of K iff
Vid,*d' € *D, Vd € D,Vd' € Dy,

b ——— 4

WE A daBd A de (i) = deqd) , N

~

d——4d

Note that d’ € v(%d’) implies itself that d’ # 4 because 4 is
not in the image of ~.

Such a diagram thus corresponds to a pair of an abstract and a concrete computation, with
a proof that the abstract one is correct w.r.t. the concrete one. As illustrated on the example
below, these diagrams allow to build compositional proofs that an abstract computation, composed
of several simpler parts, is correct w.r.t. a concrete computation. Diagrams are indeed preserved
by several composition operators, and also by refinement of concrete computations.

As an example, consider two abstract com- & &
putations K, and YK, that are correct w.r.t.

concrete K1 and K5. In order to show that IYJ K ’YK v
the sequential composition K5 - 1K is correct Ly 2
w.r.t. concrete K, it suffices to prove that _ _
K C K ; K, as illustrated on the right hand _J KEK Ky —
side scheme. Tv

In the following, we introduce a datatype noted K to represent these diagrams: a diagram
K € 'K represents an abstract computation K which is correct w.r.t. its associated concrete
computation K. The core of our approach is to lift guarded-commands on K involved in Figure 1
as guarded-commands on K. For instance, our toy analyzer ¥s] for s in S is defined similarly to
[s] of Figure 1, but from 'K operators instead of K ones. For a given diagram 'K, we can prove the
correctness of an abstract computation #K w.r.t. a concrete computation K’ simply by proving that
K' C K. In practice, such refinement proofs are simplified using a weakest-liberal-precondition
calculus (see Section 4.2).

Our Interface of Abstract Domains. We derive our guarded-commands on 'K in a generic
way from the VPL interface® of abstract domains, reformulated here on Figure 2. Besides its con-
cretization function v, an abstract domain #D provides constants fT and %L, representing respec-
tively predicate true and false. It also provides abstract computations ¢ and z%=t of R(*D, D),

3This interface differs from VERASCO’s one because it allows impure operators. Coercing an abstract domain
into a VERASCO one thus remains to assume that the underlying oracles are observationally pure [12].



which are respectively correct w.r.t. concrete computations 4¢ and x := t. It provides operator 1
of R(*!Dx!D, D), which over-approximates the binary union on P(D). At last, it provides inclusion
test i= of R(*Dx*D, bool).

D CH(*T) y(tL) C 0 A8 = () N o] C ()
M= A d e y(td) = dlz = [t](d)] € (i)

#
(%dy, *dy) M = v(%dy) U~y (fdy) € (') (tdy, *dy) = true = y(idy) C y(idy)

Figure 2: Correctness specifications of our abstract domains

Abstract Computations of Guarded-commands. As explained above, we lift each K guar-
ded-command appearing in Figure 1 into a 'K guarded-command. This lifting is detailed on
Figure 3: a K operator has the same notation than its corresponding K operator and maps it
to an abstract computation of K. The diagrammatic proof relating them is straightforward from
correctness specifications given on Figure 2. We now detail the ideas behind this mapping.

Concrete commands - ¢ and x := t are trivially associated with ¢ and z:=t. Concrete
command K; ; K is associated with " ﬁng — where qug returns f1 if the current abstract state
is included in L, or runs #K5 otherwise. Concrete K U K5 is lifted by applying operator I to the
results of 'K and K.

Concrete assertion F ¢ is associated with checking that the result of H—c is included in *L:
otherwise, the abstract computation fails. In our refinement proofs of abstract computations, “to
fail” means “to give no result”. Hence, concrete 4 is associated with abstract computation @) (and
concrete | is associated with M). However, for our implementation of abstract computations
in Section 4.1, “to fail” means “to raise an alarm for the user”. In other words, our notion of
correctness on abstract computations only gives some guarantee when no alarm is raised. In our
proofs, we do not make distinction between an abstract computation that raises an alarm and an
one that diverges.

At last, concrete K* is associated with an abstract computation that invokes an untrusted
oracle proposing an inductive invariant fd; of ¥K for the current abstract state. Thus, using
inclusion tests, {K*) checks that fd; is actually an inductive invariant (otherwise, it fails), before
returning it as the output abstract state.

K Spec. in K | Impl. in K
e e He
r:=t x:=t ah=t
1
TKl;TKQ Kl;KQ Kl.{(udl,ﬁdg) ‘ E'b, (ﬂdhﬂj_)_;)b

#
A if b then %y = 11 else ¥, JEiEY fda}
# #
UK || Ky UK, | {8, | 3y, Fdo, 25ty A 2300, A (M, He) 2 10)

bt
e e (', %) | 34,8 225 5 A (8, 8L) S true)
* ki f
U K* (td,'d;) | (4, %d;) S true A I, 1d 5t A (U, 4;) S true)

Figure 3: Guarded-commands of 'K involved in S analysis

2.3 Higher-order Programming with Correctness Diagrams

Our linearization procedure detailed in Section 3.2 illustrates how we use GCL 'K as a programming
language for abstract computations. GCL K is our specification language. Each program 'K of



K is associated with a specification K of K syntactically derived from its code through mapping
of Figure 3 and Figure 4. Indeed, Figure 4 details two other operators of K invoked by our
linearization procedure. First, operator (cast 'K K') casts a diagram 'K to a given specification
K': it requires K’ T K in order to produce a new valid 'K diagram. This cast operator thus
leads to a modular design of the certified development since it allows stepwise refinement of K
diagrams. Second, operator (7>=¢q7g) — where, for a given type A, 7 is of type R(*D, A) and Tg
of type A — 'K — binds the results of 7 to fg. This operator requires a concrete postcondition @Q
of A — P(D) on the results of 7 (see Figure 4).

K H Spec. in K ‘ Impl. in &K ‘ Under precondition
cast K K' || K’ K K'CK
g xT
ni>=0Tg M, FQxigx | {(*di,%ds) | Iz, *dy Bz Ay 25 o) | VM,V € A,
W5 e =) CQu

Figure 4: 'K operators that generates proof obligations

More specifically, Section 3.2 applies our refinement calculus to certify higher-order abstract
computations. Indeed, our linearization procedure partitions abstract states in order to in-
crease precision. Continuation-Passing-Style (CPS) [24] is a higher-order pattern that provides a
lightweight and modular style to program and certify simple partitioning strategies. Let us now
detail this idea.

Given an abstract state i, our linearization procedure invokes a sub-procedure ff that splits
“d into a partition (%;);e; and computes a value r; (of a given type A) for each cell ;. Then, the
linearization procedure continues the computation from each cell (r;,%;) to finally return the join
of all cells. In other words, from d, *f computes (74, d;);c;. The main procedure finally computes
u|_|ie I(ﬁg 7; %d;) — where g is a given function of A — *K. In order to avoid explicit handling of
partitions, we make fg a parameter of ff to perform the join inside #f. In this style, f is of type
(A — K) — K and the parameter g of f is called their continuation.

However, specifying directly the correctness of computations that use CPS is not obvious
because of the higher-order parameter. Actually, we define Tf of type (4 — 'K) — 'K and
work with a continuation fg of type A — K. This allows us to specify CPS abstract computations
w.r.t. CPS concrete computations. An example of such a specification is detailed later in Figure 7.
Therefore, we keep implicit the notion of partition, both in specification and in implementation.

Similarly, CPS allows to implement strategies of trace partitioning without requiring an actual
trace partitioning domain [21]. Trace partitioning is a framework to manage partitioning in ab-
stract interpretation, which corresponds to dynamically partition the set of all possible execution
traces of the analyzed program in order to improve accuracy. Controlling the partitioning process
is motivated by the fact that (*K; - *K3)U(*Ky - FK3) T (*K 1 10%K,) - K3, but the opposite inclusion
does not hold. Hence, the left side is more precise whereas the right one is faster, as computation
K5 is factorized. In practice, trace partitioning strategies select one of these two alternatives
according to information of the current abstract state. The trace partitioning domain of [21]
provides a functor able to extend a given abstract domain with partitioning management. More
modestly, CPS allows to select some trace partitioning strategy at each function call through the
choice of its continuation. For instance, we define 'f = g, (TgTK;) U (Tg TK;). Then, the precise
alternative derives from Tf ATK, ('K ; TK3) whereas the fast one derives from (Tf AK, 1K) ; K.

3 Interval-based Linearization Strategies for Polyhedra
The VPL works with affine terms given by the abstract syntax t :=n | | t; + t3 | n.t where x

is a variable and n a constant of Z [12]. We now extend VPL operators of Figure 2 to support
polynomial terms, where the product “n.t” is generalized into “¢; X t3”.
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(a) Constant intervalization (b) Focusing & affine intervalization

Figure 5: Two intervalizations of (3.z — 15) x (4.« — 3) with = € [3,10]

The VPL derives assignment operator %= from guard and two low-level operators: projection
and renaming. It also derives the guard operator from a restricted one where conditions have the
form 0 > ¢ with e {<,=,#}. Hence, we only need to linearize the restricted guard H0 > p,
where p is a polynomial. Below, we use letter p for polynomials and only keep letter ¢ for affine
terms.

Roughly speaking, we approximate a guard *0 i p by guards 40 0< [t1, o] — where ; and ¢,
are affine or infinite bounds — such that, in the current abstract state, p € [t1,t2]. Approximated
guards H0 >a [t1,t2] are defined by cases on <

|

> < =
HOoo[ty, o] || HO<ty | HO<t2A <0 | HO<t2V <0

Affine intervals are computed using heuristics inspired from [22], except that in order to increase

precision, we dynamically partition the abstract state according to the sign of some affine subterms.

This process will be detailed further.

Our certified linearization is built on a two-tier architecture: an untrusted oracle uses heuristics
to select linearization strategies and a certified procedure applies them to build a correct-by-
construction result. These strategies, which are listed in Section 3.1, allow to finely tune the
precision-versus-efficiency trade-off of the linearization. Section 3.2 details the design of our ouracle
and illustrates our lightweight handling of partitions using CPS in our certified procedure.

3.1 Our List of Interval-Based Strategies

Constant Intervalization. Our fastest strategy applies a constant intervalization operator of
the abstract domain. Given a polynomial p, this operator, written *r(p), over-approximates p by
an interval where affine terms are reduced to constants. More formally, *r(p) is a computation of

R(ﬂD,Zgo) such that if ﬁdw [n1,n2], then y(*d) C {d | n1 < [p]d < na}. It uses a naive interval
domain, built on the top of the polyhedral one. Arithmetic operations + and x are approximated
by their correspondence on intervals:

[n1,n2] + [n3,n4] = [n1 + n3,n2 + ny, and

[n1,n2] X [n3,n4] = [min(E), max(E)] where E = {n;.n3,n1.n4,no.n3,n2.14}.

Example 2 (Constant intervalization) On z € [3,10], constant intervalization of (3.2 —15) x
(4.x — 3) gives interval [—6, 15] x [9,37] = [—54, 555], as shown on Figure 5(a).

Ring Rewriting. A weakness of operator *r is its sensitivity to ring rewriting. For instance,
consider a polynomial p; such that 7 (p;) returns [0,n], n € N*. Then *r(p; — p;1) returns [—n, n]
instead of the precise result 0. Such imprecision occurs in barycentric computations such as

10



100

-100

(a) A wrong affine intervalization (b) Partitioning on the sign of (3.2 — 15)

Figure 6: An other affine intervalization of (3.2 — 15) x (4.z — 3) with z € [3, 10]

p2 £ p1 x t; + (n — p1) X to where affine terms t1,t, are bounded by [n1,ns]. Indeed *r(ps)
returns 2n.[ny, ns] instead of n.[ny, ns]. Moreover, if we rewrite ps into an equivalent polynomial
ph = p1 X (t; — ta) + n.ty, then *r(ph) returns n.[2.ny — ng, 2.1 — ny]. If ny > 0 or ny < 0, then
fr(ph) is strictly more precise than fr(py). The situation is reversed otherwise. Consequently,
our oracle begins by simplifying the polynomial before trying to factorize it conveniently. But as
illustrated above, it is difficult to find a factorization minimizing *r results. We give more details
on the ring rewriting heuristics of our oracle in the following.

Sign Partitioning. In order to find more precise bounds of polynomial p than those given by
“r(p), we look for an interval of two affine terms [t;,t5] bounding p. Assume p is of the form
p’ X t, with t an affine term and p’ a polynomial. Let [n}, n}] be the constant intervalization of p’
obtained from r(p’). Depending on the sign of ¢, we deduce affine bounds of p in the following
way:

e if 0 <t then p’ X t € [n].t,n).t]
e if ¢ <0, then p’ X t € [n}.t,n].t]

When the sign of ¢ is known, we discard one of these two cases and thus have a fast affine
approximation of p’ x t. This is the case in Figure 5(b), which computations are detailed in
Example 4. When the sign of ¢ is unknown, we split the analysis for each sign of ¢.

More generally, we split the current abstract state d into a partition (%d;);c; according to the
sign of some affine subterms of polynomial p, such that each cell %; leads to its own affine interval
[ti1,tiz2]. Finally, 40 > p is over-approximated by computing the join of all 40 > [t; 1,#; ). The
main drawback of sign partitioning is a worst-case exponential blow-up if applied systematically.

Example 3 (Sign partitioning) Consider p = (4d.z — 3) x (3.2 — 15) with = € [3,10], as in
Example 2. After constant intervalization of the left term (4.2 —3), we obtain the two affine terms
9.(3.z — 15) and 37.(3.z — 15). As shown on Figure 6(a), for z € [3,10], these two terms are not
comparable. In order to have an affine interval bounding p, we need to partition the space at
the point where these two terms are equal, i.e. at the point where 3.z — 15 = 0 which is z = 5.
Then, by intervalizing in both cells, we get the affine intervals shown on Figure 6(b). Here, these
affine intervals are computed in the dynamic mode discussed later : intervalization of (4.x — 3) is
[17,37] on cell x > 5 and is [9,13] on cell x < 5. To obtain the final result of the linearization, it
is necessary to compute the convex hull of both sides, which appears as the dotted polyhedron on
the figure.
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Let us also illustrate sign partitioning for the previous barycentric-like computation of pj. By
convention, our certified procedure partitions the sign of right affine subterms (here, the sign of
t1 —t2). Hence, it founds p), € [n.ta, n.t1] in cell 0 < ¢ —to, and p) € [n.ty,n.ts] in cell t] —to < 0.
When it joins the two cells, H0 > p) is computed as ™0 > n.[ni,ns] as we expect for such a
barycentre. Note that sign partitioning is also sensitive to ring rewriting. In particular, the oracle
may rewrite a product of affine terms ¢ X t3 into ta X t1, in order to discard t; instead of ¢ by
sign partitioning.

Focusing. Focusing is a ring rewriting heuristic that may increase the precision of sign partition-
ing. Given a product p £ t; X to, we define the focusing of to in center n as the rewriting of p into
p' = n.ty+t; x (t2—n). Thanks to this focusing, the affine term n.t; appears whereas t; would oth-
erwise be discarded by sign partitioning. Let us simply illustrate the effect of this rewriting when
0 <n <n} with ¢; (resp. t2) bounded by [n1,ns] (resp. [nf,nb]). Sign partitioning bounds p in
affine interval [ng.te, no.to] whereas p’ is bounded by interval [nq.ta+n.(t1 —n1), na.ta—n.(no—t1)].
The former contains the latter since t; —n; and no —t; are nonnegative. Under these assumptions,
the precision is maximal when n = nj.

Applied carelessly, focusing may also decrease the precision. Consequently, on products p”’ x ¢,
our oracle uses the following heuristic, which cannot decrease the precision: if 0 < n}, then focus
to in center nf; if nf < 0, then focus ¢ in center n}; otherwise, do not change the focus of ts.

Example 4 (Focusing) Consider p = (3.2 — 15) x (4.2 — 3) with = € [3,10], as in Example 2
and 3. The focusing of term (4.2 —3) on 4.3 —3 =9 is p’ = 9.(3.z — 15) + (3z — 15)(4.x — 12).
Affine intervalization of p’ is done by sign partitioning of (4. — 12), where cell 4.2 — 12 < 0 is
empty. Figure 5(b) shows its result.

Intervalizations of Figure 5(a) and of Figure 5(b) have similar running times, but this latter
gives strictly more precise results. Intervalization of Figure 6(b) is globally more precise than the
two others but also more expansive (two constant intervalizations plus one convex-hull instead of
one single constant intervalization).

Static vs Dynamic Intervalization During Partitioning. Computing the constant bounds
of an affine term inside a given polyhedron invokes a costly linear programming procedure. Hence,
for a given polynomial p to approximate, we start by computing an environment o that associates
each variable of p with a constant interval: as detailed later, this environment is indeed used by
heuristics of our oracle. By default, operator *r is called in dynamic mode, meaning that each
bound is computed dynamically in the current cell — generated from sign partitioning — using
linear programming. If one wants a faster use of operator fr, he may invoke it in static mode,
where bounds are computed using o.

For instance, let us consider the sign partitioning of p £ ¢; x t5 in the context 0 < n, ny and
—ng < tg < t; < mg. Incell 0 < ¢, static mode bounds p by [—nj.te, na.ta], whereas dynamic
mode bounds p by [0, no.ta]. In cell t3 < 0, both modes bound p by [ng.t2, —nq.t2]. On the join
of these cells, both modes give the same upper bound. But the lower bound is —nj.ng for static

mode, whereas it is &17;22 (t2 +m1) — ny.ng for dynamic mode, which is strictly more precise.

Conjunction of strategies. Two distinct linearization strategies may lead to incomparable
polyhedra. For instance, even if strategy of Figure 6(b) is globally better than those of Figure 5,
the result of Figure 5(a) is more precise than Figure 6(b) around the left-below-corner. Here,
we can improve precision by computing the intersection of these polyhedra. In our stepwise
refinement approach, this corresponds indeed to remark that 4¢ C (de¢;-¢), and to implement
each of these guards -¢ with a distinct linearization strategy. Let us remark here that a sequence
of two strategies gives more precise results than intersecting independent runs of these strategies:
the second one may benefit from informations discovered by the first one. This is illustrated in
Example 5 below. We use this trick in order to ensure that our linearization necessarily improves
and benefits from results of a naive but quick constant intervalization.
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Given 'rp of (Z2, — 'K) — 'K defined by mplgy 2 *(p) =\(n1 n0].{d|n1<[pli<ns} 90
the 'K program on the right-hand side satisfies
the specification below:

if static then
tp (Nni,ne), (40 <t:fg[ng.t,no.t])
[, F{dlts < [pxt]d <ta};glts, to] U (4t < 03Tg[nat,ne-t]))
[t1,t2] else
(H0 < t; ' p A[n1, nal, Tg[ni £, na.t])
U (At < 0;'r p AM[ny,na, fg[ne.t,ni 1))

Figure 7: Sign partitioning for pxt with continuation g

3.2 Design of Our Implementation

We now decribe our procedure in details. Example 5 illustrates this description on a concrete
guard.

For a guard 0 > p, our certified procedure first rewrites p into p’ 4+t where ¢ is an affine term
and p’ a polynomial. This may keep the non-affine part p’ small compared to the affine one ¢.
Typically, if p’ is syntactically equal to zero, we simply apply the standard affine guard ™0 v t.
Otherwise, we compute environment o for p’ variables. Then, we compute 0 > [ny + ¢, ny + 1]
where [n1,ny] is the result of “r(p’) for static environment o. As mentioned earlier, this ensures
that the resulting linearization necessarily improves and benefits from this first constant inter-
valization. In particular, if this guard is unsatisfiable at this point, the rest of the procedure is
skipped. Otherwise, we invoke our external oracle on p’ and o. This oracle returns a polyno-
mial p” enriched with tags on subexpressions. We handle three tags to direct the intervalization:
AFFINE expresses that the subexpression is affine; STATIC expresses that the subexpression has to
be intervalized in static mode; INTERV expresses that intervalization is done using only *r (instead
of sign partitioning). At last, a special tag SKIP_ORACLE inserted at the root of p” indicates that
it is not worth attempting to improve naive constant intervalization (e.g. because p’ is a too
big polynomial, any attempt would be too costly). After that, when this special tag is absent,
our certified procedure checks that p’ = p” using a normalization procedure defined in the stan-
dard distribution of Coq [14]. If p’ # p”, our procedure simply raises an error corresponding
to a bug in the oracle. If p’ = p”, it invokes a CPS affine intervalization of p” for continuation
At1,t2], 10 > [t; + t,t2 + t]. The next paragraphs detail this certified CPS intervalization and
then, our external oracle.

Certified CPS Affine Intervalization. We implement and prove our affine intervalization
using the CPS technique described in Section 2.3. On polynomial p” and continuation fg, the
specification of our CPS intervalization is

e, ,, Fdlt < 1< ) sgltr o)

The e case corresponds to a failure of our procedure: typically, a subexpression is not affine as
claimed by the external oracle. In case of success, the procedure selects non-deterministically
some affine intervals [t1, 3] bounding p” before merging continuations on them. The procedure
is implemented recursively over the syntax of p”. Figure 7 sketches the implementation and the
specification of the sign partitioning subprocedure. The figure deals with a particular case where
p" is a polynomial written p xt with ¢ affine. In the implementation part, boolean static indicates
the mode of r. In static mode, we indeed factorize the computation of ¥ on both cells of the
partition.

Our linearization procedure is written in around 2000 CoQ lines, proofs included. Among them,
the CPS procedure and its subprocedures take only 200 lines. The bigger part — around 1000 lines
— is thus taken by arithmetic operators on interval domains (constant and affine intervals).
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Design of Our External Oracle. Our external oracle ranks variables according to their priority
to be discarded by sign partitioning. Then, it factorizes variables with the highest priority. The
priority rank is mainly computed from the size of intervals in the precomputed environment o:
unbounded variables must not be discarded whereas variables bounded by a singleton are always
discarded by static intervalization. Our oracle also tries to minimize the number of distinct
variables that are discarded: variables appearing in many monomials have a higher priority. The
oracle also interleaves factorization with focusing. Our oracle is written in 1300 lines of OCAML
code.

Example 5 (A full run of the certified procedure) Let us consider the effect of our lin-
earization procedure on guard 4z x (y —2) < z in a context where (0 < z) A (z+1 <y <
1000) A (2 < —2). First, note that a constant intervalization of z — x x (y — 2) would bound it in
] — 00,997], and thus would not deduce anything useful from this guard.

Instead, our procedure rewrites the guard into 40 < p/+t withp’ £ —zxyand t £ 242x. Then,
it computes environment o = {x ~ [0,999],y +— [1,1000]} and applies constant intervalization
on p', leading to p’ €] — 00,0]. As you may notice, approximating this guard requires only an
upper-bound on p’, and our procedure does not compute the useless lower bound. From this first
approximation of 40 < p’ + ¢, it deduces 0 < t.

Then, our oracle, invoked on p’ and o, decides to focus y in center 1 and thus rewrites p’ as
p" = xx(1—y)—=. Here, our CPS subprocedure only intervalizes the nonlinear part zx (1—%) using
sign partitioning on 1 —y. Because we know 1 < z from 2 < —z < 2z, we deduce 1 —y < —z < —1.
Therefore, because 1 —y < 0 and 1 < z, sign partitioning on 1—y bounds z x (1—y) by | —o0, 1—y].
At last, CPS intervalization now approximates 40 < p’ +¢ in 40 < 1 —y — x + ¢. In fact, this
implies 0 < z which contradicts z < —2. Hence, our polyhedral approximation of 4z x (y —2) < z
detects that this guard is unsatisfiable in the given context.

As a conclusion, let us remark that the first approximation leading to 0 < ¢ is necessary to the
full success of the second one.

4 A Lightweight Refinement Calculus in Coq

Our implementation in CoQ reformulates Section 2 with more computational representations
of binary relations. Section 4.1 presents the representation change of abstract computations,
and Section 4.2 presents that of concrete ones. At last, Section 4.3 presents our datatypes for
correctness diagrams of abstract computations. Sections 4.1 and 4.3 also detail how the framework
is adapted in order to handle alarms during the analysis.

4.1 Monadic Representations of Abstract Computations

A relation R of R(A, B) can be equivalently seen as the function Az, {y|x £ y} of A — P(B).
This curryfied representation is the basis of our representations for abstract computations. Indeed,
we need to provide a CoQ representation of R(*D,*D) that can be turned into an OCAML type
D — D at extraction. This is achieved by axiomatizing in Coq the type “P(*D)” as “¥D”
where “?” is the type transformer of may-return monads introduced in [12] and recalled below.
More generally, impure abstract computations of R(A, B) in Figure 2 are actually expressed in
our CoQ development as functions of A — 7B in a given may-return monad. Indeed, the interface
of may-return monads also allows to hide data-structure details — such that handling of alarms —
for the correctness proof of abstract computations. The next paragraphs detail these ideas.

Definition 2 (May-return monad) For any type A, type A represents impure computations
returning values of type A. Type transformer “?.7 is equipped with a monad [27] providing a
may-return relation [12].

o Operator >=4p:7A — (A —B) =B encodes an impure sequence “letx = kyinky” as
“hey >= A, ko
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Figure 8: Identity implementation of the core monad

“4 28— A—S— Prop ki1 =ko £ Vsg,Va,Vs1, ki Soas1 < kasoast
k%~a £ s, Is1, ksoas, Ca = Asg, ', A\s1, a=a Asg=s

]fl C>>: kg £ )\80, )\b, )\81, Ela, 381, kl Sp a S1 A kQ a Sy bSQ
Figure 9: A model of the core monad as big-steps over a global state S

e Operator €4 : A — 1A lifts a pure computation as an impure one.

e Relation =4:7A —?A — Prop is a congruence (w.r.t. >>=) representing equivalence of
semantics between impure computations. Moreover, operator >= is associative and admits
e as neutral element (w.r.t. =).

e Relation ~»4:7A — A — Prop, where “k ~» a” means that “k may return a” This relation
must be compatible with =4 and satisfies the axioms

Eai~ay = a1=asg k1 >=ko~~b = da,ki~aANkya~b

Correspondence with Set Theory Notations of Section 2. Abstraction of set “P(A)” as
type “?A” is given by the following definitions:

A2 P(A) ki=ko 2V, x€ki ke k~a2ack ca2{a} by >=ky 2 U(kzga)
ack;

Conversely, for any may-return monad, a computation k of A — 7B represents a relation of R(A, B)
defined by d% d’ 2 kd ~ d'. Given k; and ko in *D — #D, then “Az, (k1 x) >= ky” corresponds
to a subrelation of “k; - k2”. Actually, our CoQ implementation generalizes Section 2 when we
compose abstract computations, because we use operator “>=" instead of the less precise “-”.

Impure Computations and May-return Monads. The VPL is parametrized by a core may-
return monad that axiomatizes external computations. This monad avoids a potential unsoundness
by expressing that external oracles are not pure functions, but encode relations. It is instantiated
at extraction by providing the identity implementation given on Figure 8.

Of course, the implementation of the core monad remains hidden for our CoQ proofs: they
are thus valid for any instance of a may-return monad. As an example, big-step semantics of
imperative computations over a global state S induces such an instance, defined at Figure 9.
Actually, our CoQ proofs are sound under the hypothesis that there exists a may-return monad
able to denote any typesafe OCAMIL computation.

Alarm Handling in the Analyzer. Our toy analyzer, specified on Figure 1, handles alarms
in the style of VERASCO. On a potential error, it does not stop its analysis, but writes an
alarm — represented here as a value of type alarm — and continues the analysis. Technically, this
corresponds to lift the core monad through a writer monad transformer [18]. Actually, we assume
that the core monad has already an operation to write alarms “write : alarm — “7unit, which
is efficiently extracted as OCAML external code. Our alarm writer monad thus only encodes the
underlying list of alarms as a boolean: true corresponds to an empty list of alarms. It is defined
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Figure 10: Alarm writer monad and its specific operators

on Figure 10 where alarm writer (resp. core) constructs are prefixed by a “*” (resp. “¢”). The
implementation of “~» means that the formal correctness of abstract computations with at least
one alarm holds trivially. Hence, on a K diagram, an abstract computation fails (i.e. produces no
result) as soon as it produces an alarm. On the contrary, in the actual implementation, it produces
a result that may be used to find more alarms (without formal guarantee on their meaning).

Figure 10 also defines operator 1ift, : ¢?A — w?A. Using 1ift, it is straightforward to lift
VPL abstract domains with computations in the core monad to abstract domains with compu-
tations in the alarm writer monad. At last, operator “write, : alarm — A — "“7?A encodes
that “writem a writes alarm m and returns value a. It is invoked in the implementation of K
commands that may fail: assert and loop.

For example, let us assume here that function H-c: D — °?%D and function T : D — D —
“?bool are VPL operators from the core monad corresponding to those of Figure 2. Operator
f-¢, described on Figure 3, is implemented in the alarm writer monad by the function of type
‘D — w?D given below:

Nd, (1ift (H-e ) ws>= Md/,
(1ift (T f 5L)) U= \b,
if b then “z%d else (“write "assert failure" 'd)

In order to prove that operator fc is correct w.r.t. its specification F ¢, it suffices to prove the
property “fc fd ~ '’ = ~y(*d) C [c]A*d = %d'”. The proof that this property implies a correct
abstraction of ¢ is independent of the underlying monad.

In summary, the alarm writer monad instantiates our notion of analyzer correctness into “if the
analyzer terminates without raising any alarm, then the analyzed program has no runtime error”.
Thanks to our compositional design through monads, reasonings on alarm handling appear only
in the implementation of the alarm writer monad. Indeed, “raising an alarm” is a particular case
of empty may-return.

4.2 Representation of Concrete Computations

We consider the issue of mechanizing refinement proofs of K computations. Definition of K in
Section 2.1 uses operators inspired from regular expressions. Formally, K embeds the Kleene
algebra* of R(D, D): if K; and K, are in R(D, D), then K;; Ky = K; - K. However, K does
not satisfy itself all properties of a Kleene algebra. In particular, “;” has two distinct left-zeros L
and 4. Thus, it has no right-zero. This forbids to apply directly existing CoQ tactics for Kleene
algebras|[6].

Like in standard refinement calculus [1], we simplify refinement proofs by computations of
weakest-preconditions [10]. More exactly, we use weakest-liberalpreconditions (WLP) because
they appear naturally in correctness diagrams of abstract computations (as this will be illustrated
by Figure 13 below). Fundamentally, this comes from the fact that weakest-liberal-preconditions
do not aim to ensure termination of programs — like our static analyzes — contrary to original
weakest-preconditions of Dijkstra.

4A Kleene algebra is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It
generalizes the operations known from regular expressions: the set of regular expressions over an alphabet is a free
Kleene algebra.
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Definition 3 (Weakest-liberal-preconditions) Given K € R(D,D;), the WLP of K, noted
here [K], is a function of P(D) — P(D) defined by
[K|IP2£{deD|Vd € D,,d" d = d e P}

To Simplify Refinement Goals by WLP. The main benefit of WLP is to propagate func-
tion computations through sequences of relations. Indeed, WLP transforms a sequence into a
function composition: [K;; Ks|P = [K1]([K2]P). This avoids existential quantifier appearing
in the definition of “x ESERICY z”, which is Jy,z RSN yAy 1 z. Indeed, such a quantifier would
be tedious to eliminate in refinement proofs. Moreover, given f a function of type D — D,
[1f]P = {d| f(d) € P}. This allows for instance to compute [1f1;1f2]P as {d| f2(f1(d)) € P}.
At last, WLP allows to perform an implicit normalization of computations, in the sense that
[K]P = [JK]P holds.

We embed WLP computations in refinement proofs using the equivalence between K; C K
and VP, [K3]P C [K;]P. We list below WLP of main guarded-commands:

[L]P =D (4P =0 [e]P =P
[FP|P=P' NP [HP|P=(D\ P)UP
[UKG P:ﬂ[Ka]P |_|Ka P:U[Ka]P

acA acA acA acA

The methodology of stepwise refinement relies on the fact that K; C Ky implies K7 ; K C
Ky ; K and K ; K1 C K ; Ko. While trying to prove these two properties only from WLP properties
above, we observe that the first one derives from VP, [K3|([K]P) C [K1]([K]P), itself implied by
K1 C Ks. However, in order to prove the second one, we need to establish an additional property
on [KJ: it is a monotone predicate transformer. This means that if P; C P, then [K|P; C [K]Ps.

A Shallow Embedding of WLP Computations. In the style of [3], we use a shallow em-
bedding of WLP computations, meaning that we avoid the introduction of abstract syntax trees
for K computations, which would induce many difficulties because of binders in | | and [ ] opera-
tors. Instead, we represent K computations directly as monotone predicate transformers. In other
words, our syntax for K guarded commands is directly provided by a given set of CoQ operators
on monotone predicate transformers (corresponding to some WLP computations).

Actually, by exploiting type isomorphism P(D) — P(D) ~ D — P(P(D)), we encode mono-
tone predicate transformers as functions D — P(D) where P is the monad of monotone predicates
of predicate. Indeed, they are simpler and more general than monotone predicate transformers:
all composition operators of predicate transformers can be derived by combining only atomic op-
erators with the >= operator of monad P. For instance, on Figure 12, A-indexed meet operator

of K is derived from atomic operator A of P.

Figure 11 sketches the CoQ definitions of monad P. An element of type (PA) is a record
with two fields: a field app representing a predicate of P(P(A)), and a field app_monot that is a
proof that app is monotone. Here, elements of (P A) are implicitly coerced into functions through
field app. In Figure 11, each record definition generates a proof obligation for the missing field
app_monot. Assert (resp. assume) operator of P monad is noted ¥~ P’ (resp. ™ P’) where P’ is of
type Prop. These operators are of type “IP unit” where unit is a singleton type which inhabitant

A A
is tt. Operators M and Ul are of type P A.

A Lightweight Formalization of K in Coq. Figure 12 illustrates how we derive guarded-

commands of K from operators of P monad. -
With this representatlon change, a relation @ in R(D, D) is now embedded in K as Q =
D)

yecpiidld S d'};d'. We can thus still express Hoare specifications (P, Q) of P(D) x R(D,
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Record P(A:Type) := {
app:> (A — Prop) — Prop;
app_monot (P Q:A — Prop): app P - (V d, P d -+ Q d) — app Q}.

k1 "Cky 2 VP, (ky P) — (k1 P)
fea 2 {app := A\P,(Pa)} k1 F>=ky £ {app := AP, (k1 \a, (k2a P))}

PP’ & {app:= AP,P' A (P tt)} 4P’ 2 {app:= AP, P’ — (P tt)}

I

A
U= {app:= AP,Va:A,(Pa)} £ lapp:=AP,Ja:A,(Pa)}

Figure 11: CoQ definitions for main operators of monad P

K2D - PD K, C Ky 2 Vd, (K, d) 'C (K, d)
tf 2 M, e (fd) KKy 2 )\, (K, d) B>= K,
FP' 2 X\, "H(P" d)P>= ), (% d) AP & X, ™H(P' d)">= ), (%)
| | K. 2 A, O o= Aa A, (K, d) [K. = A, T = At A, (K, d)
a:A a:A

Figure 12: CoQ definitions for main K operators

by F P; Q. Hence, we express unbounded iteration by a meet over inductive invariants as explained
in Section 2.1.

On the contrary to [3], we have not proved in CoQ the properties of K algebra. On refinement
goals, we let COQ compute weakest-preconditions and simply solve the remaining goal with stan-
dard CoqQ tactics. This gives us well-automated proof scripts in practice. Thus, CoQ code for K
operators (with P included) remains very small (around 150 lines, proofs and comments included).

4.3 Representations of Correctness Diagrams

The CoqQ definition of 'K datatype, sketched in Figure 13, is actually parametrized by a structure
of may-return monad: abstract computations are functions of D — #D. Here, D equipped with
its operators (satisfying the interface given at Figure 2) is also a parameter of the definition.
Thus, our modular design allows to have abstract computations that do handle alarms, like in our
toy analyzer, or that do not, like in our linearization procedure. Indeed, in abstract interpreters,
detection of runtime errors (and handling of alarm) is generally done at the top-level interpreter
of the analyzer, but not in the internal levels. Our notion of diagram can handle both cases in a
generic way.

Therefore, Figure 13 defines values of K as triples with a field impl being an abstract com-
putation, a field spec being a concrete computation and a field impl_correct being a proof that
impl is correct w.r.t spec. Such proofs are simplified by applying together the WLP embedded in
spec and the WLP already designed by [12], which simplifies reasonings with ~- relation. At last,
impl being the only informative field of 1K record, type K is exactly extracted as type ‘D — ?4D.
Similarly, a K command is exactly extracted in OCAML as its underlying abstract computation.
Here again, the CoQ code for 1K operators (diagrammatic proofs included) is small (around 200
lines, without the implementation of the alarm writer monad).
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Record 'K: Type := {
impl:*¥D =?"D; spec:K;
impl_correct: Vid'd, (implfd) ~*d' — Vd,d € v(*d) — (spec d v(*d')) }.

Figure 13: Sketch of the CoQ definition for 1K datatype

5 Conclusion & Perspectives

We extended the VPL with certified handling of non-linear multiplications by a modular and
novel design. Our computations are performed by an untrusted oracle delivering a certificate
to a certified front-end. Our proofs use diagrammatic constructs based on stepwise refinement
calculus. Refinement proofs are finally made clear and concise by the computations of Weakest-
Liberal-Preconditions.

Our linearization procedure is able to give a fast over-approximation of integer polynomials
thanks to variable intervalization. The precision is increased by domain partitioning (implicitly
done with a Continuation-Passing-Style design) and the dynamic computation of bounding affine
terms, enabling to finely tune the precision-versus-efficiency trade-off in the oracle.

Because floating arithmetic requires to explicitly handle error terms at each operation, VPL
does not currently support floating points variables, and our linearization neither. Most non-linear
arithmetic used in real-life programs involve floating points. Therefore, it is hard to evaluate our
method on real-life programs. Hence, our experiments are limited to small handmade examples
inspired by polynomials often encountered in real-life code, such as parabola or barycentres. On
these cases, our oracle is able to give much more precise approximations than the VERASCO interval
domain.

Our linearization procedure needs also to be extended with others arithmetic operators like
integer division and integer modulo. A simple approach in this direction would: 1) replace each
call to these operators by a fresh temporary variable; 2) express the meaning of these operations
as non-deterministic assignments of their corresponding variables, using only polynomials, i.e. if
t; and t9 are positive then g := t1/t2 is replaced by ¢ :€ {x | t; —t2 < & X tg < t1}; 3) eliminate
temporary variables out of approximated guards. The VPL already provides the bricks for such
an approach.

At last, we certified a toy analyzer from big-steps semantics of Figure 1, by interpreting the
operators of concrete semantics in abstract semantics, according to the correspondence of Figure 3.
We detailed how this toy analyzer handles alarms in the style of VERASCO. Our approach should
scale up on a complex language like COMPCERT C, even if it does not use simple big-steps
semantics. Although its semantics allows to distinguish programs (for instance diverging ones
invoking system calls or not) that are equivalent for our concrete semantics, such features do not
seem necessary to the VERASCO analyzes correctness. Therefore, our approach would introduce
an abstraction over COMPCERT semantics that should even ease the proof of the analyzer.
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