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Holes and cracks in rigid foam films

The classical problem of foam film rupture dynamics has been investigated when surfaces exhibit very high rigidity due to the presence of specific surfactants. Two new features are reported. First a strong deviation to the well-known Taylor-Culick law is observed. Then, crack-like patterns can be visualized in the film; these patterns are shown to appear at a well defined deformation. The key role of surface active material on these features is quantitatively investigated, pointing the importance of surface elasticity to describe these fast dynamical processes, and thus providing an alternative tool to characterize surface elasticity in conditions extremely far from equilibrium. The origin of the cracks and their consequences on film rupturing dynamics are also discussed.

Introduction

Despite its apparent useless character and simplicity, the dynamics of bursting of soap bubbles have fascinated scientists for more than a century. Lucien Bull (1904) made the first images of soap bubble bursts. The first theoretical analysis dates back to Dupré and then to [START_REF] Taylor | The dynamics of thin sheets of fluid .3. Disintegration of fluid sheets[END_REF] and [START_REF] Culick | Comments on a ruptured soap film[END_REF] where they considered the presence of a rim at the edge of a hole created in the liquid film, collecting the liquid during its movement. The constant hole opening velocity V c results from a balance between the rim inertia and surface tension in the film, and is given by V c = 2γ eq /(ρh 0 ), with γ eq the equilibrium surface tension, ρ the liquid density and h 0 the film thickness. These results are in good agreement with stationary experiments performed on liquid sheet [START_REF] Taylor | The dynamics of thin sheets of fluid .3. Disintegration of fluid sheets[END_REF] and has been extensively investigated by [START_REF] Mcentee | Bursting of soap films .i. An experimental study[END_REF] in the case of soap films thicker than 50 nm. More recently, satellite formation during edge retraction (Lhuissier & Villermaux 2009b) and bubble entrapment [START_REF] Bird | Daughter bubble cascades produced by folding of ruptured thin films[END_REF] have been investigated as these behaviors are crucial in many applications. Destabilization of liquid sheets or bubbles indeed arise in many practical situations ranging from the building material industry, when glass sheets are molded, to foam engineering, food processing, biological membrane and environmental science [START_REF] Bird | Daughter bubble cascades produced by folding of ruptured thin films[END_REF]. In these applications, liquids can be viscous or contain surface active materials. In the latter, surface tension becomes a dynamical quantity, which depends on the local surface concentration of surfactants, and thus on the elongation of the surface; this is characterized by the surface elasticity defined as the derivative of surface tension with respect to relative changes in surface area. The effect of surface elasticity has been observed through the development of an aureole surrounding the opening hole and expanding with time [START_REF] Florence | Aureole profile in bursting soap films -Surface-tension and surface relaxation in rapidly compressed monolayers[END_REF][START_REF] Liang | Dynamics of the formation of an aureole in the bursting of soap films[END_REF]Lhuissier & Villermaux 2009a). However, except in the case of very viscous liquid, the opening dynamics always obey Taylor-Culick law, although some deviations have been reported by Mysels [START_REF] Mcentee | Bursting of soap films .i. An experimental study[END_REF][START_REF] Florence | Bursting of soap films. VI. effect of surfactant purity[END_REF], but hardly commented. In this work, we investigate the dynamics of bursting of circular foam films generated from surfactant solutions inducing large surface elasticities and we report for the first time systematic deviations to Taylor-Culick law. A careful analysis allows us to estimate surface elasticity at both large compression and compression rate in good agreement with reported data in the literature. Moreover, unexpected effects of frame size are observed through the appearance of new patterns, reminiscent of fractures or wrinkles in the film.

Experimental set-up

The experimental set-up consists in a circular metallic frame of radius R = 1.5 -11 cm pulled out from a surfactant solution at different velocities to generate films with various thicknesses. The film absolute thickness is determined through an absorption technique measurement [START_REF] Lastakowski | Bridging local to global dynamics of drop impact onto solid substrates[END_REF][START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF] and we denote h 0 the initial average thickness of the film. Film rupture is initiated by approaching a heated needle and is recorded via a high-speed camera (10000 Hz, Photron SA-4). An image sequence is reported in figure 1a, where we measure the radius r of the expanding hole versus time, as shown in figure 1b. Surfactant solutions are produced in a 10%-90% glycerolwater mixture in which a dye (Brilliant Black BN 60%, Sigma, 5g/L) is added. They contain 3.3 g.L -1 of sodium lauryl-dioxyethylene sulfate (SLES, Stepan), 1.7 g.L -1 of cocoamidopropyl betaine (CAPB, Goldschmidt) and myristic acid (MAc, Fluka) in the concentrations C described in table 1. The surface elasticities of similar solutions are well characterized in the literature (Mitrinova et al. 2013a) and span over two orders of magnitude when the concentration C of MAc is varied as reported in table 1. Such elastic moduli are attributed to the surface properties of the adsorbed layer of MAc, whose surface concentration is expected to increase with C up to the saturation of the surface [START_REF] Golemanov | Surfactant mixtures for control of bubble surface mobility in foam studies[END_REF]. At the same time, micelles of the two co-surfactants (SLES and CAPB) help to solubilize the poorly soluble fatty acid. 

Results

Some remarkable features can be underlined. At first, the opening velocity is constant as expected but smaller than predicted by Taylor-Culick law (figure 1b). Moreover, an aureole already described in the past [START_REF] Florence | Aureole profile in bursting soap films -Surface-tension and surface relaxation in rapidly compressed monolayers[END_REF][START_REF] Liang | Dynamics of the formation of an aureole in the bursting of soap films[END_REF]Lhuissier & Villermaux 2009a) is observed through spatial variations of transmitted light, especially for the less rigid interfaces (inset of figure 1b). Then, some dark patterns are observed (see arrows in figure 1c), which we denote cracks in the following. This apparition coincides with a decrease of the opening velocity (figure 1b), the presence of these cracks modifying the bursting dynamics.

The initial opening velocity u 0 is represented in figure 2a as a function of the initial film thickness h 0 for various solutions. Without MAc (solution A of table 1), the velocity follows Taylor-Culick law (•), which is consistent with interfaces of low elasticity. However, in the presence of MAc, the initial velocity is lower than in the previous case. For each MAc concentration, the initial velocity varies with 1/ √ h 0 ∝ V c . For each solution and different thicknesses, we thus extract the initial opening velocity normalized by Culick velocity. This quantity decreases when the MAc concentration increases (figure 2b), that is, for larger surface elastic moduli (Mitrinova et al. 2013a).

During the film opening, orthoradial cracks (perpendicular to the direction of opening) appear in the film (figures 1a and 1c), at a well defined radius of the hole r p . Some specific irregular fold-like patterns and filaments have been previously reported by [START_REF] Mcentee | Bursting of soap films .i. An experimental study[END_REF], although not directly comparable to our observations. For a given solution, figure 3a shows that the ratio r p /R is independent of the frame radius (for R = 1.5 -11 cm) and almost independent of the film thickness (for h 0 = 2 -20 µm). The cracks thus appear for a well-defined critical compression of the interface. Figure 3b shows that this critical compression decreases with MAc concentration and the surface modulus.

Discussion

These two observations concerning the initial opening velocity and the onset compression for cracks can be rationalized following the framework initially proposed by [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF] for the theoretical description of aureoles. They considered that surfactants are insoluble, which is reasonable at the timescale considered here: the duration of the opening R/u 0 , typically 30 ms, is smaller than surfactant desorption time τ . Indeed, although these processes are likely to be dominated by surfactant exchange with micelles in our systems [START_REF] Golemanov | Surfactant mixtures for control of bubble surface mobility in foam studies[END_REF], a lower bound for τ is provided by the diffusion time across the film thickness h 2 0 /D ≈ 40 ms -2 s (for h 0 = 2 -40 µm and D = 10 -10 m 2 /s). Adsorption times longer than 30 ms for myristic acid in these systems have also been reported (Mitrinova et al. 2013b). A compressive shock thus propagates at the surface of the film. The liquid is collected in an extended rim -an aureolevisible in figure 1b (inset) and whose shape depends on surface tension, film thickness and surface elasticity.

Viscous effects have also been neglected. Indeed, as no shear takes place within the film thickness, the characteristic Reynolds number and surface Reynolds numbers read Re = u 0 R/ν 1 and Re s = ρu 0 Rh 0 /κ, respectively, with ν the kinematic bulk viscosity and κ the intrinsic surface viscosity. Surface viscous dissipation can a priori not be neglected if values of κ measured at 0.2 Hz are considered [START_REF] Costa | Rhéologie multi-échelle des mousse liquides[END_REF][START_REF] Golemanov | Surfactant mixtures for control of bubble surface mobility in foam studies[END_REF]). However, surface viscosity is expected to collapse at large frequencies, as shown in experiments and modeling [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF]. Eventually, the observation of a constant initial velocity varying with 1/ √ h 0 ∝ V c (figures 1b and 2) is a key indication that inertia (and not viscous effects) is dominant in this problem. γeq/E0 expected for unidimensional bursting [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF]. Blue dashed line: prediction for the critical radius at which cracks appear rP /R = γeq/E0f (E0/γeq) (equation (4.2). The solid (resp. empty) symbols correspond to the experimental data from figure 2 (resp. figure 3), from which we determine the elastic moduli E0(u0) (resp. E0(cracks)). Same symbols and colors as in figure 2a.

Deviation to Taylor-Culick law

The dynamics of the rim is then controlled by the balance between inertia and surface tension spatial gradient. We assume here that surface elasticity is constant up to a certain compression. In this particular case, the velocity of the aureole front (delimiting the frontier with the zone of undisturbed film whose thickness is still h = h 0 ) reads u f = 2E 0 /(ρh 0 ) = V C E 0 /γ eq , which can be seen as a two dimensional analogous of (compression) velocity. The opening hole velocity can also be determined by solving the self-similar profile of the aureole and applying mass conservation. No analytical solution is provided in the considered radial geometry but numerical resolution shows that

u 0 = V c f (E 0 /γ eq ) (4.1)
with f a decreasing function determined numerically (see appendix A) and reported in figure 4. It is thus still proportional to Taylor-Culick velocity V c and decreases with the interfacial elasticity E 0 , which is consistent with experimental observations of figure 2. From these data and equation (4.1), an interfacial elasticity E 0 (u 0 ) can be deduced (figure 4), which is reported in table 1 as a function of the MAc concentration. These data are compared to measurements of surface moduli E od from the oscillating drop method performed by Mitrinova et al. (2013a). It shows the same qualitative variation with C despite a discrepancy on the absolute values obtained. However, the shrinkage amplitude and the compression timescales differ by several orders of magnitude, and the surfactant monolayer at the interface is expected to be highly non-Newtonian [START_REF] Costa | Rhéologie multi-échelle des mousse liquides[END_REF][START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF].

Crack appearance

Besides, snapshot inspection shows that cracks appear when the compressive surface wave (i.e. the aureole front) reaches the metallic frame of the film. Cracks are thus expected for:

r p R = u 0 u f = γ eq E 0 f E 0 γ eq (4.2)
This prediction, represented in figure 4, is indeed in good agreement with our observations: The hole radius when cracks appear r p increases with the frame radius R and decreases with surface elasticity probed through MAc concentration variations, as shown in figure 3. Eventually, this critical compression does not depend on film thickness h 0 , showing that elasticity is not affected by confinement in the experimental configuration tested.

The surface elasticity E 0 (cracks) can therefore be deduced from the critical radius for crack apparition r p (figure 4), and reported for the different MAc concentration in table 1. In this case, a very good agreement is obtained with the measured value of the surface modulus (Mitrinova et al. 2013a), which confirms that the cracks arise from a compression of the aureole when its front reaches the frame.

Note that the values of surface elasticity deduced from our two methods may differ. This is however expected due to our strong hypothesis of constant elasticity. Indeed, while the aureole front velocity only depends on the surface elasticity at very low compression rate (at the edge of the undisturbed film), the hole opening velocity modeling takes into account the elasticity through large interface compression. For large deformation, it is expected that the constant elasticity model fails: at large compression, the myristic acid surface concentration increases, which should result in larger elasticity as can be inferred from the moduli dependency upon C (Mitrinova et al. 2013a). The effective modulus E 0 (u 0 ) should then deviate more from measurements at small deformations performed by the oscillating bubble technique (Mitrinova et al. 2013a).

In addition, the effect of elasticity has indirect consequences of some features of foam film rupture. For example, no flapping nor transverse destabilization of the rim was observed for our rigid soap films, in contrast to observations on low elasticity films and theoretical predictions (Lhuissier & Villermaux 2009b); however, the reduced rim velocity could prevent the flapping instability to develop and subsequent film atomization (Lhuissier & Villermaux 2009b).

Crack-like patterns

Let us now discuss the observed crack-like patterns. During the fast deformation of the surface, the surfactants behave as an insoluble monolayer, comparable to a lipid monolayer experiencing a compression in a Langmuir trough [START_REF] Lee | Collapse mechanisms of Langmuir monolayers[END_REF]. In this case, above a critical compression, such a monolayer can behave differently depending on its structure. If it is liquid-like, it ejects the molecules in the bulk in the form of vesicles or bilayers. If it is solid-like, it can bend as an elastic sheet or fracture as a fragile material.

Although our experiment does not provide a microscopic characterization of this transient surface structure, the crack pattern can be macroscopically characterized. In particular, even though the cracks are irregularly distributed, a number of cracks per radial segment can be counted; the deduced characteristic length between two cracks denoted λ (figure 1c) is reported in figure 5 as a function of MAc concentration C (a) and film thickness h 0 (b).

The increase of λ with C is expected whatever the mechanism proposed. On the one hand, for higher bulk concentration, solubilization of interfacial surfactants is more difficult, hence a reduced number of vesicles or bilayers are to be expelled. On the other hand, a more concentrated solid-like layer will also exhibit a higher bending modulus and wavelength of elastic ripples are expected to increase with this modulus [START_REF] Cabane | Geometry and physics of wrinkling[END_REF]. The decrease of the characteristic length with the film thickness h 0 is more unexpected. For the solid-like behavior, a thinner elastic sheet will bend more easily than a thicker one, thus exhibiting smaller ripple wavelength when buckled [START_REF] Landau | Elasticity Theory[END_REF], in contrast with our observations. If cracks correspond to monolayer collapse by vesicles formation, it should not be affected by the film thickness. However, when modifying the thickness of the film, we also vary the velocity of compression or shrinkage rate. This parameter induces dynamical structural change in the surfactant monolayers (as it does in bulk crystallization processes for example [START_REF] Cabane | Geometry and physics of wrinkling[END_REF]). Finally, a complete understanding of the origin of these crack-like patterns would require some local high speed imaging structural analysis, which are beyond the scope of the present paper.

The presence of these irregular cracks have direct consequences on hole opening dynamics. Indeed, when the aureole reaches the metallic frame, the hole opening slows down (and even stops for the thinner rigid films) and then irregularly accelerates in the region where the cracks appears. This feature is reported in figure 5c. Moreover, a velocity discontinuity in the liquid is observed, the outer region being at rest whereas the inner region is deformed.

Conclusion

To conclude, we have shown that modifying the chemistry of surfactant solutions can have strong influences on macroscopic dynamical processes, as observed in various situations in foams and foam films [START_REF] Couder | On the hydrodynamics of soap films[END_REF][START_REF] Durand | Relaxation time of the topological T1 process in a twodimensional foam[END_REF][START_REF] Seiwert | Extension of a suspended soap film: A homogeneous dilatation followed by new film extraction[END_REF][START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF][START_REF] Lorenceau | Permeability of aqueous foams[END_REF]. However, we have investigated here this effect under large deformations and in a fast dynamical process, i.e. at large Reynolds numbers, where the effects of molecular scales and surfactants are expected to be negligible.

The initial constant velocity opening dynamics is well described taking into account the surface elasticity of the interfaces and was shown to be reduced at high surface modulus. This may be responsible for the inhibition of rim fragmentation and droplet ejection usually reported in liquid film ruptures (Lhuissier & Villermaux 2009b). Further studies should determine the role of the ejected droplets in rupture propagation in macroscopic foams; the stability of these systems is indeed known to depend dramatically on the surface elastic properties [START_REF] Rio | Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence[END_REF]. However, finite size effects becomes soon crucial: when the elastic compression surface wave reaches the border of the frame, crack-like patterns, where velocity discontinuity are observed, appear in the foam film. Determining the origin of cracks, their microscopic structure, their location and number, and how they control film opening dynamics remain a challenge to tackle.

The authors thank Gilles Simon for his help in setting up the experiment. 

Appendix A

Equations for radial bursting We describe the radial bursting dynamics of a foam film of initial uniform thickness h 0 and include the effect of dynamic surface tension as first proposed by [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF]: the surface tension γ is assumed to depend only on the shrinkage of the surface α which by mass conservation is related to film thickness α = h 0 /h. We denote the surface elasticity E(α) = dγ dα . As viscous terms are negligible, the capillary forces are balanced by the fluid inertia. Variations of fluid velocity across the film are also neglected and equations are averaged over h. These equations can be explicitly solved in the unidimensional case [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF]. However, in the case of radial bursting, a numerical resolution is necessary.

We consider a material element that has initially the position R (i.e. that has Lagrangian variables (R, t)) . At instant t, its position is r(R, t) and its thickness h(R, t) (figure 6a). The fluid velocity is u = ∂r/∂t and the shrinkage is defined as α = h/h 0 ∂r 2 /∂R 2 = (r/R)∂r/∂R. The momentum balance on the fluid element yields ρrh ∂u ∂t = 2r ∂γ ∂r which can be rewritten

∂u ∂t = 2E(α) ρh 0 r R ∂α ∂R = U 2 α r R ∂α ∂R (A 1)
in which we have defined the characteristic velocity

U α = 2E(α) ρh 0 .
Following the analysis of [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF], we are looking for self-similar solutions in the form r/t = f (R/t). We define the variables W = R 2 /(2t 2 ) and w = r 2 /(2t 2 ) (w and W have the dimensions of square velocities) and we expect w = w(W ). The relative shrinkage is also set by α = dw/dW . Starting from equation (A 1), we find

W w 1 - W w dw dW dw dW = U 2 α=dw/dW - 2W 2 w d 2 w dW 2 (A 2)
A first information on the film dynamics can be inferred from this equation: Far from the hole, i.e. for large W , the film should remain undisturbed, which corresponds to w = W and dw/dW = 1. This condition combined with equation (A 2) yields

U 2 α=1 -2W 2 w d 2 w
dW 2 = 0, which implies that the matching with the disturbed film can only be done at W = W 0 = U 2 α=1 /2. The velocity of the front of the aureole, or extended rim corresponding to the disturbed film, is thus given by u f = U α=1 [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF].

Finally, the complete aureole profile and hole receding velocity will depend on the form of the elasticity versus shrinkage.

Numerical resolution for a constant elasticity model

We consider at first order a model of constant elasticity E 0 , as described in figure 6b. We introduce here α c , which corresponds to the maximum shrinkage the film can endorse. For α > α c , the surface elasticity is constant and reads dγ dα = E 0 = γ eq 1 1 -α c and then

U α = U 0 = 2E 0 ρh 0 = E 0 γ eq V c
where V c = 2γ eq /(ρh 0 ) is Culick velocity. When α > α c , equation (A 2) can be written as This equation is solved numerically with a shooting method. From the function w(W ), we can deduce the thickness profile, using the relation h/h 0 = 1/(dw/dW ) for different elasticities (figure 6c). As the elasticity increases (i.e. as α c becomes closer to 1), we find that the aureole is thinner and wider, while for E 0 = γ eq (corresponding to α c = 0), one recovers a punctual rim receding at Taylor-Culick velocity V c .

We can also estimate the initial hole velocity u 0 = 2w(W = 0), which is shown in figure 4 as a function of the ratio E 0 /γ eq . We also observe that the results obtained deviate from those obtained for unidimensional bursting [START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF], especially for large elasticities, emphasizing the crucial role of radial geometry.
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 1 Figure 1. (a) Image sequence of a foam film rupture (h0=10 µm, solution E -table 1). The timelapse between images is 8 ms. (b) Radius r of the hole vs time t (h0=10 µm, solution E). The red (light) line represents the prediction of Taylor-Culick, while the black line shows the initial opening at constant velocity u0. Inset: Picture of a ruptured foam film (solution C) which highlights aureole formation. (c) Picture of a foam film (solution E) 37 ms after its breaking. The arrows highlight crack-like patterns, which appear during the hole opening.

Figure 2 .

 2 Figure 2. (a) Initial opening velocity u0 of the hole as a function of the film thickness h0 for R = 3 cm. The MAc concentration C decreases from dark to light points: solutions A (o), B ( ), C ( ), D ( ), E( ) and F ( ). (b) initial opening velocity normalized by Culick velocity u0/Vc as a function of C (error bars: 95 % confidence intervals). The magenta solid line shows the value measured for C = 0, with error bars shown by the dotted lines. The values u0/Vc are extracted by performing least square percentage fit for each solution, with weights taking into account the 1 µm error on thickness measurements. In both figures, the black dashed lines represent Taylor-Culick law.

Figure 3 .

 3 Figure 3. (a) Critical compression of the interface for crack formation rP /R as a function of the initial thickness h0 for solution E and different frame radii R = 1.5 cm (o), R = 3 cm ( ) et R = 11 cm ( ). (b) rP /R averaged for thicknesses h0 = 2 -35 µm and R = 3 cm, as a function of MAc concentration C.

Figure 4 .

 4 Figure 4. Solid black line: numerical prediction for the normalized hole velocity u0/Vc = f (E0/γeq) for radial bursting (equation (4.1) and A). The dashed line corresponds to u0/Vc =γeq/E0 expected for unidimensional bursting[START_REF] Frankel | Bursting of soap films .2. Theoretical considerations[END_REF]. Blue dashed line: prediction for the critical radius at which cracks appear rP /R = γeq/E0f (E0/γeq) (equation (4.2). The solid (resp. empty) symbols correspond to the experimental data from figure 2 (resp. figure3), from which we determine the elastic moduli E0(u0) (resp. E0(cracks)). Same symbols and colors as in figure2a.

Figure 5 .

 5 Figure 5. (a) Characteristic length λ between two cracks as a function of MAc concentration C for h0 = 11 ± 3 µm. (b) λ as a function of the film thickness h0 for solution D. (c) Bursting of a soap film of thickness h0 = 3 µm (solutionE). The timelapse between the two images is 9 ms, and the two lines highlight the velocity inhomogeneities.

Figure 6 .

 6 Figure 6. (a) Profile of the film and notations. (b) Variations of surface tension γ versus shrinkage α in the simplified constant elasticity modeling. (c) h/h0 as a function of r/(Vct) = 2w/V 2 c for radial bursting and different values of αC (0.2, 0.4, 0.6, 0.8 from top to bottom at the origin).

  following boundary conditions. In W = 0, at the hole, we have the maximum shrinkage (minimum value of α c ):d w d W ( W = 0) = α c . In W = W0 = 1 2(1-αc), at the aureole front, the solution should match the undisturbed film solution w( W0 ) = W0 .
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