
HAL Id: hal-01133865
https://hal.science/hal-01133865v1

Preprint submitted on 20 Mar 2015 (v1), last revised 15 Nov 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refinement to certify abstract interpretations,
illustrated on linearization for polyhedra

Sylvain Boulmé, Alexandre Maréchal

To cite this version:
Sylvain Boulmé, Alexandre Maréchal. Refinement to certify abstract interpretations, illustrated on
linearization for polyhedra. 2015. �hal-01133865v1�

https://hal.science/hal-01133865v1
https://hal.archives-ouvertes.fr

Refinement to certify abstract interpretations,
illustrated on linearization for polyhedra?

Sylvain Boulmé and Alexandre Maréchal

Univ. Grenoble-Alpes, VERIMAG, F-38000 Grenoble, France
{sylvain.boulme,alex.marechal}@imag.fr

Abstract. Our concern is the modular development of a certified static
analyzer in Coq: we extend a certified abstract domain of convex poly-
hedra with a linearization procedure approximating polynomial expres-
sions. In order to help such a development, we propose a proof framework,
embedded in Coq, that implements a refinement calculus. It allows to
hide for proofs several low-level aspects of the computations on abstract
domains. Moreover, refinement proofs are naturally simplified thanks to
computations of weakest preconditions.

1 Introduction

This paper presents two contributions: first, a certified linearization for an ab-
stract domain of convex polyhedra, approximating polynomials by affine con-
straints ; second, a refinement calculus, helping us to mechanize this proof in
Coq [1]. We detail below the context and the features of these two contributions.

1.1 A certified linearization for the abstract domain of polyhedra

We consider the certification of a static analyzer, which aims to ensure absence
of undefined behaviors such as division by zero or invalid memory access in an
input source program. Such an analyzer computes for each program point an
invariant: a property that the state at that point must satisfy in all executions.
In abstract interpretation [2], invariants are values of datatypes called abstract
domains. An abstract domain is a syntactic class of properties on memory states.
For instance, convex polyhedra [3] are conjunctions of affine constraints written∑
i aixi ≤ b where ai, b ∈ Q are scalar values and xi are integer program

variables. The abstract domain of convex polyhedra is able to capture relations
between program variables (e.g. x + 2 ≤ y + x − 2z). However, it cannot deal
directly with non-linear relations, e.g. x2 − y2 ≤ x× y. Thus, linearization tech-
niques are necessary to analyze programs with non-linear arithmetic.

We focus on a linearization technique named intervalization [4], which re-
places some variables in a non-linear product by intervals of constants. For in-
stance, if the analysis leads to a state where x ∈ [2, 10], then guard x × y ≤ z

? This work was partially supported by ANR project VERASCO (INS 2011).

http://verasco.imag.fr/

2 Sylvain Boulmé and Alexandre Maréchal

can be over-approximated by [2, 10] × y ≤ z. The interval is then eliminated
by multiplying it with bounds of y or by analyzing the sign of y, leading to
an affine constraint usable by the polyhedra domain. More complex and precise
linearization methods exist, implying more advanced mathematics such as Bern-
stein’s basis [5] or Handelman representation of polynomials [6]. Intervalization
is clearly faster than others [7], and its precision-versus-efficiency trade off may
be controlled by several heuristics which are detailed in the paper.

Our certified linearization procedure is now part of the Verimag Polyhe-
dra Library (VPL) [8,9], which provides a certified polyhedra domain to Ve-
rasco [10], a certified abstract interpreter for CompCert C [11]. Following
a design proposed in [12], VPL is organized as a two-tier architecture: an un-
trusted oracle – combining Ocaml and C code – performs most complex compu-
tations and outputs a Farkas certificate which is used by a certified front-end to
build a correct-by-construction result. As oracles may have side-effects and bugs,
they are viewed in Coq as non-deterministic computations of an axiomatized
monad [9].

Built on a similar design, our procedure invokes an untrusted oracle that
selects certified strategies for linearizing an arithmetic expression. The proce-
dure then checks the validity of the produced certificate and finally computes
a correct-by-construction over-approximation of the expression. It is convenient
to see such strategies as program transformations, because their correctness is
independent from the implementation of the underlying abstract domain and
is naturally expressed using concrete semantics of programs [7]. Indeed, a lin-
earization is correct if, in the current context of the analysis, any postcondition
satisfied by the output program is also satisfied on the input one (see Figure 1).
In such a case, we say that the input program refines the output one. This paper
aims to explain how refinement helps to develop certified procedures on abstract
domains, and in particular our linearization algorithm.

In a context where x ∈ [0, 10], assignment “r := x.(y−z)+10.z”
is approximated by the affine program on the right hand-side.
Here, operator :∈ performs a non-deterministic assignment.

if y − z ≥ 0 then
r :∈ [10.z, 10.y]

else
r :∈ [10.y, 10.z]

Fig. 1. Intervalization of an assignment involving a sign-analysis

1.2 Certifying computations on abstract domains by refinement

Program refinement consists in decomposing proofs of complex programs by
stepwise applications of correctness-preserving transformations. We provide a
framework in Coq to apply this methodology for certifying the correctness of
computations combining operators of an existing abstract domain. Our frame-
work provides these operators from a Guarded Command Language (GCL) called

Refinement to certify abstract interpretations 3

†K and inspired by [13]. A computation †K in †K comes with two types of se-
mantics: an abstract and a concrete one. Concrete semantics of †K is a trans-
formation on memory states. Abstract semantics of †K is a transformation on
abstract states, i.e. on values of the abstract domain. Concrete semantics of †K
acts as a specification which is implemented by its abstract semantics. Indeed,
a †K computation also embeds a proof that abstract semantics is correct w.r.t.
concrete one: each †K operator thus preserves correctness by definition. Hence,
an Ocaml function is extracted from abstract semantics which is certified to be
correct w.r.t. concrete semantics. In the following, a transformation on abstract
(resp. memory) states is called an abstract (resp. concrete) computation.

Hence, taking a piece of code as input, our linearization procedure outputs
a †K computation. The correctness of the procedure is ensured by proving that
concrete semantics of its input refines concrete semantics of its output. Infor-
mally, it means that the output does not forget any behaviour of the input.
Our procedure being developed in a modular way from small intermediate func-
tions, its proof reduces itself to small refinement steps. Each of this refinement
step involves only concrete semantics. Our framework provides a tactic simplify-
ing such refinement proofs by computational reflection of weakest-preconditions.
The correctness of abstract semantics w.r.t. concrete semantics is ensured by
construction of †K operators.

Our framework supports impure abstract computations, i.e. abstract com-
putations that invokes imperative oracles whose results are a posteriori certi-
fied. It also allows to reason conveniently about higher-order abstract compu-
tations. In particular, our linearization procedure uses a Continuation-Passing-
Style (CPS) [14] in order to partition its analyzes according to the sign of affine
sub-expressions. For example, in Figure 1, the approximation of the non-linear
assignment depends on the sign of y−z. In our procedure, CPS is a higher-order
programming style which avoids to introduce an explicit datatype handling par-
titions: this simplifies both the implementation and its proof. This also illustrates
the expressive power of our framework, since a simple Hoare logic does not suffice
to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of
linearization strategies. In particular, the top-level interpreter of the analyzer
could also be proved correct in this way. Indeed, the interpreter invokes oper-
ations on abstract domains in order to over-approximate any execution of the
program, but its correctness does not depend on abstract domains implementa-
tions (as soon as these implementations are themselves correct). We illustrate
this claim on a toy analyzer, also implemented in Coq.

The mathematics involved in our refinement calculus, relating operational
semantics to the lattice structure of monotone predicate transformers, are well-
known in abstract interpretation theory [15]. In parallel of our work, the idea
to use a refinement calculus in formal proofs of abstract interpreters has been
proposed in [16]. Hence, our contribution is more practical than theoretical. On
the theoretical side, we propose a refinement calculus dedicated to certification
of impure abstract computations. On the practical side, we show how to get a

4 Sylvain Boulmé and Alexandre Maréchal

concise implementation of such a refinement calculus in Coq and how this helps
on a realistic case study: a linearization technique within the abstract interpreter
Verasco.

1.3 Overview of the paper

The implementation of our refinement calculus only consists in around 350 lines
of Coq (proof scripts included). It is a shallow-embedding of our GCL †K, com-
bining computational reflection of weakest-preconditions [17] with monads [18].
Its understanding requires thus advanced knowledge on Coq, monads, refine-
ment calculus and abstract interpretation. However, the main ideas of our re-
finement calculus can be understood in a much simpler setting using binary
relations instead of monads and weakest-preconditions, and classical set theory
instead of Coq.

Section 2 introduces our refinement calculus in this simplified setting, where
computations are represented as binary relations. Section 3 presents our certified
linearization procedure and how its proof benefits from our refinement calculus.
Appendix A explains how we mechanize this refinement calculus in Coq by using
smart encodings of binary relations introduced in Section 2. Our Coq sources
are available on [19].

2 A refinement calculus for abstract interpretation

We consider an analyzer correct if and only if it rejects all programs that may
lead to an error state: due to lack of precision, it may also reject safe programs.
Section 2.1 defines the notion of error state and semantics of concrete compu-
tations. This semantics combines big-steps operational semantics with Hoare
Logic. After introducing the notion of abstract computation and its correct-
ness w.r.t. a concrete computation, Section 2.2 presents our refinement calculus.
Section 2.3 applies our refinement calculus to the certification of higher-order
abstract computations.

2.1 Stepwise refinement of concrete computations

The whole paper abusively uses classical set theory, whereas our formalization
is in the intuitionistic type theory of Coq without axioms. In particular, it
identifies type A → Prop of predicates on A with set P(A). Hence, we note
R(A,B) , P(A×B) the set of binary relations on A×B. Given R of R(A,B),
we note x R−→ y instead of (x, y) ∈ R. We use operators on R(A,A) inspired
from regular expressions: ε is identity relation on A, R1 · R2 is “relation R2

composed with R1” (i.e. x R1 · R2−−−−−→ z , ∃y, x R1−−→ y∧y R2−−→ z) and R∗ is reflexive and
transitive closure of R. We use also notations from the complete lattice structure
of R(A,B). In all the paper, A→ B is a type of total functions.

Refinement to certify abstract interpretations 5

Specifying concrete computations with runtime errors. Given a domain D rep-
resenting the type of memory states, we add a distinguished element to D in
order to represent the error state: we define D , D] { }.

We define the set of concrete computations as K , R(D,D). Hence, an el-
ement K of K corresponds to a (possibly) non-deterministic or non-terminating
computation from an input state of type D to an output state of type D . Typi-
cally, empty relation represents a computation that loops infinitely for any input.
It also represents unreachable code (dead code).

When an error appears, anything may happen at runtime. Hence, we intro-
duce ↓K that normalizes computation K by returning any output in case of
error. It is defined by d ↓K−−→ d′ , (d K−→ d′ ∨ d K−→).

Refinement pre-order and Hoare specifications. We equip K with a refinement
pre-order v such that K1 v K2 iff K1 ⊆↓K2 (or equivalently, ↓K1 ⊆↓K2). Infor-
mally, an abstract analysis correct for K2 is also correct for K1. The equivalence
relation ≡ associated with this pre-order is given by K1 ≡ K2 iff ↓K1 =↓K2.

Hoare logic is a standard and convenient framework to reason about impera-
tive programs. Let us explain why computations inK correspond to specifications
of Hoare logic. A computation K is equivalently given as a Hoare specification
(pK , qK) of P(D) × R(D,D), where pK is a precondition ensuring absence of
error, and qK a postcondition relating the initial state to a non-error final state.
This equivalence is given by pK , D \ {d | d K−→ } and qK , K ∩ (D ×D). The
refinement pre-order K1 v K2 is equivalent to pK2 ⊆ pK1 ∧ qK1∩ (pK2×D) ⊆ qK2 .
Thus, it is equivalent to the usual refinement of specifications in Hoare logic.

Algebra of guarded commands. We now equip K with an algebra of guarded
commands inspired by [13].1 It combines a complete lattice structure with oper-
ators inspired from regular expressions. Here, we present this algebra in the case
where K is represented as R(D,D). In our Coq implementation (given in Ap-
pendix A.2), this representation is changed in order to mechanize refinement
proofs.

First, the complete lattice structure (for v pre-order) is given by the usual
operators ∩ and ∪ that we rather note u and t in order to keep our notations
compatible with the representation-change of Appendix A.2. In our context,
t represents alternatives that may non-deterministically happen at runtime:
the analyzer must consider that each of them may happen. Symmetrically, u
represents some choice left to the analyzer.

Empty relation ∅ is the bottom element and is noted ⊥. Relation D×{ } is
the top element. Given d ∈ D , we implicitly coerce it as the constant relation
D×{d}. Hence, the top element of K lattice is simply noted . Notation ↑ f
explicitly lifts function f of D → D in K.

1 However, in our algebra, v corresponds to “refines”, whereas in standard refinement
calculus it dually corresponds to “is refined by”. Actually, our convention follows
lattice notations of abstract interpretation.

6 Sylvain Boulmé and Alexandre Maréchal

Given a relation K ∈ R(D,D), we define its lifting �K in R(D , D) by
�K , K ∪ {(,)}. This allows us to define the sequence of computations by
K1 ;K2 , K1· �K2, and the unbounded iteration of this sequence (i.e. a loop
with a runtime-chosen number of iterations) by K∗ , (�K)∗ ∩ (D ×D).

Given a predicate P ∈ P(D), we define aP , (P×D) u ε. Informally, if P is
satisfied on the current state then aP skips like ε. Otherwise, aP never produces
no output like ⊥. Command aP is called an assumption (or a guard). We also
define the dual notion of assertion as `P , (a¬P ;) t ε. If P is not satisfied
on the current state, then `P produces an error. Otherwise, it skips.

Hence, K provides a convenient language to express specifications: any Hoare
specification (P,Q) of P(D)×R(D,D) is expressed as the computation `P ;Q.
Moreover, refinement allows to express usual Verification Conditions (VC) of
Hoare Logic. For our toy analyzer – described later – we use the usual partial
correctness VC of unbounded iteration: K∗ is equivalent to produce an output
satisfying every inductive invariant I of K.

K∗ ≡
l

I∈{I∈P(D) |Kv Ì;D×I}
`I;D×I

In this equivalence, the v-way corresponds to the soundness of the VC, whereas
the w-way corresponds to its completeness. In our context, such a soundness
proof typically ensures that the specification of an abstract computation is re-
fined by concrete semantics of the analyzed code. In other words, it ensures that
the analysis is correct w.r.t. semantics of the analyzed code.

Example on a toy language. Let t stand for an arithmetic term and c be a
condition over numerical variables with syntax given in Figure 2. The semantics
JtK of t and JcK of c work with a domain of integer memories D , V→ Z where
V is the type of variables. Hence, JtK∈ D → Z and JcK∈ P(D). We omit their
definition here.

Let us now introduce a small imperative programming language named S for
which we will describe a toy analyzer in Section 2.2. The syntax of a S program
s is described on Figure 3 together with its big-steps semantics JsK defined as
an element of K. This semantics is defined recursively on the syntax of s using
guarded commands derived from K. First, we define a c ,a JcK and ` c ,` JcK.
We also use command “x := t” defined as ↑λd.d[x := JtK(d)], where memory
assignment noted “d[x := n]” – for d ∈ D, x ∈ V and n ∈ Z – is defined as the
function λx′ :V, ifx′ = x thenn else d(x′).

At this point, we have defined an algebra K of concrete computations: a lan-
guage that we use to express specifications – for instance, in the form of Hoare
specifications – on abstract computations. This algebra also provides denota-
tions for defining big-steps semantics (like in Figure 3). Hence, K is aimed at
providing an intermediate level between operational semantics of programs and
their abstract interpretations. Next section defines how we certify correctness of
abstract computations w.r.t. K computations.

Refinement to certify abstract interpretations 7

c ::= t1 ./ t2 | ¬c | c1 ∧ c2 | c1 ∨ c2 with ./∈ {=, 6=,≤,≥, <,>}

Fig. 2. Syntax of conditions

s assert(c) x← t s1 ; s2 if(c){s1}else{s2} while(c){s}

JsK `c x := t Js1K ; Js2K ac ; Js1K
t a¬c ; Js2K (ac ; JsK)∗ ;a¬c

Fig. 3. Syntax and concrete semantics of S

2.2 Certification of abstract computations by diagram composition

Rice’s theorem states that the property d K−→ d′ is undecidable. In the theory of
abstract interpretation, we thus approximate K by a computable (terminating)
function]K working on an approximation]D of P(D). Here]D is called an
abstract domain and its relation to P(D) is expressed by a concretization function
γ of]D → P(D). Function]K is called an abstract interpretation of K. Here, we
say simply that]K is an abstract computation.

In this paper, we consider two abstract domains, intervals and convex poly-
hedra, which are associated with the concrete domain D , V → Z involved in
Figure 3.

1. Given Z∞ , Z] {−∞,+∞}, an abstract memory]d of interval domain is
a finite map associating each variable x with an interval [ax, bx] of Z2

∞. Its
concretization is the set of concrete memory states satisfying the constraints
of]d, i.e. γ(]d) , {d ∈ D | ∀x, ax ≤ d(x) ≤ bx}.

2. The concretization of a convex polyhedron]d =
∧
i

∑
j aij .xj ≤ bi, where

aij and bi are rational constants, and xj are integer program variables is
γ(]d) , {d ∈ D |

∧
i

∑
j aij .d(xj)≤bi}.

Correctness diagram of impure abstract computations. In our framework, we
do not prove that abstract computations terminate: we only prove that they
are a sound over-approximation of their corresponding concrete computation.
Moreover, abstract computations may invoke untrusted oracles, whose results
are verified by a certified checker. But, a bug in those oracles may make the whole
computation non-deterministic or divergent. Thus, it is potentially unsound to
consider abstract computations as pure functions. In this simplified presentation
of our framework, we define abstract computations as relations in R(]D,]D).
In order to extract abstract computations from Coq to Ocaml functions, we
improve this representation of abstract computations in Appendix A.1.

We express correctness of abstract computations through commutative dia-
grams represented on the right hand side and defined as follows.

8 Sylvain Boulmé and Alexandre Maréchal

Definition (correctness of abstract computations). An abstract computa-
tion]K ∈ R(]D,]D) is correct w.r.t. a concrete computation K ∈ R(D,D), iff

∀]d,]d′ ∈]D ∀d ∈ D,∀d′ ∈ D ,

]d
]K−→]d′ ∧ d

K−→ d′ ∧ d ∈ γ(]d) ⇒ d′ ∈ γ(]d′)

Note that d′ ∈ γ(]d′) implies itself that d′ 6= .

]d]d′
]K

d

γ

d′
K

γ

Such a diagram thus corresponds to a pair of an abstract computation and
a concrete computation, with a proof that the abstract one is correct w.r.t. the
concrete one. As illustrated on the example below, these diagrams allow to build
compositional proofs that an abstract computation, composed of several simpler
parts, is correct w.r.t. a concrete computation. Diagrams are indeed preserved by
several composition operators, and also by refinement of concrete computations.

As example, consider two abstract computations
]K1 and]K2 which are correct w.r.t. concrete K1
and K2. In order to show that abstract compu-
tation]K1 ·]K2 is correct w.r.t. concrete K, it
suffices to prove that K v K1 ;K2, as illustrated
on the right hand side scheme.

]K1
]K2

γ
K1

γ
K2

γ

= K v K1 ;K2

K

=

In the following, we introduce a datatype noted †K to represent these di-
agrams: a diagram †K ∈ †K represents an abstract computation]K which is
correct w.r.t. its associated concrete computation K. The core of our approach
is to lift guarded-commands on K involved in Figure 3 as guarded-commands
on †K. For instance, our toy analyzer]JsK for s in S is defined similarly to JsK
of Figure 3, but from †K operators instead of K. For a given diagram †K, we
can prove the correctness of abstract computation]K w.r.t. a concrete compu-
tation K ′ simply by proving that K ′ v K. In practice, such refinement proofs
are simplified using a weakest-liberal-precondition calculus (see Appendix A.2).

VPL interface of abstract domains. We derive our guarded-commands on †K
in a generic way from the VPL interface of abstract domains, introduced in
[9] and reformulated here on Figure 4. This interface differs from Verasco’s
one because it allows impure operators.2 Besides its concretization function γ, a
VPL abstract domain]D provides constants]> and]⊥, representing respectively
predicate true and false. It also provides abstract computations]ac and x]:=t of
R(]D,]D), which are respectively correct w.r.t. concrete computations a c and
x := t. It provides operator]t of R(]D×]D,]D), which over-approximates binary
union on P(D). At last, it provides inclusion test]v of R(]D×]D, bool).

2 Coercing a VPL abstract domain into a Verasco one thus remains to assume that
the underlying oracles are observationally pure, see [9].

Refinement to certify abstract interpretations 9

D ⊆ γ(]>) γ(]⊥) ⊆ ∅]d
]ac−−→]d′ ⇒ γ(]d) ∩ JcK ⊆ γ(]d′)

]d
x]:=t−−−−→]d′ ∧ d ∈ γ(]d)⇒ d[x := JtK(d)] ∈ γ(]d′)

(]d1,
]d2)

]t−→]d′ ⇒ γ(]d1) ∪ γ(]d2) ⊆ γ(]d′) (]d1,
]d2)

]v
−→ true⇒ γ(]d1) ⊆ γ(]d2)

Fig. 4. Correctness specifications of VPL abstract domains

Abstract computations of guarded-commands. We now lift each K guarded-
command of Figure 3 into a †K guarded-command. Each †K operator has the
same notation than its corresponding K operator. Below, we associate each con-
crete operator of Figure 3 with an abstract computation. The diagrammatic
proof relating them is straightforward from correctness specifications given at
Figure 4.

Concrete commands a c and x := t are associated with]ac and x]:=t. Con-
crete command K1 ;K2 is associated with]K1 ·]K2 – where]K2 returns]⊥ if the
current abstract state is included in]⊥, or else runs]K2. Concrete K1 t K2 is
lifted by applying operator]t to the results of]K1 and]K2.

Concrete assertion ` c is associated with checking that the result of]a¬c
is included in]⊥: otherwise, the abstract computation fails (in practice, it may
raise an alarm for the user, see Section A.1). Hence, concrete is associated
with abstract computation ∅ (concrete ⊥ is associated with]⊥).

At last, concrete K∗ is associated with an abstract computation which in-
vokes an untrusted oracle proposing an inductive invariant of]K for the current
abstract state. Thus, using inclusion tests,](K∗) checks that the invariant pro-
posed by the oracle is actually an inductive invariant (otherwise, it fails).

2.3 Higher-order programming with correctness diagrams

Our linearization procedure detailed in Section 3.2 illustrates how we use GCL
†K as a programming language for abstract computations. GCL K is our spec-
ification language. Each program †K of †K is associated with a specification K
of K syntactically derived from its code meaning that each †K operator is syn-
tactically associated with the K operator from which it is lifted in the above
paragraph.

Our linearization procedure invokes two other operators of †K. First, an op-
erator which casts †K to a given specification K ′: it requires K ′ v K in order
to produce a new valid †K diagram. This cast operator thus leads to a modu-
lar design of the certified development since it allows stepwise refinement of †K
diagrams. Second, given a computation π of R(]D,A) where A is a given type,
it invokes an operator binding results of π to a function †g of A → †K. This
operator requires a concrete postcondition Q of A → P(D) on the results of
π. In other words, under the condition ∀]d,∀x ∈ A,]d π−→ x ⇒ γ(]d) ⊆ Qx, we de-

10 Sylvain Boulmé and Alexandre Maréchal

fine diagram π†�=Q
†g as abstract computation {(]d1,

]d2) | ∃x,]d1
π−→ x∧]d1

]g x
−−→]d2}

specified by
d
x `Qx ; g x.

Actually, Section 3.2 applies our refinement calculus to certify higher-order
abstract computations. Indeed, our linearization procedure partitions abstract
states in order to increase precision. Continuation-Passing-Style (CPS) [14] is a
higher-order pattern which provides a lightweight and modular style to program
and certify simple partitioning strategies. Let us now detail this idea.

Typically, given an abstract state]d, our linearization procedure invokes a
sub-procedure]f that splits]d into a partition (]di)i∈I and computes a value ri
(of a given type A) for each cell]di. Then, the linearization procedure continues
the computation from (ri,]di) in each cell to finally return the join of all cells.
In other words, from]d,]f computes (ri,]di)i∈I . The main procedure finally
computes]

⊔
i∈I(]g ri]di) – where]g is a given function of A→ R(]D,]D). In order

to avoid explicit handling of partitions, we make]g a parameter of]f to perform
the join inside]f . In this style,]f is of type (A → R(]D,]D)) → R(]D,]D) and
the parameter]g of]f is called its continuation.

However, specifying directly the correctness of such abstract computations is
not obvious because of the higher-order parameter. Actually, we define †f of type
(A → †K) → †K and work with a continuation †g of type A → †K. As we shall
see later, this trick keeps implicit the notion of partition, both in specification
and in implementation.

Similarly, CPS allows to implement some trace-partitioning without requiring
a trace-partitioning domain[20]. Trace-partitioning is used in abstract interpre-
tation because we have (]K1 ·]K3)]t(]K2 ·]K3)]v (]K1

]t]K2)·]K3, but the converse
is not true. Hence, the left side is more precise whereas the right is faster (com-
putation]K3 is factorized). In practice, trace-partitioning strategies select the
left or the right side according to information of the current abstract state. Us-
ing CPS, we define †f , λ†g, (†g †K1) t (†g †K2). Then, the left side derives from
†f λ†K, (†K ; †K3) whereas the right side derives from (†f λ†K, †K) ; †K3.

3 Interval-based linearization strategies for polyhedra

As described in [9], VPL works with affine terms given by the abstract syntax
t ::= n | x | t1 + t2 | n.t where x is a variable, n a constant of Z. We now extend
VPL operators of Figure 4 to support polynomial terms, where “n.t” product is
generalized into “t1 × t2”.

VPL derives assignment operator]:= from guard]a and low-level operators
which do not involve terms but only variables: projection and renaming. It also
derives guard operator from a restricted one where conditions have the form 0 ./ t
where ./∈ {≤,=, 6=}. Hence, we focus on the linearization of the restricted guard
]a0 ./ t, where t is a polynomial. In the following, we use letter p for polynomials
and only keep letter t for affine terms.

Roughly speaking, we approximate a guard]a0 ./ p by guards]a0 ./ [t1, t2]
– where t1 and t2 are affine terms or infinite bounds – such that, in the cur-
rent abstract state, p is included in affine interval [t1, t2]. Approximated guards

Refinement to certify abstract interpretations 11

]a0 ./ [t1, t2] are defined by cases on ./:
./ ≤ = 6=

]a 0./ [t1, t2]]a 0≤ t2]a 0≤ t2∧ t1≤0]a 0<t2∨ t1<0
Affine intervals are computed using heuristics inspired from [4], except that in
order to increase precision, we dynamically split the abstract state]d into a
partition (]di)i∈I according to the sign of some affine subterms. Hence, each
cell]di may lead to a distinct affine interval [ti,1, ti,2]. Finally,]a0 ./ p is over-
approximated by computing the join of all]a0 ./ [ti,1, ti,2] in each cell]di. For
instance, consider a polyhedron]d such that]d ⊆ { (x, y, z) ∈ Z3 | −2 ≤ x ≤ 5}
and the guard]a 0≤x× (y + x) + z. We choose to intervalize the first occurrence
of x by the interval [−2, 5], directly derived from]d. Hence, we partition]d on the
sign of the sub-expression (y+x), leading us to interval [−2(y+x), 5(y+x)] + z
in cell]d ∩ { (x, y, z) ∈ Z3 | 0 ≤ y + x} and [5(y + x),−2(y + x)] + z in cell
]d∩{ (x, y, z) ∈ Z3 | y+x ≤ −1}. Hence, with this strategy]a 0≤x× (y + x) + z
is computed as(

]a0 ≤ y + x ·]a0 ≤ 5(y + x) + z
)
]t
(
]ay + x ≤ −1 ·]a0 ≤ −2(y + x) + z

)
Our certified linearization is built on a two-tier architecture: an untrusted

oracle uses heuristics to select linearization strategies and a certified procedure
applies them to build a correct-by-construction result. Section 3.1 lists these
strategies and their effect on the precision-versus-efficiency trade-off. Section 3.2
details the design of our certified procedure and of our oracle. It also illustrates
our lightweight handling of partitions using CPS in our certified procedure.

3.1 Our list of interval-based strategies

Constant Intervalization. Our fastest strategy applies an intervalization opera-
tor of the abstract domain. Given a polynomial p, this operator, written]π(p),
over-approximates p by an interval where affine terms are reduced to constants.
More formally,]π(p) is a computation of R(]D,Z2

∞) satisfying]d
]π(p)
−−−→ [n1, n2] ⇒

γ(]d) ⊆ {d | n1 ≤ JpKd ≤ n2}. It uses a naive interval domain, built on the
top of polyhedral domain. Arithmetic operations + and × are approximated by
corresponding operations on intervals:

[n1, n2] + [n3, n4] , [n1 + n3, n2 + n4]

[n1, n2]× [n3, n4] , [min(E),max(E)] where E = {n1.n3, n1.n4, n2.n3, n2.n4}

Ring rewriting. A major weakness of]π operator is its sensitivity to ring rewrit-
ings. For instance, consider a polynomial p such that]π(p) returns [0, n] where
n ∈ N+. Then]π(p − p) returns [−n, n] instead of the precise result 0. Such
imprecision occurs in barycentric computations such as p1 , p× t1 +(n−p)× t2
where affine terms t1, t2 are bounded by [n1, n2]. Indeed]π(p1) returns 2n.[n1, n2]
instead of a more precise n.[n1, n2]. Moreover, if we rewrite p1 into an equivalent
polynomial p2 , p×(t1−t2)+n.t2, then]π(p2) returns n.[2.n1−n2, 2.n2−n1]. If

12 Sylvain Boulmé and Alexandre Maréchal

n1 > 0 or n2 < 0, then]π(p2) is strictly more precise than]π(p1). But, if n1 < 0
and n2 > 0, then the situation is reversed.

That’s the reason why our oracle begins by simplifying the polynomial before
trying to factorize it conveniently. But as illustrated above, it is difficult to find
a factorization minimizing]π results. We give more details on the ring rewriting
heuristics of our oracle in the following.

Sign partitioning. Given a polynomial p′ and an affine term t, partitioning ac-
cording to the sign of t gives more precise bounds of p′×t than]π(p′×t). Indeed,
assuming that]π(p′) returns [n′1, n′2], if 0 ≤ t, then p′× t ∈ [n′1.t, n′2.t], otherwise
p′ × t ∈ [n′2.t, n′1.t]. When the sign of t is known, sign partitioning allows to dis-
card one of these two cases and thus gives a fast affine approximation of p′ × t.
Its main drawback is a worst-case exponential blow-up if applied systematically.

Let us illustrate sign partitioning for the previous barycentric-like compu-
tation of p2. As said above, p2 ∈ [n.t2, n.t1] in cell 0 ≤ t1 − t2, whereas p2 ∈
[n.t2, n.t1] in cell t1 − t2 < 0. When we join the two cells, p2 is bounded by con-
stant interval n.[n1, n2] as expected for such a barycentre. Let us remark that
sign partitioning is also sensitive to ring rewritings: for p1, it does not give such
a precise bound.

Another issue with sign partitioning comes from the selection of the affine
term involved in the sign analysis. For instance, on a product of affine terms
t1× t2, sign partitioning discards at least one of the affine terms in the resulting
approximation. Again, selecting the best choice is difficult. By convention, our
certified procedure partitions the sign of the right affine term. Hence, for the
extern oracle, selecting the affine term under partitioning is a particular case of
ring rewriting (e.g. rewriting t1 × t2 into t2 × t1).

Focusing. Focusing is a ring rewriting heuristic which may increase the precision
of sign partitioning. Given a product p , t1 × t2, the focusing of t2 in center n
consists in rewriting p into p′ , n.t1 + t1 × (t2 − n). Thanks to this focusing,
the affine term n.t1 appears whereas t1 would otherwise be discarded by sign
partitioning. Let us simply illustrate the effect of this rewriting when 0 ≤ n ≤ n′1
with t1 (resp. t2) bounded by [n1, n2] (resp. [n′1, n′2]). Sign partitioning bounds p
in affine interval [n1.t2, n2.t2] whereas p′ is bounded by interval [n1.t2 + n.(t1 −
n1), n2.t2−n.(n2−t1)]. The former contains the latter since t1−n1 and n2−t1 are
non-negative. Under these assumptions, the precision is maximal when n = n′1.

Applied carelessly, focusing may also decrease the precision. That’s why on
products p × t where t is bounded by [n1, n2], our oracle uses the following
heuristic which can not decrease precision: if 0 ≤ n1, then focus t in center n1;
if n2 ≤ 0, then focus t in center n2; otherwise, do not try to change focus of t.

Static vs dynamic intervalization during partitioning. Computing the constant
bounds of an affine term (even a variable) inside a given polyhedron invokes
costly linear programming procedures. Hence, for a given polynomial p to ap-
proximate, we start by computing an environment σ that associates each variable

Refinement to certify abstract interpretations 13

of p with a constant interval. This environment indeed helps the oracle to se-
lect a strategy. Moreover, to avoid several runs of similar linear programming
problems,]π operator should be invoked in static mode, instead of the default
dynamic mode. In static mode,]π intervalizes from σ using only interval arith-
metic: this is the fastest but less precise mode. In dynamic mode,]π intervalizes
affine subterms in the current cell (generated from sign partitioning) using lin-
ear programming. In this mode, interval arithmetic is only used on non-linear
subterms.

For instance, let us consider the sign-partitioning of p , t1×t2 in the context
0 < n1, n2 and −n1 ≤ t2 ≤ t1 ≤ n2. In cell 0 ≤ t2, static mode bounds p by
[−n1.t2, n2.t2] whereas, dynamic mode bounds p by [0, n2.t2]. In cell t2 < 0, both
mode bounds p by [n2.t2,−n1.t2]. On the join of these cells, both mode gives
the same upper bound. But lower bound is −n1.n2 for static mode, whereas it
is n1.n2

n1+n2
(t2 + n1)− n1.n2 for dynamic mode, which is strictly more precise.

3.2 Design of our implementation

For a guard]a0 ./ p, our certified procedure first rewrites p into p′ + t where
t is an affine term and p′ a polynomial. This may keep the non-affine part p′
small compared with the affine one t. Typically, if p′ is syntactically equal to
zero, we simply apply the standard affine guard]a0 ./ t. Otherwise, we compute
environment σ for variable of p′ and invoke our extern oracle on p′ and σ. This
oracle returns a polynomial p′′ enriched with tags on subexpressions. We handle
three tags: AFFINE expresses that the subexpression is affine; STATIC expresses
that the subexpression has to be intervalized in static mode; INTERV expresses
that intervalization is done using only]π (instead of sign-partitioning). From
the result p′′ of the oracle, our certified procedure checks that p′ = p′′ using a
normalization procedure for polynomials defined in the standard distribution of
Coq (see [21]). If this is not the case, our procedure simply skips (or raises an
error according to a compile-time option). Otherwise, it invokes a CPS affine
intervalization of p′′ for continuation λ[t1, t2],a 0 ./ [t1 + t, t2 + t]. The next
paragraphs detail this certified CPS affine intervalization and then, our extern
oracle.

Certified CPS affine intervalization. We implement and prove our affine inter-
valization using the CPS technique described in Section 2.3. On polynomial p′′
and continuation †g, the specification of our CPS intervalization is

ε u
l

[t1,t2]
`{d | t1 ≤ Jp′′Kd ≤ t2]} ; g[t1, t2]

The ε case corresponds to a failure of our procedure: typically, a subexpression is
not affine as claimed by the extern oracle. In case of success, the procedure selects
non-deterministically some affine intervals [t1, t2] bounding p′′ before merging
continuations on them. The procedure is implemented recursively over the syntax
of p′′. Figure 5 sketches the implementation and the specification of the sign-
partitioning subprocedure. This latter deals with a particular case where p′′ is

14 Sylvain Boulmé and Alexandre Maréchal

Given †π p of (Z2
∞→ †K)→ †K defined by †π p †g0 ,]π(p) †�=λ[n1,n2],{d |n1≤JpKd≤n2}

†g0
the †K program on the right-hand side
satisfies the specification below:
l

[t1,t2]
`{d | t1 ≤ Jp×tKd ≤ t2} ; g[t1, t2]

if static then
†π p (λ[n1, n2], (a0 ≤ t ; †g[n1.t, n2.t])

t (a t < 0 ; †g[n2.t, n1.t]))
else

(a0 ≤ t ; †π p λ[n1, n2], †g[n1.t, n2.t])
t (a t < 0 ; †π p λ[n1, n2], †g[n2.t, n1.t])

Fig. 5. Sign-partitioning for p×t with continuation †g

a polynomial written p × t with t affine. In the implementation part, boolean
static indicates the mode of]π. In static mode, we indeed factorize computation
of]π on both cells of the partition.

Our linearization procedure is written in around 2000 Coq lines (proofs
included). Among them, the CPS procedure and its subprocedures take only
200 lines. The bigger part – around 1000 lines – is thus taken by arithmetic
operators on interval domains (constant and affine intervals).

Design of our extern oracle. Only fast strategies may be tractable on big poly-
nomials. Hence, our extern oracle may select systematically static constant in-
tervalization on big polynomials. Otherwise, it ranks variables according to their
priority to be discarded by sign-partitioning. Then, it factorizes variables with
the highest priority. The priority rank is mainly computed from the size of in-
tervals in the precomputed environment σ: unbounded variables must not be
discarded whereas variables bounded by a singleton are always discarded by
static intervalization. Our oracle also tries to minimize the number of distinct
variables that are discarded: hence, variables appearing in many monomials have
a higher priority. The oracle also interleaves factorization with focusing. Our or-
acle is written in 1300 lines of Ocaml code.

4 Conclusion & Perspectives

We have extended the VPL with certified handling of non-linear multiplica-
tion by a modular and novel design. Our computations are performed by an
untrusted oracle which delivers a certificate to a certified front-end. Our proofs
use diagrammatic constructs based on stepwise refinement calculus. To improve
the over-approximation precision, the abstract domain is partitioned implicitly
thanks to a Continuation-Passing-Style design. Refinement proofs are finally
simplified by the computations of Weakest-Liberal-Preconditions, making them
clear and concise.

Our linearization procedures is able to give a fast over-approximation of
polynomials thanks to variable intervalization. Precision is increased thanks to
domain partitioning and dynamic computation of bounding affine terms. Hence,
we may finely tune the precision-versus-efficiency tradeoff in our oracle. More

Refinement to certify abstract interpretations 15

sophisticated linearization methods such as Bernstein polynomials or Handel-
man representation offer the guaranty to converge, meaning that their result
get more precise as we let them time. However, they currently require heavy
computation costs that, added with the already expensive polyhedral operators,
seem too massive to be exploited in Verasco. Such linearizations must first be
algorithmically refined before being usable in abstract interpreters.

Because floating arithmetic would make us explicitly handle error terms at
each operation, the VPL is for now limited to integers, as well as our lineariza-
tion. Our implementation also lacks other operators such as division or modulo.
For these reasons, it is hard to evaluate our method on real-life programs. Cur-
rently, our tests are limited to small handmade examples focusing on classes
of mathematical problems, such as parabola or barycentric approximations. On
these cases, our oracle is able to give much more precise approximations than
Verasco interval domain.

Figure 3 sketches how we certified a toy analyzer from a simple big-steps
semantics: we simply interpret the operators of concrete semantics in abstract
semantics. Appendix A.1 details how this toy analyzer handles alarms in the
style of Verasco. We may wonder whether our approach scales up on a com-
plex language like CompCert C. In particular, CompCert semantics is not a
simple big-steps one. For instance, it distinguishes between a diverging program
that do not invoke any system call and a diverging program that invokes some.
Such a distinction cannot be done by our concrete semantics. However, such a
feature does not seem necessary to the correctness of Verasco analysis, since
such programs do not have any undefined behavior. Hence, our approach would
introduce an abstraction over CompCert semantics which should even ease the
proof of the analyzer.

References
1. The Coq Development Team: The Coq proof assistant reference manual – version

8.4. INRIA. (2012-2014)
2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL,
ACM (1977)

3. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, ACM (1978)

4. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: VMCAI. Volume 3855 of LNCS., Springer (2006)

5. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Com-
puter Aided Geometric Design 29(6) (2012)

6. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pacific Journal of Mathematics 132(1) (1988)

7. Maréchal, A., Périn, M.: Three linearization techniques for multivariate polynomi-
als in static analysis using convex polyhedra. Technical Report TR-2014-7, Verimag
Research Report (july 2014)

8. Fouilhé, A., Monniaux, D., Périn, M.: Efficient Generation of Correctness Cer-
tificates for the Abstract Domain of Polyhedra. In: SAS. Volume 7935., Springer
(2013)

16 Sylvain Boulmé and Alexandre Maréchal

9. Fouilhé, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract do-
mains. In: VSTTE. Volume 8471 of LNCS., Springer (2014)

10. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: POPL, ACM (2015)

11. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7) (2009)

12. Besson, F., Jensen, T.P., Pichardie, D., Turpin, T.: Certified result checking for
polyhedral analysis of bytecode programs. In: TGC. (2010) 253–267

13. Back, R.J., von Wright, J.: Refinement calculus - a systematic introduction. Grad-
uate texts in computer science. Springer (1999)

14. Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic Computation
6(3-4) (1993)

15. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS 277(1-2) (2002)

16. Spiwack, A.: Abstract interpretation as anti-refinement. CoRR abs/1310.4283
(2013)

17. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8) (1975) 453–457

18. Wadler, P.: Monads for functional programming. In: AFP. Volume 925 of LNCS.,
Springer-Verlag (1995)

19. Boulmé, S., Maréchal, A.: A refinement calculus to certify impure abstract com-
putations of the Verimag Polyhedra Library – documentation and Coq+OCaml
sources. http://www-verimag.imag.fr/~boulme/vpl201503 (march 2015)

20. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: ESOP’05. Volume 3444 of LNCS. (2005)

21. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right
in Coq. In: TPHOL. (2005) 98–113

22. Liang, S., Hudak, P.: Modular denotational semantics for compiler construction.
In: ESOP. Volume 1058., Springer (1996) 219–234

23. Braibant, T., Pous, D.: Deciding Kleene Algebras in Coq. Logical Methods in
Computer Science 8(1) (2012)

24. Boulmé, S.: Intuitionistic refinement calculus. In: TLCA. (2007)

http://www-verimag.imag.fr/~boulme/vpl201503

Refinement to certify abstract interpretations 17

A A lightweight refinement calculus in Coq

Our implementation in Coq reformulates Section 2 with a more computational
representation of binary relations. Following this idea, Appendix A.1 and Ap-
pendix A.2 present these representation changes. At last, Appendix A.3 present
our datatypes for correctness diagrams of abstract computations. Appendices A.1
and A.3 also detail how the framework is adapted in order to handle alarms dur-
ing the analysis.

A.1 Representations of abstract computations

A relation R of R(A,B) can be equivalently seen as the function of A→ P(B)
given by λx, {y |x R−→ y}. This curryfied representation is the basis of our repre-
sentations for abstract computations. Indeed, we need to provide a Coq rep-
resentation of R(]D,]D) that can be turned into an Ocaml type]D →]D at
extraction. This is achieved by axiomatizing in Coq the type “P(]D)” as “ ?]D”
where “ ?.” is the type transformer of may-return monads introduced in [9] and
recalled below. More generally, impure abstract computations of R(A,B) in Fig-
ure 4 are actually expressed in our Coq development as functions of A → ?B
in a given may-return monad. Indeed, the interface of may-return monads also
allows to hide data-structure details – such that handling of alarms – for the
correctness proof of abstract computations. The next paragraphs detail these
ideas.

Definition of may-return monads. For any type A, type ?A represents impure
computations returning values of type A. Type transformer “ ?. ” is equipped
with a monad [18]:

– Operator �=A,B : ?A → (A → ?B) → ?B encodes Ocaml “letx = k1 in k2”
as “k1 �= λx, k2”.

– Operator ⇑A: A→ ?A lifts a pure computation as an impure one.
– Relation ≡A: ?A→ ?A→ Prop is a congruence (w.r.t. �=) which represents

equivalence of semantics between impure computations. Moreover, operator
�= is associative and admits ⇑ as neutral element.

Last, ?A is equipped with a relation A: ?A→ A→ Prop and we write “k a”
to denote the property that “computation k may return a”. This relation must
be compatible with ≡A and satisfies the following axioms:

⇑a1 a2 ⇒ a1 =a2 k1 �= k2 b ⇒ ∃a, k1 a ∧ k2 a b

Impure computations and may-return monads. Abstraction of “P(A)” as type
“ ?A” is detailed on Figure 6. Conversely, for any may-return monad, a computa-
tion k of A→ ?B represents a relation of R(A,B) defined by d k−→ d′ , k d d′.

VPL is parametrized by a core may-return monad which axiomatizes extern
computations. This monad avoids a potential unsoundness by expressing that

18 Sylvain Boulmé and Alexandre Maréchal

?A,P(A) k1≡k2 , ∀x, x∈k1⇔x∈k2 k a , a∈k ⇑a , {a}

k1 �= k2 ,
⋃
a∈k1

(k2 a)

Fig. 6. Predicate instance of may-return monads

c?A,A k1
c≡k2 , k1=k2 k c a , k=a c⇑a , a k1

c�= k2 , k2 k1

Fig. 7. Identity implementation of the core monad

extern oracles are not pure functions, but encode relations. It is instantiated at
extraction by providing the identity implementation given on Figure 7. Of course,
the implementation of the core monad remains hidden for our Coq proofs: they
are thus valid for any instance of a may-return monad.

Alarm handling in the analyzer. Our toy analyzer, specified on Figure 3, handles
alarms in the style of Verasco. On a potential error, it does not stop its analysis,
but writes an alarm – represented here as a value of type alarm – and continues
the analysis. Technically, this corresponds to lift the core monad through a writer
monad transformer [22]. Actually, we assume that the core monad has already
an operation to write alarms cwrite : alarm → c?unit which is efficiently
extracted as Ocaml extern code. Our alarm writer monad thus only encodes
the underlying list of alarms as a boolean: true corresponds to an empty list of
alarms. It is defined as Figure 8 where alarm writer (resp. core) constructs are
prefixed by a “w” (resp. “ c”). The implementation of w means that the formal
correctness of abstract computations with at least one alarm holds trivially.
Hence, on a †K diagram, an abstract computation diverges (i.e. produces no
result) as soon as it produces an alarm, whereas in the actual implementation,
it produces a result which may be used to find more alarms (without formal
guarantee on their meaning).

Figure 8 also defines operator liftA : c?A→ w?A. Using lift, it is straight-
forward to lift VPL abstract domains with computations in the core monad to
abstract domains with computations in the alarm writer monad. At last, oper-
ator wwriteA : alarm → A → w?A, such that wwritema writes alarm m and
returns value a, is invoked in the implementation of †K assert command.

In summary, alarm writer monad instantiates our notion of analyzer cor-
rectness into “if the analyzer terminates without raising any alarm, then the
analyzed program has no runtime error”. Thanks to our compositional design
through monads, reasonings on alarm handling appear only in the implementa-
tion of the alarm writer monad. Indeed, for †K diagrams, raising an alarm is a
particular case of failure (or, more formally, non-termination) in the analysis.

Refinement to certify abstract interpretations 19

w?A, c?(A×bool) k1
w≡k2 , k1

c≡k2 k w a , k c (a, true)

w⇑a , c⇑(a, true) k1
w�= k2 , k1

c�= λ(a1, l1), (k2 a1)c�=λ(a2, l2), c⇑(a2, l1∧ l2)

lift k , k c�= λa, c⇑(a, true) wwritema , cwritem c�= λ_, c⇑(a, false)

Fig. 8. Alarm writer monad and its specific operators

A.2 Representation of concrete computations

We consider the issue to mechanize refinement proofs of K computations. Defi-
nition of K in Section 2.1 uses operators inspired from regular expressions. For-
mally, K embeds the Kleene algebra3 of R(D,D): if K1 and K2 are in R(D,D),
then K1 ;K2 = K1 · K2. However, K do not satisfies itself all properties of a
Kleene algebra. In particular, “ ;” has two distinct left-zeros ⊥ and . Thus, it
has no right-zero. We can thus not apply directly existing Coq tactics for Kleene
algebras[23].

Like in standard refinement calculus [13], we simplify refinement proofs by
computations of weakest-preconditions [17]. More exactly, we use weakest-liberal-
preconditions (WLP) because they appear naturally in correctness diagram of
abstract computations (as this will be illustrated by Figure 11 below). Funda-
mentally, this comes from the fact that weakest-liberal-preconditions do not aim
to ensure termination of programs – like our static analyzes – on the contrary
to original weakest-preconditions of Dijkstra.

Simplifying refinement goals by WLP. Given K ∈ R(D,D), the WLP of K,
noted here [K], is a function of P(D)→ P(D) defined by:

[K]P , {d ∈ D | ∀d′ ∈ D, d K−→ d′ ⇒ d′ ∈ P}
The interest of WLP is to propagate function computations through sequences
of relations. Indeed, WLP transforms a sequence into a function composition:
[K1 ;K2]P = [K1]([K2]P). Hence, it avoids existential quantifier of relation com-
position defining x K1 ;K2−−−−−→ z as ∃y, x K1−−→ y∧ y �K2−−→ z, which is tedious to handle in
proofs. Moreover, for f of type D → D, [↑f]P = {d | f(d) ∈ P}. This allows for
instance to compute [↑f1 ; ↑f2]P as {d | f2(f1(d)) ∈ P}.

WLP computations allow to simplify refinement proofs, because K1 v K2
is equivalent to ∀P, [K2]P ⊆ [K1]P . We list below WLP of main guarded-
commands: [

`P ′
]
P = P ′ ∩ P

[
aP ′

]
P = (D \ P ′) ∪ P[⊔

a∈A

Ka

]
P =

⋂
a∈A

[Ka]P

[
l

a∈A

Ka

]
P =

⋃
a∈A

[Ka]P

3 A Kleene algebra is an idempotent (and thus partially ordered) semiring endowed
with a closure operator. It generalizes the operations known from regular expressions:
the set of regular expressions over an alphabet is a free Kleene algebra.

20 Sylvain Boulmé and Alexandre Maréchal

Record P(A:Type) := {
app:> (A → Prop) → Prop;
app_monot (P Q:A → Prop): app P → (∀ d, P d → Q d) → app Q}.

k1
Pvk2 , ∀P, (k2 P)→ (k1 P) P⇑a , {app := λP, (P a)}

k1
P�= k2 , {app := λP, (k1 λa, (k2 aP))}

A
u, {app := λP,∃a :A, (P a)}

Fig. 9. Coq definitions for main operators of monad P

In the following, we use a fundamental property of [K]: it is a monotone
predicate transformer. This means that if P1 ⊆ P2 then [K]P1 ⊆ [K]P2.

A shallow embedding of WLP computations. In the style of [24], we use a shal-
low embedding of WLP computations. This means that we avoid to introduce
abstract syntax trees for K computations, which would induce many difficulties
because of binders in

⊔
and

d
operators. Instead, we represent K computations

directly as monotone predicate transformers. In other words, our syntax for K
guarded commands is directly provided by a given set of Coq operators on
monotone predicate transformers (corresponding to some WLP computations).

Actually, by exploiting type isomorphism P(D) → P(D) ' D → P(P(D)),
we encode monotone predicate transformers as functions D → P(D) where P is
the monad of monotone predicates of predicate. Indeed, monotone predicates of
predicate are simpler and more general than monotone predicate transformers.
In particular, all composition operators of predicate transformers can be derived
by combining only atomic operators with the �= operator of monad P. We
illustrate this point on Figure 10: A-indexed meet operator of K is derived from
atomic operator

A
u of P.

Figure 9 sketches the Coq definitions of this monad. An element of type (PA)
is a record with two fields: a field app representing a predicate of P(P(A)), and
a field app_monot which is a proof that app is monotone. Here, elements of (PA)
are implicitly coerced into functions through field app. In this figure, each record
definition generates a proof obligation for the missing field app_monot.

A lightweight formalization of K in Coq. Figure 10 illustrates how we derive
guarded-commands of K from operators of P monad. We derive in a similar
way operators for unbounded join (operator t), binary join and meet, assume
(operator a) and assert (operator)̀.

With this representation change, a relation Q inR(D,D) is now embedded in
K as Q ,

⊔
d′∈Da{d | d

Q
−→ d′} ; d′. We can thus still express Hoare specifications

(P,Q) of P(D)×R(D,D) by `P ;Q. Hence, we express unbounded iteration by
a meet over inductive invariants as explained in Section 2.1.

On the contrary to [24], we do not proved in Coq the properties of K al-
gebra. On refinement goals, we let Coq computes weakest-preconditions and

Refinement to certify abstract interpretations 21

K , D → PD K1 v K2 , ∀d, (K1 d) Pv (K2 d) ↑f , λd, P⇑(f d)

K1 ;K2 , λd, (K1 d) P�= K2
l

a:A

Ka , λd,
A
u P�= λa :A, (Ka d)

Fig. 10. Coq definitions for main K operators

Record †K: Type := {
impl:]D →?]D; spec:K;
impl_correct : ∀]d]d′, (impl]d)]d′ → ∀d, d ∈ γ(]d)→ (spec d γ(]d′)) }.

Fig. 11. Sketch of the Coq definition for †K datatype

simply solve the remaining goal with standard Coq tactics. This gives us well-
automated proof scripts in practice. Thus, Coq code for K operators (with P
included) remains very small (around 150 lines, proofs and comments included).

A.3 Representations of correctness diagrams

The Coq definition of †K datatype, sketched in Figure 11, is actually parametri-
zed by a structure of may-return monad: abstract computations are functions of
]D → ?]D. Here,]D equipped with its operators (satisfying the interface given at
Figure 4) is also a parameter of the definition. Hence, our modular design allows
to have abstract computations that do handle alarms, like in our toy analyzer, or
that do not, like in our linearization procedure. Indeed, in abstract interpreters,
detection of runtime errors (and handling of alarm) is generally done at the top-
level interpreter of the analyzer, but not in the internal levels. Our notion of
diagram can handle both cases in a generic way.

Hence, Figure 11 defines values of †K as triples with a field impl being an
abstract computation, a field spec being a concrete computation and a field
impl_correct being a proof that impl is correct w.r.t spec. Such proofs are
simplified by applying together the WLP embedded in spec and the WLP al-
ready designed by [9] which simplifies reasonings with relation.

At last, impl being the only informative field of †K record, type †K is exactly
extracted as type]D → ?]D. And a †K command is exactly extracted in Ocaml
as its underlying abstract computation. Here again, the Coq code for †K op-
erators (diagrammatic proofs included) is small (around 200 lines, without the
implementation of the alarm writer monad).

	Refinement to certify abstract interpretations, illustrated on linearization for polyhedra
	Introduction
	A certified linearization for the abstract domain of polyhedra
	Certifying computations on abstract domains by refinement
	Overview of the paper

	A refinement calculus for abstract interpretation
	Stepwise refinement of concrete computations
	Certification of abstract computations by diagram composition
	Higher-order programming with correctness diagrams

	Interval-based linearization strategies for polyhedra
	Our list of interval-based strategies
	Design of our implementation

	Conclusion & Perspectives
	A lightweight refinement calculus in Coq
	Representations of abstract computations
	Representation of concrete computations
	Representations of correctness diagrams

