

Refinement to Certify Abstract Interpretations, Illustrated on Linearization for Polyhedra

Sylvain Boulmé, Alexandre Maréchal

▶ To cite this version:

Sylvain Boulmé, Alexandre Maréchal. Refinement to Certify Abstract Interpretations, Illustrated on Linearization for Polyhedra. 2015. hal-01133865v2

HAL Id: hal-01133865 https://hal.science/hal-01133865v2

Preprint submitted on 15 Jul 2015 (v2), last revised 15 Nov 2018 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Refinement to Certify Abstract Interpretations, Illustrated on Linearization for Polyhedra*

Sylvain Boulmé and Alexandre Maréchal

Univ. Grenoble-Alpes, VERIMAG, F-38000 Grenoble, France {sylvain.boulme,alex.marechal}@imag.fr

Abstract. Our concern is the modular development of a certified static analyzer in CoQ: we extend a certified abstract domain of convex polyhedra with a linearization procedure approximating polynomial expressions. In order to help such a development, we propose a proof framework, embedded in CoQ, that implements a refinement calculus. It allows to hide for proofs several low-level aspects of the computations on abstract domains. Moreover, refinement proofs are naturally simplified thanks to computations of weakest preconditions. This paper is an extended version of [1].

Keywords: Coq, continuation-passing style, monad, weakest-precondition.

1 Introduction

This paper presents two contributions: first, a certified linearization for an abstract domain of convex polyhedra, approximating polynomials by affine constraints; second, a refinement calculus, helping us to mechanize this proof in Coq [2]. We detail below the context and the features of these two contributions.

1.1 A Certified Linearization for the Abstract Domain of Polyhedra

We consider the certification of an abstract interpreter, which aims to ensure absence of undefined behaviors such as division by zero or invalid memory access in an input source program. This analyzer computes for each program point an invariant: a property that the state at that point must satisfy in all executions. Such invariants belong to datatypes called abstract domains [3] which are syntactic classes of properties on memory states. For instance, in the abstract domain of convex polyhedra [4], invariants are conjunctions of affine constraints written $\sum_i a_i x_i \leq b$ where $a_i, b \in \mathbb{Q}$ are scalar values and x_i are integer program variables. This domain is able to capture relations between program variables (e.g. $x+2 \leq y+x-2z$). However, it cannot deal directly with non-linear invariants,

^{*} This work was partially supported by ANR project VERASCO (INS 2011) and by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 "STATOR".

e.g. $x^2 - y^2 \le x \times y$. Thus, linearization techniques, such as intervalization [5], are necessary to analyze programs with non-linear arithmetic.

Indeed, intervalization replaces some variables in a non-linear product by intervals of constants. For instance in Example 1, x is replaced by [0, 10] in assignment $r := x \cdot (y - z) + 10 \cdot z$. The interval is then eliminated by analyzing the sign of y - z, leading to affine constraints usable by the polyhedra domain.

Example 1 (Intervalization using a sign-analysis). In any state where $x \in [0, 10]$, assignment "r := x.(y-z) + 10.z" is approximated by the affine program on the right hand-side. Here operator $:\in$ performs a non-deterministic assignment.

```
\begin{aligned} & \text{if } y-z \geq 0 & \text{then} \\ & r:\in [10.z, 10.y] \\ & \text{else} \\ & r:\in [10.y, 10.z] \end{aligned}
```

Our certified linearization procedure is now part of the VERIMAG Polyhedra Library (VPL) [6,7], which provides a certified polyhedra domain to VERASCO [8], a certified abstract interpreter for COMPCERT C [9]. Following a design proposed in [10], the VPL is organized as a two-tier architecture: an untrusted oracle, combining OCAML and C code, performs most complex computations and outputs a Farkas certificate used by a certified front-end to build a correct-by-construction result. As oracles may have side-effects and bugs, they are viewed in CoQ as non-deterministic computations of an axiomatized monad [7].

Built on a similar design, our linearization procedure invokes an untrusted oracle that selects strategies for linearizing an arithmetic expression and produces
a certificate which is checked by the certified part of the procedure. It leads to
a correct-by-construction over-approximation of the expression. It is convenient
to see such strategies as program transformations, because their correctness is
independent from the implementation of the underlying abstract domain and
is naturally expressed using concrete semantics of programs [11]. Indeed, a linearization is correct if, in the current context of the analysis, any postcondition
satisfied by the output program is also satisfied on the input one (see Example 1). In such a case, we say that the input program refines the output one.
This paper aims to explain how refinement helps to develop certified procedures
on abstract domains, and in particular our linearization algorithm.

1.2 Certifying Computations on Abstract Domains by Refinement

Program refinement [12] consists in decomposing proofs of complex programs by stepwise applications of correctness-preserving transformations. We provide a framework in CoQ to apply this methodology for certifying the correctness of computations combining operators of an existing abstract domain. Our framework provides a Guarded Command Language (GCL) called $^{\dagger}\mathbb{K}$ that contains these operators. A computation $^{\dagger}K$ in $^{\dagger}\mathbb{K}$ comes with two types of semantics: an abstract and a concrete one. Concrete semantics of $^{\dagger}K$ is a transformation on memory states. Abstract semantics of $^{\dagger}K$ is a transformation on abstract states, i.e. on values of the abstract domain. A $^{\dagger}\mathbb{K}$ computation also embeds a proof that abstract semantics is correct w.r.t. concrete one: each $^{\dagger}\mathbb{K}$ operator thus preserves

correctness by definition. Moreover, an OCAML function is extracted from abstract semantics which is certified to be correct w.r.t. concrete semantics. Hence, concrete semantics of $^{\dagger}K$ acts as a *specification* which is *implemented* by its abstract semantics. In the following, a transformation on abstract (resp. memory) states is called an abstract (resp. concrete) computation.

Taking a piece of code as input, our linearization procedure outputs a $^{\dagger}\mathbb{K}$ computation, and its correctness is ensured by proving that concrete semantics of its input refines concrete semantics of its output. It means that the output does not forget any behaviour of the input. Our procedure being developed in a modular way from small intermediate functions, its proof reduces itself to small refinement steps. Each of these refinement steps involves only concrete semantics. Our framework provides a tactic simplifying such refinement proofs by computational reflection of weakest-preconditions. The correctness of abstract semantics w.r.t. concrete semantics is ensured by construction of $^{\dagger}\mathbb{K}$ operators.

Our framework supports impure abstract computations, i.e. abstract computations that invoke imperative oracles whose results are certified a posteriori. It also allows to reason conveniently about higher-order abstract computations. In particular, our linearization procedure uses a Continuation-Passing-Style (CPS) [13] in order to partition its analyzes according to the sign of affine sub-expressions. For instance in Example 1, the approximation of the non-linear assignment depends on the sign of y-z. In our procedure, CPS is a higher-order programming style which avoids introducing an explicit datatype handling partitions: this simplifies both the implementation and its proof. This also illustrates the expressive power of our framework, since a simple Hoare logic does not suffice to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of linearization strategies. In particular, the top-level interpreter of the analyzer could also be proved correct in this way. Indeed, the interpreter invokes operations on abstract domains in order to over-approximate any execution of the program, but its correctness does not depend on abstract domains implementations (as soon as these implementations are themselves correct). We illustrate this claim on a toy analyzer, also implemented in Coq.

The mathematics involved in our refinement calculus, relating operational semantics to the lattice structure of monotone predicate transformers, are well-known in abstract interpretation theory [14]. In parallel of our work, the idea to use a refinement calculus in formal proofs of abstract interpreters was proposed in [15]. Hence, our contribution is more practical than theoretical. On the theoretical side, we propose a refinement calculus dedicated to certification of *impure* abstract computations. On the practical side, we show how to get a concise implementation of such a refinement in CoQ and how it helps on a realistic case study: a linearization technique within the abstract interpreter Verasco.

1.3 Overview of the Paper

Our refinement calculus is implemented in only 350 lines of CoQ (proof scripts included), by a shallow-embedding of our GCL $^{\dagger}\mathbb{K}$ which combines computational

reflection of weakest-preconditions [16] with monads [17]. However, it can be understood in a much simpler setting using binary relations instead of monads and weakest-preconditions, and classical set theory instead of Coq.

Section 2 introduces our refinement calculus in this simplified setting, where computations are represented as binary relations. Section 3 presents our certified linearization procedure and how its proof benefits from our refinement calculus. Appendix A explains – with more details than the conference version of this paper[1] – how we mechanize this refinement calculus in CoQ by using smart encodings of binary relations introduced in Section 2. Our CoQ sources are available on [18].

2 A Refinement Calculus for Abstract Interpretation

We consider an analyzer correct if and only if it rejects all programs that may lead to an $error\ state$: due to lack of precision, it may also reject safe programs. Section 2.1 defines the notion of error state and semantics of concrete computations. This semantics combines big-steps operational semantics with Hoare Logic. After introducing the notion of abstract computation and its correctness w.r.t. a concrete computation, Section 2.2 presents our refinement calculus. Section 2.3 applies our refinement calculus to the certification of higher-order abstract computations.

Notations on Relations. The whole paper abusively uses classical set theory, whereas our formalization is in the intuitionistic type theory of CoQ without axioms. In particular, it identifies type $A \to \operatorname{Prop}$ of predicates on A with set $\mathcal{P}(A)$. Hence, we note $\mathcal{R}(A,B) \triangleq \mathcal{P}(A \times B)$ the set of binary relations on $A \times B$. Given R of $\mathcal{R}(A,B)$, we note $x \xrightarrow{R} y$ instead of $(x,y) \in R$. We use operators on $\mathcal{R}(A,A)$ inspired from regular expressions: ε is the identity relation on A, $R_1 \cdot R_2$ means "relation R_2 composed with R_1 " (i.e. $x \xrightarrow{R_1 \cdot R_2} z \triangleq \exists y, x \xrightarrow{R_1} y \wedge y \xrightarrow{R_2} z$) and R^* is the reflexive and transitive closure of R. In all the paper, $A \to B$ is a type of total functions.

2.1 Stepwise Refinement of Concrete Computations

Given a domain D representing the type of memory states, we add a distinguished element ξ to D in order to represent the error state: we define $D_{\xi} \triangleq D \uplus \{\xi\}.$

Specifying Concrete Computations With Runtime Errors. We define the set of concrete computations as $\mathbb{K} \triangleq \mathcal{R}(D, D_{\ell})$. Hence, an element K of \mathbb{K} corresponds to a (possibly) non-deterministic or non-terminating computation from an input state of type D to an output state of type D_{ℓ} . Typically, the empty relation represents a computation that loops infinitely for any input. It also represents unreachable code (dead code).

We denote by $\downarrow K$ the normalization of the computation K that returns any output in case of error. It is defined by $d \xrightarrow{\downarrow K} d' \triangleq (d \xrightarrow{K} d' \vee d \xrightarrow{K} \cancel{t})$.

Refinement Pre-order and Hoare Specifications. We equip \mathbb{K} with a refinement pre-order \sqsubseteq such that $K_1 \sqsubseteq K_2$ iff $K_1 \subseteq \downarrow K_2$ (or equivalently, $\downarrow K_1 \subseteq \downarrow K_2$). Informally, an abstract analysis correct for K_2 is also correct for K_1 . The equivalence relation \equiv associated with this pre-order is given by $K_1 \equiv K_2$ iff $\downarrow K_1 = \downarrow K_2$.

Hoare logic is a standard and convenient framework to reason about imperative programs. Let us explain how computations in \mathbb{K} are equivalent to specifications of Hoare logic. A computation K corresponds to a Hoare specification $(\mathfrak{p}_K,\mathfrak{q}_K)$ of $\mathcal{P}(D)\times\mathcal{R}(D,D)$, where \mathfrak{p}_K is a precondition ensuring the absence of error, and \mathfrak{q}_K a postcondition relating the input state to a non-error output state, defined by $\mathfrak{p}_K \triangleq D \setminus \{d \mid d \stackrel{K}{\to} \sharp\}$ and $\mathfrak{q}_K \triangleq K \cap (D \times D)$. Conversely, any Hoare specification (P,Q) corresponds to a computation $\vdash P;Q$ – defined below – such that $K \equiv \vdash \mathfrak{p}_K; \mathfrak{q}_K$. Moreover, the refinement pre-order $K_1 \sqsubseteq K_2$ is equivalent to $\mathfrak{p}_{K_2} \subseteq \mathfrak{p}_{K_1} \wedge \mathfrak{q}_{K_1} \cap (\mathfrak{p}_{K_2} \times D) \subseteq \mathfrak{q}_{K_2}$. Thus, it is equivalent to the usual refinement of specifications in Hoare logic.

Algebra of Guarded Commands. We now equip \mathbb{K} with an algebra of guarded commands inspired by [12].² It combines a complete lattice structure with operators inspired from regular expressions. Here, we present this algebra in the case where \mathbb{K} is represented as $\mathcal{R}(D, D_{\frac{1}{2}})$. In our CoQ implementation (given in Appendix A.2), this representation is changed in order to mechanize refinement proofs.

First, the complete lattice structure of \mathbb{K} (for pre-order \sqsubseteq) is given by operator \sqcap defined as " \cap after normalization" (i.e. $\bigcap_i K_i \triangleq \bigcap_i \downarrow K_i$) and by operator \sqcup defined as \cup . In our context, \sqcup represents alternatives that may non-deterministically happen at runtime: the analyzer must consider that each of them may happen. Symmetrically, \sqcap represents some choice left to the analyzer. Empty relation \emptyset is the bottom element and is noted \bot . Relation $D \times \{ \not t \}$ is the top element. Given $d \in D_{\not t}$, we implicitly coerce it as the constant relation $D \times \{ d \}$. Hence, the top element of the $\mathbb K$ lattice is simply noted $\not t$. The notation $\uparrow f$ explicitly lifts function f of $D \to D$ in $\mathbb K$.

Given a relation $K \in \mathcal{R}(D, D_{\ell})$, we define its lifting |K| in $\mathcal{R}(D_{\ell}, D_{\ell})$ by $|K| \triangleq K \cup \{(\ell, \ell)\}$. This allows us to define the sequence of computations by $K_1 : K_2 \triangleq K_1 \cdot |K_2|$, and the unbounded iteration of this sequence (i.e. a loop with a runtime-chosen number of iterations) by $K^* \triangleq (|K|)^* \cap (D \times D_{\ell})$.

Given a predicate $P \in \mathcal{P}(D)$, we define the notion of assumption (or guard) as $\exists P \triangleq (P \times D) \sqcap \varepsilon$. Informally, if P is satisfied on the current state then $\exists P$ skips like ε . Otherwise, $\exists P$ produces no output like \bot . We also define the dual notion of assertion as $\vdash P \triangleq (\exists \neg P; \not\downarrow) \sqcup \varepsilon$. If P is not satisfied on the current state, then $\vdash P$ produces an error. Otherwise, it skips.

Hence, \mathbb{K} provides a convenient language to express specifications: any Hoare specification (P,Q) of $\mathcal{P}(D) \times \mathcal{R}(D,D)$ is expressed as the computation $\vdash P;Q$.

¹ A postcondition is thus in $\mathcal{P}(D \times D)$ instead of the original $\mathcal{P}(D)$: this standard generalization avoids introducing "auxiliary variables" to represent the input state.

² However, in our algebra, \sqsubseteq corresponds to "refines", whereas in standard refinement calculus it dually corresponds to "is refined by". Actually, our convention follows lattice notations of abstract interpretation.

Moreover, refinement allows to express usual Verification Conditions (VC) of Hoare Logic. For our toy analyzer – described later – we use the usual partial correctness VC of unbounded iteration: K^* is equivalent to produce an output satisfying *every* inductive invariant I of K.

$$K^* \equiv \bigcap_{I \in \{I \in \mathcal{P}(D) \mid K \sqsubseteq \vdash I; D \times I\}} \vdash I; D \times I$$

In this equivalence, the \sqsubseteq -way corresponds to the soundness of the VC, whereas the \supseteq -way corresponds to its completeness. In our context, such a soundness proof typically ensures that the specification of an abstract computation is refined by concrete semantics of the analyzed code. It guarantees that the analysis is correct w.r.t. semantics of the analyzed code.

Example on a Toy Language. Let t stands for an arithmetic term and c be a condition over numerical variables, whose syntax is $c := t_1 \bowtie t_2 \mid \neg c \mid c_1 \land c_2 \mid c_1 \lor c_2$ with $\bowtie \in \{=, \neq, \leq, \geq, <, >\}$. Semantics $\llbracket t \rrbracket$ of t and $\llbracket c \rrbracket$ of c work with a domain of integer memories $D \triangleq \mathbb{V} \to \mathbb{Z}$ where \mathbb{V} is the type of variables. Hence, $\llbracket t \rrbracket \in D \to \mathbb{Z}$ and $\llbracket c \rrbracket \in \mathcal{P}(D)$. We omit their definition here.

Let us now introduce a small imperative programming language named $\mathbb S$ for which we will describe a toy analyzer in Section 2.2. The syntax of a $\mathbb S$ program s is described on Figure 1 together with its big-steps semantics $\llbracket s \rrbracket$ defined as an element of $\mathbb K$. This semantics is defined recursively on the syntax of s using guarded commands derived from $\mathbb K$. First, we define $\exists c \triangleq \exists \llbracket c \rrbracket$ and $\exists c \triangleq \exists \llbracket c \rrbracket$. We also use command "x := t" defined as $t \triangleq \exists c \rrbracket t \rrbracket (d)$, where the memory assignment noted " $t \triangleq \exists c \rrbracket t \rrbracket (d)$ " – for $t \in D$, $t \in \mathbb S$ and $t \in \mathbb S$ – is defined as the function $t \in \mathbb S$ 1, if $t \in \mathbb S$ 1 and $t \in \mathbb S$ 2 is defined as the function $t \in \mathbb S$ 2.

Fig. 1. Syntax and concrete semantics of $\mathbb S$

At this point, we have defined an algebra \mathbb{K} of concrete computations: a language that we use to express specifications – for instance, in the form of Hoare specifications – on abstract computations. This algebra also provides denotations for defining big-steps semantics (like in Figure 1). Hence, \mathbb{K} is aimed at providing an intermediate level between operational semantics of programs and their abstract interpretations. The next section defines how we certify correctness of abstract computations with respect to \mathbb{K} computations.

2.2 Composing Diagrams to Certify Abstract Computations

Rice's theorem states that the property $d \xrightarrow{K} d'$ is undecidable. In the theory of abstract interpretation, we approximate K by a computable (terminating)

function ${}^{\sharp}K$ working on an approximation ${}^{\sharp}D$ of $\mathcal{P}(D)$. Set ${}^{\sharp}D$ is called an abstract domain and it is related to $\mathcal{P}(D)$ by a concretization function $\gamma: {}^{\sharp}D \to \mathcal{P}(D)$. Function ${}^{\sharp}K$ is called an abstract interpretation (or abstract computation) of K. This paper considers two abstract domains, intervals and convex polyhedra, associated with the concrete domain $D \triangleq \mathbb{V} \to \mathbb{Z}$ involved in Figure 1.

- 1. Given $\mathbb{Z}_{\infty} \triangleq \mathbb{Z} \uplus \{-\infty, +\infty\}$, an abstract memory $^{\sharp}d$ of the interval domain is a finite map associating each variable x with an interval $[a_x, b_x]$ of $\mathbb{Z}_{\infty} \times \mathbb{Z}_{\infty}$. Its concretization is the set of concrete memory states satisfying the constraints of $^{\sharp}d$, i.e. $\gamma(^{\sharp}d) \triangleq \{d \in D \mid \forall x, a_x \leq d(x) \leq b_x\}$.
- 2. The concretization of a convex polyhedron ${}^{\sharp}d = \bigwedge_{i} \sum_{j} a_{ij}.x_{j} \leq b_{i}$, where a_{ij} and b_{i} are rational constants, and x_{j} are integer program variables is $\gamma({}^{\sharp}d) \triangleq \{d \in D \mid \bigwedge_{i} \sum_{j} a_{ij}.d(x_{j}) \leq b_{i}\}.$

Correctness Diagrams of Impure Abstract Computations. Our framework only deals with partial correctness: we do not prove that abstract computations terminate, but only that they are a sound over-approximation of their corresponding concrete computation. Moreover, abstract computations may invoke untrusted oracles, whose results are verified by a certified checker. A bug in those oracles may make the whole computation non-deterministic or divergent. Thus, it is potentially unsound to consider abstract computations as pure functions. In this simplified presentation of our framework, we define abstract computations as relations in $\mathcal{R}(^{\sharp}D,^{\sharp}D)$. In order to extract abstract computations from CoQ to OCAML functions, we will improve this representation of abstract computations in Appendix A.1.

We express correctness of abstract computations through commutative diagrams represented on the right hand side and defined as follows.

Definition 1 (correctness of abstract computations). An abstract computation ${}^{\sharp}K \in \mathcal{R}({}^{\sharp}D, {}^{\sharp}D)$ is correct w.r.t. a concrete computation $K \in \mathcal{R}(D, D_{f})$ iff

$$\forall^{\sharp}d,^{\sharp}d'\in{}^{\sharp}D,\quad\forall d\in D,\forall d'\in D_{\frac{\ell}{2}},\\ \quad^{\sharp}d\stackrel{{}^{\sharp}K}{\longrightarrow}{}^{\sharp}d'\quad\wedge\ d\stackrel{K}{\longrightarrow}d'\quad\wedge\ d\in\gamma({}^{\sharp}d)\\ \text{Note that }d'\in\gamma({}^{\sharp}d')\text{ implies itself that }d'\neq\underline{\ell}.\\ \quad d\stackrel{{}^{\sharp}K}{\longrightarrow}d'$$

Such a diagram thus corresponds to a pair of an abstract and a concrete computation, with a proof that the abstract one is correct w.r.t. the concrete one. As illustrated on the example below, these diagrams allow to build $compositional\ proofs$ that an abstract computation, composed of several simpler parts, is correct w.r.t. a concrete computation. Diagrams are indeed preserved by several composition operators, and also by refinement of concrete computations.

As an example, consider two abstract computations ${}^{\sharp}K_1$ and ${}^{\sharp}K_2$ which are correct w.r.t. concrete K_1 and K_2 . In order to show that the sequential composition ${}^{\sharp}K_1 \cdot {}^{\sharp}K_2$ is correct w.r.t. concrete K, it suffices to prove that $K \sqsubseteq K_1; K_2$, as illustrated on the right hand side scheme.

$$\gamma \downarrow \xrightarrow{K_1} \xrightarrow{K_2} \gamma \downarrow \gamma \\
= \downarrow K \sqsubseteq K_1; K_2 \downarrow = K$$

In the following, we introduce a datatype noted $^{\dagger}\mathbb{K}$ to represent these diagrams: a diagram $^{\dagger}K \in ^{\dagger}\mathbb{K}$ represents an abstract computation $^{\sharp}K$ which is correct w.r.t. its associated concrete computation K. The core of our approach is to lift guarded-commands on \mathbb{K} involved in Figure 1 as guarded-commands on $^{\dagger}\mathbb{K}$. For instance, our toy analyzer $^{\sharp}[s]$ for s in \mathbb{S} is defined similarly to $[\![s]\!]$ of Figure 1, but from $^{\dagger}\mathbb{K}$ operators instead of \mathbb{K} ones. For a given diagram $^{\dagger}K$, we can prove the correctness of an abstract computation $^{\sharp}K$ w.r.t. a concrete computation K' simply by proving that $K' \subseteq K$. In practice, such refinement proofs are simplified using a weakest-liberal-precondition calculus (see Appendix A.2).

Our Interface of Abstract Domains. We derive our guarded-commands on ${}^{\dagger}\mathbb{K}$ in a generic way from the VPL interface³ [7] of abstract domains, reformulated here on Figure 2. Besides its concretization function γ , an abstract domain ${}^{\sharp}D$ provides constants ${}^{\sharp}\top$ and ${}^{\sharp}\bot$, representing respectively predicate true and false. It also provides abstract computations ${}^{\sharp}\dashv c$ and $x{}^{\sharp}:=t$ of $\mathcal{R}({}^{\sharp}D,{}^{\sharp}D)$, which are respectively correct w.r.t. concrete computations $\dashv c$ and x:=t. It provides operator ${}^{\sharp}\sqcup$ of $\mathcal{R}({}^{\sharp}D{}^{\sharp}D,{}^{\sharp}D)$, which over-approximates the binary union on $\mathcal{P}(D)$. At last, it provides inclusion test ${}^{\sharp}\sqsubseteq$ of $\mathcal{R}({}^{\sharp}D{}^{\sharp}D,\mathsf{bool})$.

$$\begin{split} D \subseteq \gamma(^{\sharp}\top) & \gamma(^{\sharp}\bot) \subseteq \emptyset & {}^{\sharp}d \stackrel{\sharp}{\longrightarrow} {}^{\sharp}d' \ \Rightarrow \ \gamma(^{\sharp}d) \cap \llbracket c \rrbracket \subseteq \gamma(^{\sharp}d') \\ & {}^{\sharp}d \stackrel{x^{\sharp}:=t}{\longrightarrow} {}^{\sharp}d' \wedge d \in \gamma(^{\sharp}d) \Rightarrow d[x:=\llbracket t \rrbracket(d)] \in \gamma(^{\sharp}d') \\ & (^{\sharp}d_1, {}^{\sharp}d_2) \stackrel{\sharp}{\longrightarrow} {}^{\sharp}d' \Rightarrow \gamma(^{\sharp}d_1) \cup \gamma(^{\sharp}d_2) \subseteq \gamma(^{\sharp}d') & (^{\sharp}d_1, {}^{\sharp}d_2) \stackrel{\sharp}{\longrightarrow} \mathsf{true} \Rightarrow \gamma(^{\sharp}d_1) \subseteq \gamma(^{\sharp}d_2) \end{split}$$

 ${\bf Fig.\,2.}\ {\bf Correctness}\ {\bf specifications}\ {\bf of}\ {\bf our}\ {\bf abstract}\ {\bf domains}$

Abstract Computations of Guarded-commands. We now lift each \mathbb{K} guarded-command of Figure 1 into a ${}^{\dagger}\mathbb{K}$ guarded-command. A ${}^{\dagger}\mathbb{K}$ operator has the same notation than its corresponding \mathbb{K} operator. Below, we associate each concrete

³ This interface differs from Verasco's one because it allows impure operators. Coercing an abstract domain into a Verasco one thus remains to assume that the underlying oracles are observationally pure, see [7].

operator of Figure 1 with an abstract computation. The diagrammatic proof relating them is straightforward from correctness specifications given on Figure 2.

Concrete commands $\dashv c$ and x := t are associated with $\sharp \dashv c$ and x := t. Concrete command $K_1 ; K_2$ is associated with $\sharp K_1 \cdot \sharp K_2$ — where $\sharp K_2$ returns $\sharp \bot$ if the current abstract state is included in $\sharp \bot$, or runs $\sharp K_2$ otherwise. Concrete $K_1 \sqcup K_2$ is lifted by applying operator $\sharp \bot$ to the results of $\sharp K_1$ and $\sharp K_2$.

Concrete assertion $\vdash c$ is associated with checking that the result of $\sharp \dashv \neg c$ is included in $\sharp \bot$: otherwise, the abstract computation fails.⁴ Hence, concrete \sharp is associated with abstract computation \emptyset (concrete \bot is associated with $\sharp \bot$).

At last, concrete K^* is associated with an abstract computation which invokes an untrusted oracle proposing an inductive invariant of ${}^{\sharp}K$ for the current abstract state. Thus, using inclusion tests, ${}^{\sharp}(K^*)$ checks that the invariant proposed by the oracle is actually an inductive invariant (otherwise, it fails), before returning this invariant as the output abstract state.

2.3 Higher-order Programming With Correctness Diagrams

Our linearization procedure detailed in Section 3.2 illustrates how we use GCL \mathbb{K} as a programming language for abstract computations. GCL \mathbb{K} is our specification language. Each program $^{\dagger}K$ of $^{\dagger}\mathbb{K}$ is associated with a specification K of \mathbb{K} syntactically derived from its code, meaning that each $^{\dagger}\mathbb{K}$ operator is syntactically associated with the \mathbb{K} operator from which it is lifted in the above paragraph.

Our linearization procedure invokes two other operators of $^{\dagger}\mathbb{K}$. First, an operator which casts $^{\dagger}K$ to a given specification K': it requires $K' \sqsubseteq K$ in order to produce a new valid $^{\dagger}\mathbb{K}$ diagram. This cast operator thus leads to a modular design of the certified development since it allows stepwise refinement of $^{\dagger}\mathbb{K}$ diagrams. Second, given a computation π of $\mathcal{R}(^{\sharp}D,A)$ where A is a given type, it invokes an operator binding the results of π to a function $^{\dagger}g$ of $A \to ^{\dagger}\mathbb{K}$. This operator requires a concrete postcondition Q of $A \to \mathcal{P}(D)$ on the results of π . In other words, under the condition $\forall^{\sharp}d, \forall x \in A, ^{\sharp}d \xrightarrow{\pi} x \Rightarrow \gamma(^{\sharp}d) \subseteq Qx$, we define the diagram $\pi^{\dagger}\gg =_{Q}^{\dagger}g$ as the abstract computation $\{(^{\sharp}d_{1}, ^{\sharp}d_{2}) \mid \exists x, ^{\sharp}d_{1} \xrightarrow{\pi} x \wedge ^{\sharp}d_{1} \xrightarrow{\sharp} x \wedge ^{\sharp}d_{2}\}$ specified by $\prod_{x} \vdash Qx ; gx$.

Actually, Section 3.2 applies our refinement calculus to certify higher-order abstract computations. Indeed, our linearization procedure *partitions* abstract states in order to increase precision. Continuation-Passing-Style (CPS) [13] is a higher-order pattern which provides a lightweight and modular style to program and certify simple partitioning strategies. Let us now detail this idea.

Typically, given an abstract state $^{\sharp}d$, our linearization procedure invokes a sub-procedure $^{\sharp}f$ that splits $^{\sharp}d$ into a partition $(^{\sharp}d_i)_{i\in I}$ and computes a value r_i (of a given type A) for each cell $^{\sharp}d_i$. Then, the linearization procedure *continues* the computation from each cell $(r_i, ^{\sharp}d_i)$ to finally return the join of all cells. In other words, from $^{\sharp}d$, $^{\sharp}f$ computes $(r_i, ^{\sharp}d_i)_{i\in I}$. The main procedure finally computes

⁴ In practice, it may raise an alarm for the user, see our handling of alarms in Section A.1.

 $\downarrow \downarrow_{i \in I}(^{\sharp}g \ r_i \ ^{\sharp}d_i)$ – where $^{\sharp}g$ is a given function of $A \to \mathcal{R}(^{\sharp}D,^{\sharp}D)$. In order to avoid explicit handling of partitions, we make $^{\sharp}g$ a parameter of $^{\sharp}f$ to perform the join inside $^{\sharp}f$. In this style, $^{\sharp}f$ is of type $(A \to \mathcal{R}(^{\sharp}D,^{\sharp}D)) \to \mathcal{R}(^{\sharp}D,^{\sharp}D)$ and the parameter $^{\sharp}g$ of $^{\sharp}f$ is called its *continuation*.

However, specifying directly the correctness of computations that use CPS is not obvious because of the higher-order parameter. Actually, we define $^{\dagger}f$ of type $(A \to ^{\dagger}\mathbb{K}) \to ^{\dagger}\mathbb{K}$ and work with a continuation $^{\dagger}g$ of type $A \to ^{\dagger}\mathbb{K}$, therefore keeping implicit the notion of partition, both in specification and in implementation.

Similarly, CPS allows to implement some trace-partitioning without requiring a trace-partitioning domain[19]. Trace-partitioning is used in abstract interpretation because we have $({}^{\sharp}K_1 {}^{\sharp}K_3) {}^{\sharp} {}^{\sharp} {}^{\sharp} ({}^{\sharp}K_1 {}^{\sharp} {}^{$

3 Interval-based Linearization Strategies for Polyhedra

As described in [7], VPL works with affine terms given by the abstract syntax $t ::= n \mid x \mid t_1 + t_2 \mid n.t$ where x is a variable and n a constant of \mathbb{Z} . We now extend VPL operators of Figure 2 to support polynomial terms, where the product "n.t" is generalized into " $t_1 \times t_2$ ".

The VPL derives assignment operator \sharp := from guard \sharp 1 and two low-level operators: projection and renaming. It also derives the guard operator from a restricted one where conditions have the form $0 \bowtie t$ where $\bowtie \in \{\leq, =, \neq\}$. Hence, we only need to linearize the restricted guard \sharp 10 $\bowtie t$, where t is a polynomial. Below, we use letter p for polynomials and only keep letter t for affine terms.

Roughly speaking, we approximate a guard $^{\sharp} \exists 0 \bowtie p$ by guards $^{\sharp} \exists 0 \bowtie [t_1, t_2]$ where t_1 and t_2 are affine or infinite bounds – such that, in the current abstract state, $p \in [t_1, t_2]$. Approximated guards $^{\sharp} \exists 0 \bowtie [t_1, t_2]$ are defined by cases on \bowtie :

Affine intervals are computed using heuristics inspired from [5], except that in order to increase precision, we dynamically partition the abstract state according to the sign of some affine subterms. This process will be detailed further. More complex and precise linearization methods exist, implying more advanced mathematics such as Bernstein's basis [20] or Handelman representation of polynomials [21]. Intervalization is clearly faster than others [11], and its precision-versus-efficiency trade-off may be controlled by several heuristicswhich are detailed in the paper.

Our certified linearization is built on a two-tier architecture: an untrusted oracle uses heuristics to select linearization strategies and a certified procedure applies them to build a correct-by-construction result. Section 3.1 lists these

strategies and their effect on the precision-versus-efficiency trade-off. Section 3.2 details the design of our certified procedure and of our oracle. It also illustrates our lightweight handling of partitions using CPS in our certified procedure.

3.1 Our List of Interval-Based Strategies

Constant Intervalization. Our fastest strategy applies an intervalization operator of the abstract domain. Given a polynomial p, this operator, written $^{\sharp}\pi(p)$, overapproximates p by an interval where affine terms are reduced to constants. More formally, $^{\sharp}\pi(p)$ is a computation of $\mathcal{R}(^{\sharp}D, \mathbb{Z}^{2}_{\infty})$ such that if $^{\sharp}U \xrightarrow{^{\sharp}\pi(p)} [n_{1}, n_{2}]$, then $\gamma(^{\sharp}d) \subseteq \{d \mid n_{1} \leq \llbracket p \rrbracket d \leq n_{2}\}$. It uses a naive interval domain, built on the top of the polyhedral domain. Arithmetic operations + and \times are approximated by corresponding operations on intervals: $[n_{1}, n_{2}] + [n_{3}, n_{4}] \triangleq [n_{1} + n_{3}, n_{2} + n_{4}]$ and $[n_{1}, n_{2}] \times [n_{3}, n_{4}] \triangleq [\min(E), \max(E)]$ where $E = \{n_{1}.n_{3}, n_{1}.n_{4}, n_{2}.n_{3}, n_{2}.n_{4}\}$.

Ring Rewriting. A weakness of operator $^{\sharp}\pi$ is its sensitivity to ring rewriting. For instance, consider a polynomial p_1 such that $^{\sharp}\pi(p_1)$ returns [0,n], $n \in \mathbb{N}^+$. Then $^{\sharp}\pi(p_1-p_1)$ returns [-n,n] instead of the precise result 0. Such imprecision occurs in barycentric computations such as $p_2 \triangleq p_1 \times t_1 + (n-p_1) \times t_2$ where affine terms t_1, t_2 are bounded by $[n_1, n_2]$. Indeed $^{\sharp}\pi(p_2)$ returns $2n.[n_1, n_2]$ instead of $n.[n_1, n_2]$. Moreover, if we rewrite p_2 into an equivalent polynomial $p_2' \triangleq p_1 \times (t_1-t_2) + n.t_2$, then $^{\sharp}\pi(p_2')$ returns $n.[2.n_1-n_2,2.n_2-n_1]$. If $n_1>0$ or $n_2<0$, then $^{\sharp}\pi(p_2')$ is strictly more precise than $^{\sharp}\pi(p_2)$. The situation is reversed otherwise. Consequently, our oracle begins by simplifying the polynomial before trying to factorize it conveniently. But as illustrated above, it is difficult to find a factorization minimizing $^{\sharp}\pi$ results. We give more details on the ring rewriting heuristics of our oracle in the following.

Sign Partitioning. In order to find more precise bounds of a polynomial p than those given by $^{\sharp}\pi(p)$, we may split the current abstract state $^{\sharp}d$ into a partition $(^{\sharp}d_i)_{i\in I}$ according to the sign of some affine subterms of p, such that each cell $^{\sharp}d_i$ may lead to a distinct affine interval $[t_{i,1},t_{i,2}]$. Finally, $^{\sharp}\dashv 0\bowtie p$ is overapproximated by computing the join of all $^{\sharp}\dashv 0\bowtie [t_{i,1},t_{i,2}]$.

For example, given an affine term t and a polynomial p' such that ${}^{\sharp}\pi(p')$ returns $[n'_1, n'_2]$, if $0 \le t$ then $p' \times t \in [n'_1, t, n'_2, t]$, otherwise $p' \times t \in [n'_2, t, n'_1, t]$. When the sign of t is known, sign partitioning allows to discard one of these two cases and thus gives a fast affine approximation of $p' \times t$. The main drawback of sign partitioning is a worst-case exponential blow-up if applied systematically.

Let us illustrate sign partitioning for the previous barycentric-like computation of p_2' . By convention, our certified procedure partitions the sign of right affine subterms (here, the sign of t_1-t_2). Hence, it founds $p_2' \in [n.t_2, n.t_1]$ in cell $0 \le t_1-t_2$, and $p_2' \in [n.t_1, n.t_2]$ in cell $t_1-t_2 < 0$. When it joins the two cells, $\forall 0 \bowtie p_2'$ is computed as $\forall 0 \bowtie n.[n_1, n_2]$ as we can expect for such a barycentre. Remark that sign partitioning is also sensitive to ring rewriting. In particular, the oracle may rewrite a product of affine terms $t_1 \times t_2$ into $t_2 \times t_1$, in order to discard t_1 instead of t_2 by sign-partitioning.

Focusing. Focusing is a ring rewriting heuristic which may increase the precision of sign partitioning. Given a product $p ext{ } e$

Applied carelessly, focusing may also decrease the precision. Consequently, on products $p'' \times t_2$, our oracle uses the following heuristic which can not decrease the precision: if $0 \le n'_1$, then focus t_2 in center n'_1 ; if $n'_2 \le 0$, then focus t_2 in center n'_2 ; otherwise, do not try to change the focus of t_2 .

Static vs Dynamic Intervalization During Partitioning. Computing the constant bounds of an affine term inside a given polyhedron invokes a costly linear programming procedure. Hence, for a given polynomial p to approximate, we start by computing an environment σ that associates each variable of p with a constant interval: as detailed later, this environment is indeed used by heuristics of our oracle. By default, operator \sharp_{π} is called in *dynamic* mode, meaning that each bound is computed dynamically in the current cell – generated from sign partitioning – using linear programming. If one wants a faster use of operator \sharp_{π} , he may invoke it in static mode, where bounds are computed using σ .

For instance, let us consider the sign-partitioning of $p \triangleq t_1 \times t_2$ in the context $0 < n_1, n_2$ and $-n_1 \le t_2 \le t_1 \le n_2$. In cell $0 \le t_2$, static mode bounds p by $[-n_1.t_2, n_2.t_2]$, whereas dynamic mode bounds p by $[0, n_2.t_2]$. In cell $t_2 < 0$, both modes bound p by $[n_2.t_2, -n_1.t_2]$. On the join of these cells, both modes give the same upper bound. But the lower bound is $-n_1.n_2$ for static mode, whereas it is $\frac{n_1.n_2}{n_1+n_2}(t_2+n_1)-n_1.n_2$ for dynamic mode, which is strictly more precise.

3.2 Design of Our Implementation

For a guard $\sharp \dashv 0 \bowtie p$, our certified procedure first rewrites p into p'+t where t is an affine term and p' a polynomial. This may keep the non-affine part p' small compared with the affine one t. Typically, if p' is syntactically equal to zero, we simply apply the standard affine guard $\sharp \dashv 0 \bowtie t$. Otherwise, we compute environment σ for p' variables and invoke our external oracle on p' and σ . This oracle returns a polynomial p'' enriched with tags on subexpressions. We handle three tags to direct the intervalization: Affine expresses that the subexpression is affine; STATIC expresses that the subexpression has to be intervalized in static mode; INTERV expresses that intervalization is done using only $\sharp \pi$ (instead of sign-partitioning). Our certified procedure checks that p' = p'' using a normalization procedure defined in the standard distribution of CoQ (see [22]). If $p' \neq p''$, our procedure simply raises an error. If p' = p'', it invokes a CPS affine intervalization

Fig. 3. Sign-partitioning for $p \times t$ with continuation ${}^{\dagger}g$

of p'' for continuation $\lambda[t_1, t_2], \exists 0 \bowtie [t_1 + t, t_2 + t]$. The next paragraphs detail this certified CPS intervalization and then, our external oracle.

Certified CPS Affine Intervalization. We implement and prove our affine intervalization using the CPS technique described in Section 2.3. On polynomial p'' and continuation $^{\dagger}g$, the specification of our CPS intervalization is

$$\varepsilon \sqcap {\bigcap}_{\llbracket t_1,t_2 \rrbracket} \vdash \left\{ d \, | \, t_1 \leq \llbracket p^{\prime \prime} \rrbracket d \leq t_2 \rrbracket \right\}; g[t_1,t_2]$$

The ε case corresponds to a failure of our procedure: typically, a subexpression is not affine as claimed by the external oracle. In case of success, the procedure selects non-deterministically some affine intervals $[t_1,t_2]$ bounding p'' before merging continuations on them. The procedure is implemented recursively over the syntax of p''. Figure 3 sketches the implementation and the specification of the sign-partitioning subprocedure. The figure deals with a particular case where p'' is a polynomial written $p \times t$ with t affine. In the implementation part, boolean static indicates the mode of $^{\sharp}\pi$. In static mode, we indeed factorize the computation of $^{\sharp}\pi$ on both cells of the partition.

Our linearization procedure is written in around 2000 CoQ lines, proofs included. Among them, the CPS procedure and its subprocedures take only 200 lines. The bigger part – around 1000 lines – is thus taken by arithmetic operators on interval domains (constant and affine intervals).

Design of Our External Oracle. Only fast strategies may be tractable on big polynomials. Therefore, our external oracle may select systematically static constant intervalization on big polynomials. Otherwise, it ranks variables according to their priority to be discarded by sign-partitioning. Then, it factorizes variables with the highest priority. The priority rank is mainly computed from the size of intervals in the precomputed environment σ : unbounded variables must not be discarded whereas variables bounded by a singleton are always discarded by static intervalization. Our oracle also tries to minimize the number of distinct variables that are discarded: variables appearing in many monomials have a higher priority. The oracle also interleaves factorization with focusing. Our oracle is written in 1300 lines of OCAML code.

4 Conclusion & Perspectives

We extended the VPL with certified handling of non-linear multiplication by a modular and novel design. Our computations are performed by an untrusted oracle delivering a certificate to a certified front-end. Our proofs use diagrammatic constructs based on stepwise refinement calculus. Refinement proofs are finally made clear and concise by the computations of Weakest-Liberal-Preconditions.

Our linearization procedure is able to give a fast over-approximation of polynomials thanks to variable intervalization. The precision is increased by domain partitioning (implicitly done with a Continuation-Passing-Style design) and the dynamic computation of bounding affine terms, allowing to finely tune the precision-versus-efficiency trade-off in the oracle. More sophisticated linearization methods such as Bernstein polynomials or Handelman representation offer the guaranty to converge, meaning that their result get more precise as we give them time. However, they currently require heavy computation costs that, added with the already expensive polyhedral operators, seem too massive to be exploited in Verasco. Such linearizations must first be algorithmically refined before being usable in abstract interpreters.

Because floating arithmetic would make us explicitly handle error terms at each operation, the VPL is for now limited to integers, and so is our linearization. Our implementation also lacks other operators such as division or modulo. For these reasons, it is hard to evaluate our method on real-life programs. Currently, our tests are limited to small handmade examples focusing on classes of mathematical problems, such as parabola or barycentric approximations. On these cases, our oracle is able to give much more precise approximations than the Verasco interval domain.

Figure 1 sketches how we certified a toy analyzer from simple big-steps semantics: we simply interpret the operators of concrete semantics in abstract semantics. Appendix A.1 details how this toy analyzer handles alarms in the style of Verasco. We may wonder whether our approach scales up on a complex language like CompCert C. In particular, CompCert semantics is not a simple big-steps one. For instance, it distinguishes between a diverging program that do not invoke any system call and a diverging program that invokes some. Such a distinction cannot be done by our concrete semantics. However, such a feature does not seem necessary to the correctness of Verasco analysis, since such programs do not have any undefined behavior. Hence, our approach would introduce an abstraction over CompCert semantics which should even ease the proof of the analyzer.

Acknowledgements. We would like to thank Alexis Fouilhé, Michaël Périn and David Monniaux for their continuous feedback all along this work. We also thank the members of the Verasco project for their motivating interaction.

References

- Boulmé, S., Alexandre, M.: Refinement to certify abstract interpretations, illustrated on linearization for polyhedra. In: ITP. Volume 9236 of LNCS., Springer (2015)
- 2. The Coq Development Team: The Coq proof assistant reference manual version 8.4. INRIA. (2012-2014)
- Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, ACM (1977)
- Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, ACM (1978)
- Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: VMCAI. Volume 3855 of LNCS., Springer (2006)
- Fouilhé, A., Monniaux, D., Périn, M.: Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra. In: SAS. Volume 7935., Springer (2013)
- 7. Fouilhé, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract domains. In: VSTTE. Volume 8471 of LNCS., Springer (2014)
- 8. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C static analyzer. In: POPL, ACM (2015)
- 9. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM **52**(7) (2009)
- Besson, F., Jensen, T.P., Pichardie, D., Turpin, T.: Certified result checking for polyhedral analysis of bytecode programs. In: TGC. (2010) 253–267
- 11. Maréchal, A., Périn, M.: Three linearization techniques for multivariate polynomials in static analysis using convex polyhedra. Technical Report TR-2014-7, Verimag Research Report (july 2014)
- 12. Back, R.J., von Wright, J.: Refinement calculus a systematic introduction. Graduate texts in computer science. Springer (1999)
- 13. Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic Computation ${\bf 6}(3\text{-}4)$ (1993)
- 14. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. TCS **277**(1-2) (2002)
- Spiwack, A.: Abstract interpretation as anti-refinement. CoRR abs/1310.4283 (2013)
- Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8) (1975) 453–457
- Wadler, P.: Monads for functional programming. In: AFP. Volume 925 of LNCS., Springer-Verlag (1995)
- 18. Boulmé, S., Maréchal, A.: A refinement calculus to certify impure abstract computations of the Verimag Polyhedra Library documentation and Coq+OCaml sources. http://www-verimag.imag.fr/~boulme/vpl201503 (march 2015)
- 19. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers. In: ESOP'05. Volume 3444 of LNCS. (2005)
- 20. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric Design **29**(6) (2012)
- Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pacific Journal of Mathematics 132(1) (1988)

- 22. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: TPHOL. (2005) $98\hbox{--}113$
- 23. Liang, S., Hudak, P.: Modular denotational semantics for compiler construction. In: ESOP. Volume 1058., Springer (1996) 219–234
- 24. Braibant, T., Pous, D.: Deciding Kleene Algebras in Coq. Logical Methods in Computer Science 8(1) (2012)
- 25. Boulmé, S.: Intuitionistic refinement calculus. In: TLCA. (2007)

A A Lightweight Refinement Calculus in Coq

Our implementation in CoQ reformulates Section 2 with a more computational representation of binary relations. Following this idea, Appendix A.1 and Appendix A.2 present these representation changes. At last, Appendix A.3 present our datatypes for correctness diagrams of abstract computations. Appendices A.1 and A.3 also detail how the framework is adapted in order to handle alarms during the analysis.

A.1 Representations of Abstract Computations

A relation R of $\mathcal{R}(A,B)$ can be equivalently seen as the function of $A\to\mathcal{P}(B)$ given by $\lambda x, \{y\,|\,x\overset{R}\to y\}$. This curryfied representation is the basis of our representations for abstract computations. Indeed, we need to provide a CoQ representation of $\mathcal{R}(^{\sharp}D,^{\sharp}D)$ that can be turned into an OCAML type $^{\sharp}D\to^{\sharp}D$ at extraction. This is achieved by axiomatizing in CoQ the type " $\mathcal{P}(^{\sharp}D)$ " as " $^{\sharp}D$ " where "?" is the type transformer of may-return monads introduced in [7] and recalled below. More generally, impure abstract computations of $\mathcal{R}(A,B)$ in Figure 2 are actually expressed in our CoQ development as functions of $A\to ?B$ in a given may-return monad. Indeed, the interface of may-return monads also allows to hide data-structure details – such that handling of alarms – for the correctness proof of abstract computations. The next paragraphs detail these ideas.

Definition 2 (May-return Monad). For any type A, type ?A represents impure computations returning values of type A. Type transformer "?." is equipped with a monad [17] providing a may-return relation [7]

- Operator \gg =_{A,B}: ?A → (A → ?B) → ?B encodes OCAML "let $x = k_1 \text{ in } k_2$ " as " $k_1 \gg$ = $\lambda x, k_2$ ".
- Operator $\varepsilon_A: A \to ?A$ lifts a pure computation as an impure one.
- Relation $\equiv_A: ?A \rightarrow ?A \rightarrow \text{Prop}$ is a congruence (w.r.t. >>=) which represents equivalence of semantics between impure computations. Moreover, operator >>= is associative and admits ε as neutral element (w.r.t. \equiv).
- Relation \leadsto_A : $?A \to A \to \text{Prop}$, where " $k \leadsto a$ " means that "k may return a". This relation must be compatible with \equiv_A and satisfies the axioms

$$\varepsilon a_1 \leadsto a_2 \implies a_1 = a_2$$
 $k_1 \gg = k_2 \leadsto b \implies \exists a, k_1 \leadsto a \land k_2 a \leadsto b$

Typically, simple transformers over a global state have a denotation in the state monad defined in figure 4, using S as type of states.

Impure Computations and May-return Monads. Abstraction of " $\mathcal{P}(A)$ " as type "?A" is detailed on Figure 5. Conversely, for any may-return monad, a computation k of $A \to ?B$ represents a relation of $\mathcal{R}(A,B)$ defined by $d \stackrel{k}{\to} d' \triangleq k d \leadsto d'$. Given k_1 and k_2 in $^{\sharp}D \to ^{\sharp}D$, then " $\lambda x, (k_1 \ x) \gg k_2$ " corresponds to a subrelation of " $k_1 \cdot k_2$ ". Formally, our CoQ implementation departs from Section 2 when

$$?A \triangleq S \rightarrow A \times S$$
 $k_1 \equiv k_2 \triangleq \forall s, (k_1 s) = (k_2 s)$ $k \leadsto a \triangleq \exists s, \text{fst } (k s) = a$ $\varepsilon a \triangleq \lambda s, (a, s)$ $k_1 \gg k_2 \triangleq \lambda s, \text{let } (a, s_1) = (k_1 s_0) \text{ in } (k_2 a s_1)$

Fig. 4. The state-transformer instance of may-return monads

$$?A \triangleq \mathcal{P}(A) \qquad k_1 \equiv k_2 \triangleq \forall x, x \in k_1 \Leftrightarrow x \in k_2 \qquad k \leadsto a \triangleq a \in k \qquad \varepsilon \ a \triangleq \{a\}$$
$$k_1 \gg k_2 \triangleq \bigcup_{a \in k_1} (k_2 \ a)$$

Fig. 5. Predicate instance of may-return monads

we compose abstract computations, because we use operator ">="" instead of the less precise "·", but this does not differ a lot in practice.

VPL is parametrized by a *core* may-return monad which axiomatizes external computations. This monad avoids a potential unsoundness by expressing that external oracles are not pure functions, but encode relations. It is instantiated at extraction by providing the identity implementation given on Figure 6. Of course, the implementation of the core monad remains hidden for our CoQ proofs: they are thus valid for any instance of a may-return monad.

Alarm Handling in the Analyzer. Our toy analyzer, specified on Figure 1, handles alarms in the style of VERASCO. On a potential error, it does not stop its analysis, but writes an alarm – represented here as a value of type \mathtt{alarm} – and continues the analysis. Technically, this corresponds to lift the core monad through a writer monad transformer [23]. Actually, we assume that the core monad has already an operation to write alarms 'write: $\mathtt{alarm} \to {}^c$?unit which is efficiently extracted as OCAML external code. Our alarm writer monad thus only encodes the underlying list of alarms as a boolean: true corresponds to an empty list of alarms. It is defined as Figure 7 where alarm writer (resp. core) constructs are prefixed by a "w" (resp. "c"). The implementation of ${}^w \!\!\!\!\sim \!\!\!\!\!\sim \!\!\!\!\!> means that the formal correctness of abstract computations with at least one alarm holds trivially. Hence, on a <math>{}^t \!\!\!\!\! \mathbb{K}$ diagram, an abstract computation diverges (i.e. produces no result) as soon as it produces an alarm, whereas in the actual implementation, it produces a result which may be used to find more alarms (without formal guarantee on their meaning).

Figure 7 also defines operator lift_A: ${}^c?A \to {}^w?A$. Using lift, it is straightforward to lift VPL abstract domains with computations in the core monad to abstract domains with computations in the alarm writer monad. At last, operator w write_A: alarm $\to A \to {}^w?A$, such that w write m a writes alarm m and returns value a, is invoked in the implementation of ${}^{\dagger}\mathbb{K}$ assert command.

c
? $A \triangleq A$ $k_{1} \cong k_{2} \triangleq k_{1} = k_{2}$ $k \hookrightarrow a \triangleq k = a$ ${}^{c} \approx a \triangleq a$ $k_{1} \hookrightarrow k_{2} \triangleq k_{2} k_{1}$

Fig. 6. Identity implementation of the core monad

$${}^{w}?A \triangleq {}^{c}?(A \times \texttt{bool}) \qquad k_{1} \, {}^{w} \equiv k_{2} \, \triangleq \, k_{1} \, {}^{c} \equiv k_{2} \qquad k \, {}^{w} \leadsto a \, \triangleq \, k \, {}^{c} \leadsto (a, \texttt{true})$$

$${}^{w} \varepsilon \, a \, \triangleq \, {}^{c} \varepsilon \, (a, \texttt{true})$$

$$k_{1} \, {}^{w} \ggg k_{2} \, \triangleq \, k_{1} \, {}^{c} \ggg = \lambda (a_{1}, l_{1}), (k_{2} \, a_{1})^{c} \ggg = \lambda (a_{2}, l_{2}), \, {}^{c} \varepsilon \, (a_{2}, l_{1} \wedge l_{2})$$

$$\texttt{lift} \, k \, \triangleq \, k \, {}^{c} \ggg = \lambda a, \, {}^{c} \varepsilon \, (a, \texttt{true}) \qquad {}^{w} \texttt{write} \, m \, a \, \triangleq \, {}^{c} \texttt{write} \, m \, {}^{c} \ggg = \lambda _, \, {}^{c} \varepsilon \, (a, \texttt{false})$$

Fig. 7. Alarm writer monad and its specific operators

In summary, alarm writer monad instantiates our notion of analyzer correctness into "if the analyzer terminates without raising any alarm, then the analyzed program has no runtime error". Thanks to our compositional design through monads, reasonings on alarm handling appear only in the implementation of the alarm writer monad. Indeed, for ${}^{\dagger}\mathbb{K}$ diagrams, raising an alarm is a particular case of failure in the analysis.

A.2 Representation of concrete computations

We consider the issue to mechanize refinement proofs of \mathbb{K} computations. Definition of \mathbb{K} in Section 2.1 uses operators inspired from regular expressions. Formally, \mathbb{K} embeds the Kleene algebra⁵ of $\mathcal{R}(D,D)$: if K_1 and K_2 are in $\mathcal{R}(D,D)$, then K_1 ; $K_2 = K_1 \cdot K_2$. However, \mathbb{K} do not satisfies itself all properties of a Kleene algebra. In particular, ";" has two distinct left-zeros \bot and $\rlap/$. Thus, it has no right-zero. This forbids to apply directly existing CoQ tactics for Kleene algebras[24].

Like in standard refinement calculus [12], we simplify refinement proofs by computations of weakest-preconditions [16]. More exactly, we use weakest-liberal-preconditions (WLP) because they appear naturally in correctness diagram of abstract computations (as this will be illustrated by Figure 10 below). Fundamentally, this comes from the fact that weakest-liberal-preconditions do not aim to ensure termination of programs – like our static analyzes – on the contrary to original weakest-preconditions of Dijkstra.

Definition 3 (WLP). Given
$$K \in \mathcal{R}(D, D_{\frac{1}{4}})$$
, the WLP of K , noted here $[K]$, is a function of $\mathcal{P}(D) \to \mathcal{P}(D)$ defined by $[K]P \triangleq \{d \in D \mid \forall d' \in D_{\frac{1}{4}}, d \xrightarrow{K} d' \Rightarrow d' \in P\}$

⁵ A Kleene algebra is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It generalizes the operations known from regular expressions: the set of regular expressions over an alphabet is a *free* Kleene algebra.

Simplifying Refinement Goals by WLP. The main benefit of WLP is to propagate function computations through sequences of relations. Indeed, WLP transforms a sequence into a function composition: $[K_1; K_2]P = [K_1]([K_2]P)$. Hence, it avoids existential quantifier of " $x \xrightarrow{K_1; K_2} z$ " definition (i.e. $\exists y, x \xrightarrow{K_1} y \land y \xrightarrow{1K_2} z$) which is tedious to handle in proofs. Moreover, given f a function of type $D \to D$, $[\uparrow f]P = \{d \mid f(d) \in P\}$. This allows for instance to compute $[\uparrow f_1; \uparrow f_2]P$ as $\{d \mid f_2(f_1(d)) \in P\}$. An other benefit of WLP is to perform an implicit normalization of computations, i.e. we have $[K]P = [\downarrow K]P$.

We embed WLP computations in refinement proofs using the equivalence between $K_1 \sqsubseteq K_2$ and $\forall P, [K_2]P \subseteq [K_1]P$. We list below WLP of main guarded-commands:

$$[\bot]P = D \qquad [\mbox{\langle}]P = \emptyset \qquad [\varepsilon]P = P$$
$$[\vdash P']P = P' \cap P \qquad [\dashv P']P = (D \setminus P') \cup P$$
$$\left[\bigsqcup_{a \in A} K_a\right]P = \bigcap_{a \in A} [K_a]P \qquad \left[\prod_{a \in A} K_a\right]P = \bigcup_{a \in A} [K_a]P$$

In the following, we use a fundamental property of [K]: it is a monotone predicate transformer. This means that if $P_1 \subseteq P_2$ then $[K]P_1 \subseteq [K]P_2$.

A Shallow Embedding of WLP Computations. In the style of [25], we use a shallow embedding of WLP computations. This means that we avoid to introduce abstract syntax trees for \mathbb{K} computations, which would induce many difficulties because of binders in \square and \square operators. Instead, we represent \mathbb{K} computations directly as monotone predicate transformers. In other words, our syntax for \mathbb{K} guarded commands is directly provided by a given set of CoQ operators on monotone predicate transformers (corresponding to some WLP computations).

Actually, by exploiting type isomorphism $\mathcal{P}(D) \to \mathcal{P}(D) \simeq D \to \mathcal{P}(\mathcal{P}(D))$, we encode monotone predicate transformers as functions $D \to \mathbb{P}(D)$ where \mathbb{P} is the monad of monotone predicates of predicate. Indeed, monotone predicates of predicate are simpler and more general than monotone predicate transformers. In particular, all composition operators of predicate transformers can be derived by combining only atomic operators with the \gg operator of monad \mathbb{P} . We illustrate this point on Figure 9: A-indexed meet operator of \mathbb{K} is derived from atomic operator $\overset{A}{\cap}$ of \mathbb{P} .

Figure 8 sketches the CoQ definitions of this monad. An element of type ($\mathbb{P}A$) is a record with two fields: a field app representing a predicate of $\mathcal{P}(\mathcal{P}(A))$, and a field app_monot which is a proof that app is monotone. Here, elements of ($\mathbb{P}A$) are implicitly coerced into functions through field app. In this figure, each record definition generates a proof obligation for the missing field app_monot.

A Lightweight Formalization of \mathbb{K} in Coq. Figure 9 illustrates how we derive guarded-commands of \mathbb{K} from operators of \mathbb{P} monad. We derive in a similar

```
\begin{array}{lll} \texttt{Record} \ \mathbb{P}(\texttt{A}:\texttt{Type}) \ := \ \{ \\ \texttt{app}: > \ (\texttt{A} \to \texttt{Prop}) \to \texttt{Prop}; \\ \texttt{app\_monot}(\texttt{P} \ \mathbb{Q}: \texttt{A} \to \texttt{Prop}): \ \texttt{app} \ \texttt{P} \to (\forall \ \texttt{d}, \ \texttt{P} \ \texttt{d} \to \mathbb{Q} \ \texttt{d}) \to \texttt{app} \ \mathbb{Q} \}. \end{array}
```

$$k_1 \stackrel{\mathbb{P}}{\sqsubseteq} k_2 \triangleq \forall P, (k_2 \, P) \to (k_1 \, P) \qquad \qquad \stackrel{\mathbb{P}}{\varepsilon} a \triangleq \{ \mathsf{app} := \lambda P, (P \, a) \}$$

$$k_1 \stackrel{\mathbb{P}}{\gg} k_2 \triangleq \{ \mathsf{app} := \lambda P, (k_1 \, \lambda a, (k_2 \, a \, P)) \} \qquad \qquad \stackrel{A}{\sqcap} \triangleq \{ \mathsf{app} := \lambda P, \exists a \colon A, (P \, a) \}$$

Fig. 8. Coq definitions for main operators of monad \mathbb{P}

$$\mathbb{K} \triangleq D \to \mathbb{P}D \qquad K_1 \sqsubseteq K_2 \triangleq \forall d, (K_1 d) \stackrel{\mathbb{P}}{\sqsubseteq} (K_2 d) \qquad \uparrow f \triangleq \lambda d, \stackrel{\mathbb{P}}{\varepsilon} (f d)$$

$$K_1 ; K_2 \triangleq \lambda d, (K_1 d) \stackrel{\mathbb{P}}{\Longrightarrow} K_2 \qquad \qquad \prod_{a:A} K_a \triangleq \lambda d, \stackrel{A}{\sqcap} \stackrel{\mathbb{P}}{\Longrightarrow} \lambda a : A, (K_a d)$$

Fig. 9. Coq definitions for main K operators

way operators for unbounded join (operator \sqcup), binary join and meet, assume (operator \dashv) and assert (operator \vdash).

With this representation change, a relation Q in $\mathcal{R}(D,D)$ is now embedded in \mathbb{K} as $\overline{Q} \triangleq \bigsqcup_{d' \in D} \exists \{d \mid d \xrightarrow{Q} d'\}; d'$. We can thus still express Hoare specifications (P,Q) of $\mathcal{P}(D) \times \mathcal{R}(D,D)$ by $\vdash P; \overline{Q}$. Hence, we express unbounded iteration by a meet over inductive invariants as explained in Section 2.1.

On the contrary to [25], we do not proved in CoQ the properties of \mathbb{K} algebra. On refinement goals, we let CoQ computes weakest-preconditions and simply solve the remaining goal with standard CoQ tactics. This gives us well-automated proof scripts in practice. Thus, CoQ code for \mathbb{K} operators (with \mathbb{P} included) remains very small (around 150 lines, proofs and comments included).

A.3 Representations of Correctness Diagrams

The CoQ definition of $^{\dagger}\mathbb{K}$ datatype, sketched in Figure 10, is actually parametrized by a structure of may-return monad: abstract computations are functions of $^{\sharp}D \to ^{\sharp}D$. Here, $^{\sharp}D$ equipped with its operators (satisfying the interface given at Figure 2) is also a parameter of the definition. Hence, our modular design allows to have abstract computations that do handle alarms, like in our toy analyzer, or that do not, like in our linearization procedure. Indeed, in abstract interpreters, detection of runtime errors (and handling of alarm) is generally done at the top-level interpreter of the analyzer, but not in the internal levels. Our notion of diagram can handle both cases in a generic way.

Hence, Figure 10 defines values of [†]K as triples with a field impl being an abstract computation, a field spec being a concrete computation and a field impl_correct being a proof that impl is correct w.r.t spec. Such proofs are

Fig. 10. Sketch of the CoQ definition for ${}^{\dagger}\mathbb{K}$ datatype

simplified by applying together the WLP embedded in spec and the WLP already designed by [7] which simplifies reasonings with \rightsquigarrow relation.

At last, impl being the only informative field of $^{\dagger}\mathbb{K}$ record, type $^{\dagger}\mathbb{K}$ is exactly extracted as type $^{\sharp}D \to ?^{\sharp}D$. And a $^{\dagger}\mathbb{K}$ command is exactly extracted in OCAML as its underlying abstract computation. Here again, the CoQ code for $^{\dagger}\mathbb{K}$ operators (diagrammatic proofs included) is small (around 200 lines, without the implementation of the alarm writer monad).