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Abstract

This work is devoted to numerical modeling and simulation of flows of granular ma-
terials, with application to geophysical flows such as avalanches and debris flows. We
consider an incompressible viscoplastic fluid, described by a rheology with pressure de-
pendent yield stress, in a two-dimensional setting with a free surface. The regularization
method is used to deal with the singularity of the rheological law, together with a finite
element approximation. An arbitrary Lagrangian Eulerian formulation is used for the
displacement of the domain, with special treatments applied to prevent the free surface
from folding over itself. We perform numerical simulations of the collapse and spreading
of both trapezoidal and rectangular granular columns over horizontal rigid beds and
horizontal erodible beds made of the same material. We compare our results (evolution
of the free surface, velocity profiles and static-flowing interface) with those predicted by
an augmented Lagrangian formulation and with laboratory measurements. The different
approaches provide similar results.

Keywords. Viscoplastic flows, Drucker–Prager pressure dependent yield stress, free
surface, regularization, ALE method, granular collapse

1 Introduction

Gravity-driven flows of granular material [2] are encountered in many industrial processes.
Such flows are also particularly important in geophysics since they often represent natural
hazards. The understanding of these geophysical flows is a key issue for the description and
prediction of catastrophic events such as rock or debris avalanches, landslides and pyroclastic
flows. In order to predict landslide dynamics and deposition [41], the rheological behavior
of natural granular flows has motivated many studies and is still an open question, e.g.,
[23, 48, 52]. Even at laboratory scale, the constitutive equations for granular flows are
still debated [15, 24, 27, 35, 47, 14]. One major complication is that flows of dense granular
materials present zones at rest and flowing zones within the mass, which implies that granular
materials can behave like a solid or flow like a liquid. The liquid state, which has been the
subject of a wide range of research [1, 27], still lacks a unified view and the physical interface
between the no-flow (static) and flow zones (flowing) is a central issue in granular material

1



research. In most granular flows, the static-flowing transition has a decisive influence and
represents a key to understanding natural flow dynamics. From a geophysical point of view,
the transition also plays a crucial role in erosion-deposition processes.

It has been recognized that, in many situations, the behavior of granular material is
similar to classical viscoplastic materials [24, 27]. A variety of constitutive equations have
been proposed in the literature for modeling the rheological behavior of these viscoplastic
materials. The viscoplastic laws are characterized by a yield criterion, which means that the
material flows in regions where the stress is larger than a critical yield stress and is static
in regions where the stress remains below this yield limit. In our framework, the threshold
value is deduced from a pressure dependent criterion such as the Mohr-Coulomb criterion.
It is the Drucker–Prager formula [18] that states that the yield stress is proportional to the
pressure. In [35], it has been proposed that this type of viscoplastic model is well suited for
the description of dense granular material flows.

Viscoplastic flows are described mathematically by variational inequalities [25, 20, 29,
55]. Two main families of numerical methods are available to deal with such inequalities.
The first uses a dual approach based on an augmented Lagrangian [28, 51, 10, 32, 31].
It is well suited to the main mathematical difficulty associated with yield stress models,
that is, the non-differentiability of the stress-strain rate relation at the yield point. The
second method consists in approximating the equation modeling the yield stress behavior by
a smooth relationship. It is called the regularization method and is based on the introduction
of an additional parameter [5, 49, 39, 26, 16, 36, 17, 7, 11]. The augmented Lagrangian method
is supposed to better resolve the static-flowing interface. However, the regularization method
is easier to handle and is computationally more efficient. It is therefore often used in practice
[26].

In a natural context, granular flows usually travel on deposits built up by earlier events.
The layer of particles flowing over the initially static layer may entrain material of the static
bed which may or may not be made of the same grains (erosion process). The entrainment
of underlying material may have a significant impact on granular flows. In particular, it is
expected to modify the dynamics of the flowing mass for slope angles exceeding a critical
value, and thereby significantly increasing the runout distance (i.e., the maximum distance
traveled by the flow) [46, 47, 50, 54]. Natural granular flows are mainly characterized by
their final deposit, shape and runout distance, but due to the difficulty of conducting field
measurements of material entrainment in nature, the physical understanding of these pro-
cesses remains incomplete. The theoretical description of such phenomena is likewise an open
problem. For this reason, laboratory experiments of granular flows are a useful way to obtain
new insights into the erosion/deposition processes. Experiments involving the collapse of
granular columns over rigid beds first made it possible to establish scaling laws to investigate
flow dynamics and deposits, as well as to test constitutive relations, see, e.g., [3, 37, 40, 44].
Other experiments on granular collapse over erodible beds have been conducted to investigate
and quantify erosion processes [14, 22, 46]. These studies have revealed that, for slope angles
above a critical threshold, the presence of even a thin layer of erodible bed increases the flow
duration and the runout distance compared to that of collapse over a rigid bed, while also
changing the flow regimes [22, 33, 46]. While many numerical studies have focused on the
reproduction of experimental scaling laws for granular collapse over rigid beds, few attempts
have been made to incorporate the entrainment processes so as to simulate the propagation
of granular flows over erodible beds [47, 8, 13, 14]. However, such simulations are of primary
importance, especially for the prediction of the runout length of geophysical flows.

We propose here to simulate the collapse of granular columns over a horizontal, rigid
or erodible bed. We consider an incompressible viscoplastic flow with a rheology described
by a pressure-dependent Drucker–Prager yield stress, together with friction and free surface
boundary conditions in a two-dimensional setting. We do not consider surface tension effects
at the free surface (in some cases, we add a small tension, but only as a numerical device).
The regularization method is implemented with Taylor–Hood finite elements for space dis-
cretization and an implicit Euler scheme with linearization for time discretization, similarly
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to the implementation in [11]. Additionally, an Arbitrary Lagrangian Eulerian (ALE) method
is used as in [31] to deal with the displacement of the domain, in particular to track the free
surface. In this respect, particular care must be taken to prevent the free surface from folding
over itself. Our study appears to be the first to consider a free surface with the regularization
method, with the exceptions of [36], based on the immersed boundary method instead of the
ALE method for tracking the free surface, and [17], based on a finite difference method. In
addition, our study is, to our knowledge, the first numerical investigation of the collapse of
a trapezoidal mass over an erodible bed.

The paper is organized as follows. In Section 2, we present the governing equations of the
two-dimensional, incompressible, viscoplastic model with Drucker–Prager yield stress. We
also introduce the geometry of the domain and the regularization method. The numerical
implementation based on the Arbitrary Lagrangian Eulerian method is described in Section
3. We also describe the numerical algorithm devised for the erodible bed case with local
numerical surface tension. We devote Section 4 to a quantitative comparison with a one-
dimensional simple shear plug flow over an inclined planar rigid bed, for which we evaluate
the convergence error by extending the one-dimensional solution to a two-dimensional setting
with periodic boundary conditions. In Section 5, we consider the collapse of rectangular
and trapezoidal granular columns, comparing the predicted velocity, interface and thickness
profiles with those predicted by an augmented Lagrangian method [31] and with results
from laboratory experiments [22]. The regularization method is shown to provide results in
good overall agreement with experimental measurements and with the augmented Lagrangian
method, while requiring significantly less computational time than the latter.

2 Mathematical formulation

2.1 Viscoplastic model with Drucker–Prager yield stress

We consider a two-dimensional viscoplastic flow over an inclined slope of angle θ. The
material fills a time-dependent domain denoted by Ωt, with t ∈ [0, T ], and T > 0 a given

time. The position vector in Ωt is denoted by ~X. We consider two different configurations (see
Figure 1): (a) a periodic flow over an inclined rigid bed and (b) the collapse of a granular
mass over a horizontal, rigid or erodible bed. These two configurations lead to different
initial and boundary conditions. We first write down the mass and momentum conservation
equations together with the constitutive equations, and then mention the particular geometry
and boundary conditions for each case.

The material is assumed to be incompressible and non-Newtonian,

ρ(∂tu + (u · ∇)u) − div σ = ρf for t ∈ (0, T ), ~X ∈ Ωt, (2.1a)

div u = 0 for t ∈ (0, T ), ~X ∈ Ωt, (2.1b)

where u is the material velocity, f an external force (gravity), ρ > 0 the mass density, and
σ the total stress tensor. The rheology is defined by the viscoplastic law

σ = σ′ − pId, with σ′ = 2ηDu + κ
Du

‖Du‖ , (2.2)

where σ′ denotes the deviatoric part of σ, p is the pressure, Du = 1
2
(∇u+∇ut) is the strain

rate tensor, η ≥ 0 is the dynamic viscosity, and κ ≥ 0 is the yield stress. Here, the norm
is the unmodified Frobenius norm ‖Du‖2 =

∑
ij(Du)2ij . We do not put a factor 1/2 in the

definition of this norm, as many authors do; this leads to the factor
√

2 in formulas below.
The viscoplastic constitutive relation can be written more rigorously as

trace(σ′) = 0,





σ′ = 2ηDu + κ

Du

‖Du‖ if Du 6= 0,

‖σ′‖ ≤ κ if Du = 0.
(2.3)
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In general, in (2.2) or (2.3), η and κ can be rate and pressure dependent, i.e. they can
depend on ‖Du‖ and p. Note however that different couples (η, κ) can then lead to the
same law (2.2), since one can write σ′ = (2η + κ/‖Du‖)Du = (2η‖Du‖ + κ)Du/‖Du‖.
Assuming that the free surface separates the material from air at the reference zero pressure,
the Drucker–Prager yield stress [18] can be written

κ(‖Du‖ = 0, p) =
√

2µsp, (2.4)

where µs ≥ 0 is the static internal friction coefficient, a constant depending only on the
material. In order to get uniqueness of η and κ in the decomposition (2.2), we adopt the
convention of [31] that κ ≡ κ(p) and η(‖Du‖, p)‖Du‖ → 0 as ‖Du‖ → 0. This means that
the last term in (2.2) is the rate independent (pure plastic) part of the law. Taking into
account a possibly negative pressure inside the mass, the yield stress κ is thus given by

κ(p) =
√

2µs[p]+, (2.5)

with [p]+ = max(0, p). The viscosity η is taken constant in this work, although the value
η = (µ(I) − µs)[p]+/

√
2‖Du‖ with I ∼ ‖Du‖/√p could be taken also, for the case of the

µ(I) rheology of [35], considered in [11]. We recall that the Bingham model κ = cst is
always well-posed, even without viscosity [7]. The model with Drucker–Prager yield stress
and without viscosity is ill-posed [53], and for positive constant viscosity η it is well-posed if
2η‖Du‖ ≥

√
2µsp. The model with µ(I) is ill-posed for small or large I [4].

The force f is the gravity force acting on the material. It is given by f = (g sin θ,−g cos θ)
in the coordinates (X, Z), with g the gravity constant and θ the slope angle of the possibly
inclined bed (see Figure 1). The equations (2.1) are completed with boundary conditions

Γℓ,t

Γb

Γf,t

Γr,t

θ

Z

X

Γℓ,t

Γb,t

Γf,t

Z

X

Figure 1: Domain occupied by the material at time t. Left: flow over an inclined, rigid bed (case
(a)); right: granular collapse over a horizontal, rigid or erodible, bed (case (b)).

which depend on the considered case.

(a) Flow over an inclined, rigid bed: The domain Ωt is composed of a flat, time-independent
bottom Γb, a free surface Γf,t, and lateral boundaries Γℓ,t and Γr,t. We assume a no-slip
condition at the bottom

u(t, ~X) = 0 for t ∈ (0, T ), ~X ∈ Γb, (2.6)

and on the lateral boundaries, we impose periodicity conditions as

u(t, ~X) = u(t, T ( ~X)) for t ∈ (0, T ), ~X ∈ Γℓ,t, (2.7a)
(
σ(t, ~X) − σ(t, T ( ~X))

)
N = 0 for t ∈ (0, T ), ~X ∈ Γℓ,t, (2.7b)

where N stands for the outward unit normal on the boundary of the domain Ωt, and T
is the translation in space such that T (Γℓ,t) = Γr,t.
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(b) Granular collapse over a horizontal, rigid or erodible, bed: The boundary of the domain
Ωt is composed of a flat bottom Γb,t, a free surface Γf,t, and a left wall Γℓ,t. At the
bottom and at the left wall, we consider a non-penetration condition

u(t, ~X) · N = 0 for t ∈ (0, T ), ~X ∈ Γb,t ∪ Γℓ,t, (2.8)

together with a Coulomb friction condition

σ′

T = −µb/ℓ
uT

|uT |
[p − σ′

N ]+ if uT 6= 0, for t ∈ (0, T ), ~X ∈ Γb,t ∪ Γℓ,t,

|σ′

T | ≤ µb/ℓ[p − σ′

N ]+ if uT = 0, for t ∈ (0, T ), ~X ∈ Γb,t ∪ Γℓ,t.
(2.9)

with a friction coefficient µb/ℓ = µb on the bottom and µb/ℓ = µℓ on the left wall, and
where the normal and tangential decomposition of u and σ′N are

u = uNN + uT with uN = u · N , (2.10)

σ′N = σ′

NN + σ′

T with σ′

N = (σ′N) · N . (2.11)

Note that (2.8) implies that uN = 0 at the bottom and left boundaries.

Moreover, in cases (a) and (b), we assume a no-stress condition at the free surface

σ(t, ~X)N = γN for t ∈ (0, T ), ~X ∈ Γf,t, (2.12)

where γ is a real number that will be taken non-zero for numerical purpose only in Subsection
3.4. We also have the following kinematic condition at the free surface, that governs the
evolution of the domain Ωt:

Nt + N · u(t, ~X) = 0 for t ∈ (0, T ), ~X ∈ Γf,t, (2.13)

where (Nt, N) is the time-space normal at the free surface.

Finally, the initial condition is written u(0, ~X) = u0( ~X) for ~X ∈ Ω0, where u0 and Ω0

are given.

2.2 Regularization and variational formulation

The main difficulty in the viscoplastic rheology (2.2) is the presence of yield stress, which
implies the non-differentiability of the stress-strain rate relation at the yield point, and the
indeterminate nature of the stress field below the yield point. The numerical treatment
of the multi-valued term κDu/‖Du‖ in (2.2) is usually performed by two methods. The
first approach is to use duality methods, the main one being the augmented Lagrangian
formulation. In the case of a Bingham fluid (κ = cst), this is well explained in [51], and
simulations with free surface are performed in [31] for a Drucker–Prager yield stress. The
other approach, that we adopt here, is the regularization method. Although it is slightly
less accurate than the augmented Lagrangian method, it has the advantage to be easier
to formulate, and to be computationally (much) more effective [49, 39, 26, 16, 11]. The
regularization method consists in approximating the non-smooth constitutive law with yield
stress by a smoother one without yield stress. It is achieved through the introduction of a
parameter ǫ > 0, and the regularized constitutive relation is written in the form

σ′

ǫ = 2ηDu + κ
Du√

‖Du‖2 + ǫ2
. (2.14)

In this formulation, the right-hand side is always well-defined, even if Du vanishes. However,
the expression (2.14) can differ from (2.2) when ‖Du‖ is of the order of ǫ, or less. Thus the
accuracy in determining the plug zone where Du = 0 is strongly related to the smallness of
ǫ. For the Bingham model κ = cst, the convergence as ǫ → 0 is proved in [29] in the case
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with viscosity and H1 regularity, at rate ǫ, and in the case without viscosity and without H1

regularity in [7], at rate
√

ǫ.
Using the expression (2.14), the equation (2.1a) is rewritten as

ρ(∂tu + (u · ∇)u) − div σ′

ǫ + ∇p = ρf for t ∈ (0, T ), ~X ∈ Ωt. (2.15)

We set

V :=

{
v ∈ L2(0, T ; Vt) such that

dv

dt
∈ L2(0, T ; V ′

t )

}
, (2.16a)

M := L2(0, T ; Mt), (2.16b)

with

(a) Vt :=
{
v ∈ H1(Ωt)

2 such that v = 0 on Γb, v( ~X) = v(T ( ~X)) for ~X ∈ Γℓ,t

}
, (2.17a)

(b) Vt :=
{
v ∈ H1(Ωt)

2 such that v · N = 0 on Γb,t ∪ Γℓ,t

}
, (2.17b)

and Mt = L2(Ωt). The variational formulation of (2.15), (2.1b), (2.14), (2.12), and (2.6),
(2.7) for case (a), (2.8), (2.9) for case (b) consists in finding (u, p) ∈ V × M such that the
initial condition is satisfied, and for almost all t ∈ (0, T ), and all (v, q) ∈ Vt × Mt,

∫

Ωt

ρ (∂tu + (u · ∇)u) · v+

∫

Ωt

2ηDu : Dv +

∫

Ωt

κ
Du√

‖Du‖2 + ǫ2
: Dv −

∫

Ωt

p div v

+

∫

Γb,t∪Γℓ,t

µb/ℓ
uT · v√
|uT |2 + ǫ2f

[p − σ′

N ]+ =

∫

Ωt

ρf · v +

∫

Γf,t

γv · N , (2.18a)

∫

Ωt

q div u = 0, (2.18b)

where we have also regularized the boundary friction terms with a parameter ǫf > 0. In
case (a), there is no friction on the boundary, so that we take µb = µℓ = 0.

3 Discretization of the problem

3.1 Variational formulation

In this section, we describe the numerical method used to solve the problem (2.18). The space
discretization is based on mixed finite elements, and the time discretization on a first-order,
semi-implicit finite difference scheme.

We consider at each discrete time tn, with t0 = 0, tn+1 = tn + ∆tn, with ∆tn the time
step, mixed finite element spaces V n

h and Mn
h spanned by functions defined on a mesh of Ωn

h,
where Ωn

h is the approximation of the material domain at time tn. The approximate velocity
and pressure fields are denoted by un

h and pn
h. We consider the P2/P1 setting, with triangular

finite elements of Taylor–Hood. We define the spaces P2(Ω
n
h) (resp., P1(Ω

n
h)) as composed by

continuous functions that are piecewise quadratic (resp., affine) on the mesh of Ωn
h. In case

(a) (flow over inclined bed), we incorporate all the boundary conditions from (2.17a) in V n
h ,

whereas in case (b) (granular collapse), the boundary condition in (2.17b) is not enforced
explicitly in the definition of V n

h , but weakly by means of a boundary penalty method.
Hence, V n

h is a proper subspace of P2(Ω
n
h)2 in case (a) and coincides with P2(Ω

n
h)2 in case

(b). Moreover, Mn+1
h = P1(Ω

n
h) in both cases.

At the beginning of the time step from tn to tn+1, the discrete velocity field un
h ∈ V n

h

(defined on Ωn
h) is known. We also have at our disposal a second discrete velocity field wn

h ,
also defined on Ωn

h, and which describes the approximate velocity of the domain Ωn
h. The

6



velocity field wn
h is built according to the ALE method described in Section 3.2 below. We

consider the mapping

An,n+1 : Ωn
h → Ωn+1

h

~X 7→ ~Y = ~X + ∆tn wn
h( ~X),

(3.1)

which defines Ωn+1
h as the image of Ωn

h. This map also allows us to obtain a mesh of
Ωn+1

h as the image of the mesh of Ωn
h, so that wn

h is referred to as the mesh velocity. The
discrete velocity and pressure fields (un+1

h , pn+1
h ) ∈ V n+1

h × Mn+1
h are obtained by means of

an iterative algorithm. Denoting with superscript k the variables involved in the iterative
algorithm, we introduce the variables u

n+1,k
h and pn+1,k

h . We start with u
n+1,0
h = un

h◦A−1
n,n+1,

pn+1,0
h = pn

h ◦ A−1
n,n+1, where ◦ denotes the composition of maps. The update algorithm is

defined as follows: given (un+1,k
h , pn+1,k

h ), find (un+1,k+1
h , pn+1,k+1

h ) ∈ V n+1
h × Mn+1

h such
that for all (vh, qh) ∈ V n+1

h × Mn+1
h ,

∫

Ω
n+1

h

ρ

(
u

n+1,k+1
h − un

h ◦ A−1
n,n+1

∆tn
+
[(

u
n+1,k
h − wn

h ◦ A−1
n,n+1

)
· ∇
]
u

n+1,k+1
h

)
· vh

+

∫

Ω
n+1

h


2η +

κn+1,k
h√

‖Du
n+1,k
h ‖2 + ǫ2


Du

n+1,k+1
h : Dvh

−
∫

Ω
n+1

h

pn+1,k+1
h div vh +

∫

Γ
n+1

b,h
∪Γ

n+1

ℓ,h

µb/ℓ

u
n+1,k+1
T,h · vh√
|un+1,k

T,h |2 + ǫ2f

[pn+1,k
h − σ′n+1,k

N,h ]+

+

∫

Γ
n+1

b,h
∪Γ

n+1

ℓ,h

ξ(un+1,k+1
h · N)(vh · N) =

∫

Ω
n+1

h

ρfn+1 · vh +

∫

Γ
n+1

f,h

γvh · N , (3.2a)

∫

Ω
n+1

h

qh div u
n+1,k+1
h = 0, (3.2b)

where κn+1,k
h =

√
2µs[p

n+1,k
h ]+, and ξ ≫ 1 is a penalty parameter used in case (b) (we

set ξ = 0 in case (a)). In our simulations, we take ξ = 1012. The stopping criterion is

‖un+1,k
h − u

n+1,k−1
h ‖L2/‖un+1,k−1

h ‖L2 < εstop. It is also possible to impose an upper bound
kmax on the number of iterations.

The time step is taken constant, except during the starting stage. Indeed, since the
initial velocity vanishes, the problem is quite stiff at the beginning, because the static-flowing
interface has to be determined. Therefore, we take initially a quite small time step ∆tinit, it
is then slowly increased by applying the formula ∆tn+1 = 1.1∆tn, until it reaches a desired
value ∆tmax. Afterwards it is taken constant ∆tn = ∆tmax. Similarly, we start with εstop

quite small and increase it slowly to a prescribed value.

3.2 Displacement of the domain

The mesh velocity wn
h used for computing the new mesh of Ωn+1

h by (3.1) needs to be
consistent with the kinematic boundary condition (2.13), i.e., it must satisfy wn

h ·N = un
h ·N

on Γn
f,h. It must also satisfy wn

h ·N = 0 on the static boundaries. In order to define wn
h , we

extend suitable boundary values by solving an elliptic problem inside Ωn
h,

− div(Dwn
h) = 0 in Ωn

h, (3.3)

with in case (a)

(wn
h − un

h) · N = 0 on Γb,h ∪ Γn
f,h, (3.4a)

wn
h · N = 0 on Γn

ℓ,h ∪ Γn
r,h, (3.4b)

(Dwn
hN)T = 0 on Γn

h, (3.4c)
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and in case (b)

(wn
h − un

h) · N = 0 on Γn
h , (3.5a)

(Dwn
hN)T = 0 on Γn

h , (3.5b)

where (Dwn
hN)T is the tangential part of the vector Dwn

hN . In the formulations (3.3) with
(3.4) or (3.5), the tangential component of wn

h on the boundary is not imposed, and is free to
adapt to have the smoothest solution wn

h . This problem is discretized using the same finite
element space as for the discrete velocity un

h, with a boundary penalty method. Thus, we
look for wn

h ∈ P2(Ω
n
h)2 such that for all vh ∈ P2(Ω

n
h)2,

∫

Ωn
h

Dwn
h : Dvh +

∫

Γn
h

ξ̂(wn
h · N − un

h · N)(vh · N) = 0, (3.6)

where ξ̂ ≫ 1 is a penalty parameter (set to 1012 in our simulations). This is valid for case
(b). For case (a) we replace in (3.6) un

h · N by un
h · N1IΓb,h∪Γn

f,h
.

Although the formulation (3.6) worked satisfactorily in our simulations, it is worthwhile
to mention that it does not provide an optimal distribution of points along the boundary
as the mesh evolves in time. This difficulty is linked to the enforcement of the boundary
condition on the normal velocity component using Lagrange finite elements in a domain with
an irregular boundary where the outward normal changes direction from one boundary edge
to the neighboring one. Indeed, taking v = wn

h − un
h in (3.6) imposes wn

h · N − un
h · N = 0

everywhere on the boundary, which yields wn
h = un

h (i.e., pure Lagrangian transport) at every
boundary point where N is discontinuous. This contradicts the freedom of the tangential
component of wn

h . This difficulty is well-known, e.g., in electromagnetism applications where
edge finite elements are preferable to Lagrange finite elements in some situations, see [12]
and [21, p. 97]. Another work-around, still using Lagrange finite elements, is to enforce
the boundary condition by means of a Lagrange multiplier distributed in Ωn

h, see, e.g., [30],
leading to the following formulation: find (wn

h , p̃n
h) ∈ P2(Ω

n
h)2 × P2(Ω

n
h) such that for all

(vh, qh) ∈ P2(Ω
n
h)2 × P2(Ω

n
h),

∫

Ωn
h

Dwn
h : Dvh + ξ̂−1

∫

Ωn
h

p̃n
hqh +

∫

Γn
h

qh(wn
h − un

h) · N +

∫

Γn
h

p̃n
h(vh · N) = 0. (3.7)

This formulation enables the boundary points to be better distributed; note, in particular,
that the continuity requirement on the test function qh prevents us from taking qh = (wn

h −
un

h) · N in (3.7).

3.3 Update algorithm

For clarity, we write down the steps of the algorithm. At the start of step n, Ωn
h, un

h, pn
h are

known.

1) We compute wn
h by solving (3.6) in case (b), or its modification with un

h ·N1IΓb,h∪Γn
f,h

in

case (a).

2) We move the nodes of the mesh according to An,n+1 defined by (3.1). Doing this, in case
(b) with rigid bed we may need to limit the time step so that the free surface nodes do
not cross the bottom or the left wall of the domain, as described in the caption of Figure
2. Thus, we obtain Ωn+1

h .

3) Finally, we compute (un+1
h , pn+1

h ) on Ωn+1
h with the iterative formulation (3.2).
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Figure 2: Case when a free surface node goes to the bottom for the configuration (b) with rigid
bed. (Left) Dots represent the boundary nodes at time tn. The arrows represent the
displacement ∆twn

h that comes in (3.1), before limitation of the time step. (Right) New
position of the nodes at time tn+1. The time step has been diminished so that no boundary
node crosses the bottom. In the illustrated situation, one node that was on the free surface
at time tn is now at the bottom boundary, and one boundary element that was part of
the free surface is now part of the bottom. In our simulations of configuration (b) with
rigid bed, the effective change of nature of a part of the free surface occurs at most twice
between initial and final time.

The code is written in FreeFem++, see [30].

3.4 Surface tension

In the case of granular collapse with erodible bed, the evolution of the domain can lead to a
folding of the free surface over itself, which is related to the fact that the flowing material has
the tendency to cover the bed, as shown in Figure 3 (right). This prevents the ALE method
to work properly. In order to address this difficulty, we add a numerical surface tension by
imposing (2.12) at the free surface with parameter γ such that

γ = γ0C, (3.8)

where γ0 ≥ 0 is a position-dependent, small parameter of the order of the mesh size, and C
is the local curvature of the free surface, with negative sign in the case of a locally convex
domain Ωt and positive otherwise.

The local curvature is given by C = dθ/ds, with θ the angle of the tangent to the boundary
with respect to a fixed direction and s the curvilinear coordinate oriented clockwise. Referring
to Figure 3, we compute the angular variation δθi between two edges of the free surface
connected by the node Ni as follows:

δθi = 2arctan

(
~Ri+1 · ~R⊥

i

|~Ri+1| |~Ri| + ~Ri+1 · ~Ri

)
, (3.9)

where ~Ri =
−−−−−→
Ni−1Ni. An approximation of the curvature at Ni is thus given by

Ci =
δθi(

|~Ri+1| + |~Ri|
)

/2
. (3.10)

We denote by ic the critical node index where the curvature is the largest. We apply locally
the surface tension around the critical node ic by setting

γ0,i = γ0

(
max

{
0, 1 −

(
i − ic

δ

)2
})2

, (3.11)

where δ is a positive coefficient that determines the extension of the surface tension appli-
cation. In our simulations, we set δ = 16, and we take γ0 as the order of magnitude of the
pressure in the first cells close to the free surface, times the mesh size. The effect of this
numerical surface tension is to flatten the free surface when it becomes too much curved. We
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Figure 3: Boundary nodes Ni and boundary vectors ~Ri and ~Ri+1.

have checked that its application does not alter the numerical results when it is not needed,
i.e., when the free surface is not too much curved. For instance, in the case of granular
collapse of a trapezoidal mass over a rigid bed, we obtain very similar profiles for the free
surface if we apply the surface tension or not, as shown on Figure 4.
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Figure 4: Comparison of the evolution of the free surface for a trapezoidal granular mass over a rigid
bed, at different times t = 0.18s, t = 0.3s, t = 0.48s, t = 0.66s, t = 0.78s, t = 1.02s,
between regularization method with surface tension (full lines) and regularization method
without surface tension (dotted lines).

4 Simple shear plug flow over an inclined rigid bed

The goal of this section is to evaluate the accuracy of our two-dimensional regularization
method. We consider a test case involving a one-dimensional solution, depending only on the
normal variable Z, that has been described in [9, 43]. The solution has velocity u = (U, 0),
where the longitudinal velocity U(t, Z) is defined for 0 < Z < h, vanishes for 0 < Z < b(t),
and solves for b(t) < Z < h

∂tU + S − ∂Z

(
ν∂ZU

)
= 0 for all Z ∈ (b(t), h), (4.1a)

U = 0 at Z = b(t), (4.1b)

ν∂ZU = 0 at Z = b(t), (4.1c)

ν∂ZU = 0 at Z = h, (4.1d)

with S a constant source term given by

S = g cos θ(µs − tan θ), (4.2)
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where µs comes from (2.5), µs = tan δ with δ the friction angle, θ > 0 is the angle of the
inclined plane as shown on Figure 1, and ν = η/ρ is the kinematic viscosity. The height of
the domain h is constant, while b(t) is an unknown of the problem (4.1). According to [9], if
δ > θ, u = (U, 0) is a solution to (2.1), (2.2), (2.5) with boundary conditions (a). Moreover,
the pressure is hydrostatic, p = ρg cos θ(h − Z), and the domain does not depend on time.

We compute accurately the one-dimensional solution to (4.1) by one of the two methods
described in [43]. Then we solve the full two-dimensional problem by the method described
in Section 3. In order to evaluate the error between the one-dimensional profile and the lon-
gitudinal component of the two-dimensional velocity, we extend the one-dimensional solution
to the two-dimensional mesh, by interpolating the one-dimensional profile in Z in each cell.
We compute the relative error on the velocity, in the L2-norm, and we denote it by eL2(u).

The test is performed within the rectangular domain Ω = [0, l]×[0, h] with length l = 1.5m
and height h = 6m (see Figure 1). The bottom is an inclined plane with angle θ = 1o. The
friction angle is taken so that tan δ = tan θ + 10−2. Initially, the longitudinal velocity has
a piecewise affine profile U0(Z) = [Z − b0]+, with b0 the initial thickness of the solid layer,
chosen to be b0 = 3.5m. We consider the evolution of the material up to the time T = 0.2s,
and we evaluate the final velocity profile. We compute the one-dimensional solution with
a cell length of 10−4m and an initial time step ∆t0 = 10−4s. For the two-dimensional
problem, we consider a structured rectangular mesh with cell length ∆Z. We have verified
the convergence of our numerical solutions by halving the mesh size and the time step ∆t.
In the semi-implicit resolution of the two-dimensional problem, we use a stopping tolerance
εstop = 10−7. We compute the solution for a viscosity ν = 1m2/s. Finally we take several
regularization parameters, ǫ = 10−2s−1, 10−4s−1, and 10−6s−1, so as to study the influence
of the choice of ǫ.

ǫ = 10−2s−1 ∆Z=2.5e-01m ∆Z=1.25e-01m ∆Z=6.25e-02m

∆t=2.5e-02s 3.02e-02 2.99e-02 2.99e-02

∆t=1.25e-02s 2.75e-02 2.73e-02 2.73e-02

∆t=6.25e-03s 2.65e-02 2.64e-02 2.64e-02

∆t=3.12e-03s 2.61e-02 2.60e-02 2.60e-02

∆t=1.56e-03s 2.59e-02 2.59e-02 2.59e-02

∆t=7.78e-04s 2.59e-02 2.58e-02 2.58e-02

ǫ = 10−4s−1 ∆Z=2.5e-01m ∆Z=1.25e-01m ∆Z=6.25e-02m

∆t=2.5e-02s 1.26e-02 1.19e-02 1.17e-02

∆t=1.25e-02s 6.87e-03 6.18e-03 5.99e-03

∆t=6.25e-03s 4.01e-03 3.28e-03 3.11e-03

∆t=3.12e-03s 2.60e-03 1.85e-03 1.67e-03

∆t=1.56e-03s 1.89e-03 1.16e-03 1.01e-03

∆t=7.78e-04s 1.55e-03 8.28e-04 7.13e-04

ǫ = 10−6s−1 ∆Z=2.5e-01m ∆Z=1.25e-01m ∆Z=6.25e-02m

∆t=2.5e-02s 1.25e-02 1.18e-02 1.16e-02

∆t=1.25e-02s 6.77e-03 6.06e-03 5.87e-03

∆t=6.25e-03s 3.89e-03 3.15e-03 2.96e-03

∆t=3.12e-03s 2.47e-03 1.69e-03 1.50e-03

∆t=1.56e-03s 1.75e-03 9.69e-04 7.70e-04

∆t=7.78e-04s 1.40e-03 6.15e-04 4.13e-04

Table 1: Relative error eL2(u) without moving mesh for plug flow over an horizontal, rigid bed for
various values of the time step ∆t, mesh size ∆Z, and regularization parameter ǫ.
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We first consider the relative error eL2(u) without moving the mesh, i.e., setting the
mesh velocity to w = 0. This error is reported in Table 1 for ǫ = 10−2s−1 (top table),
ǫ = 10−4s−1 (middle table), and ǫ = 10−6s−1 (bottom table). For ǫ = 10−2s−1, we can see
that the regularization error dominates since diminishing the values of ∆t or ∆Z does not
improve accuracy. For ǫ = 10−4s−1, we can see that for the first four time steps, the error
in time dominates with a first-order convergence. Then, the regularization error dominates
and the total error stagnates at about 10−3m2/s. For ǫ = 10−6s−1, we observe a first-order
convergence in time for the first time step, and then the errors in space and time are balanced.
This means that the regularization parameter ǫ = 10−6s−1 represents a suitable choice, since
it allows us to obtain a regularization error that is negligible with respect to, or of the same
order as, the discretization error.

Next, we perform the same comparison, but on a moving mesh with a scalar mesh velocity
w = (0, w), as explained in [42], and ǫ = 10−6s−1. The results are presented in Table 2 where
we report the relative error eL2(u) along with the relative error e(Ω) on the volume of the
domain. Table 2 shows that volume conservation is ensured with an accuracy of order 10−5.
Notice that for ǫ = 10−8s−1, we obtain the same results as for ǫ = 10−6s−1.

ǫ = 10−6s−1 (scalar) ∆Z=2.5e-01m ∆Z=1.25e-01m ∆Z=6.25e-02m

∆t=1.56e-03s eL2(u) 1.79e-03 9.73e-04 7.71e-04

e(Ω) 6.62e-05 2.10e-05 7.68e-06

∆t=7.78e-04s eL2(u) 1.45e-03 6.21e-04 4.13e-04

e(Ω) 6.62e-05 2.11e-05 7.69e-06

Table 2: Relative error eL2(u) and relative error e(Ω) on volume conservation with moving mesh
for plug flow over an horizontal, rigid bed for various values of the time step ∆t, mesh size
∆Z, and regularization parameter set to ǫ = 10−6s−1.

Finally, we observe that the total number of iterations used in the numerical resolution for
∆Z = 1.25 × 10−1m and ∆t = 3.12 × 10−3s are 824, 2958, 5086, and 5272 for ǫ = 10−2s−1,
10−4s−1, 10−6s−1, and 10−8s−1, respectively. Thus, this number swiftly increases as ǫ is
decreased in the range from 10−2s−1 to 10−6s−1, while it increases only slightly from 10−6s−1

to 10−8s−1.

5 Granular collapse over rigid or erodible beds

In this section we apply our method to the classical granular collapse problem. In order to
assess the accuracy and physical relevance of our method, we compare its results to numerical
and experimental data. We first make a comparison with numerical results obtained with an
augmented Lagrangian method [31, 32]. Then, we compare our numerical results to those
obtained with laboratory experiments of granular column collapse over an horizontal plane
covered or not by an erodible bed, see [22, 46]. These comparisons are made for initial and
boundary conditions corresponding to configuration (b) described in Subsection 2.1.

Different geometries are considered (Figure 5). We study the case of a trapezoidal and a
rectangular domain (Figure 5-(I)-(II)) released form rest over a rigid (non-erodible) horizontal
bed, and the case of a trapezoidal domain released on a thin erodible bed covering the
horizontal bottom (Figure 5-(III)). We denote by l0, h0, and α0 the initial dimensions of the
domain and the slope angle of the released mass, respectively, and by he the thickness of the
erodible bed.
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Figure 5: (I) Trapezoidal and (II) rectangular mass released over a rigid bed, and (III) trapezoidal
mass released over an erodible bed. In all cases, the bed is horizontal.

According to the experiments, the geometrical parameters are chosen as: (I) l0 = 29.7cm,
h0 = 25cm, α0 = 70◦, (II) l0 = 20cm, h0 = 14cm, and (III) l0 = 80cm, h0 = 25.5cm,
he = 5mm. Along with gravity set to g = 9.81m.s−2, we consider the following rheological
parameters: dynamic viscosity η = 1Pa.s, mass density ρ = 1550kg.m−3, friction angle
δ = 25.5◦, friction coefficient of the bottom µb = tan(25.5◦), friction coefficient along the
left wall µl = tan(10.2◦) (see [31] for more details about the choice of the parameters value).
The numerical parameters are set as follows. The regularization parameters are taken to be
ǫ = 10−6s−1, ǫf = 10−6m.s−1, the mesh size is about ∆X ∼ 10−2m, with (I) 326 triangles,
see Figure 10, (II) 308 triangles, (III) 483 triangles. The time step is ∆tmax = 10−4s with
∆tinit = 10−8s (see the last paragraph of Subsection 3.1), and the stopping tolerance is
εstop = 10−4.

The time step ∆tmax has to be chosen so as to produce sufficiently small time discretization
errors in computing the interface position and so that the iterative algorithm in the semi-
implicit time stepping converges. Reasonable bounds on the time step can be inferred from
(2.15) and (2.14). A first bound, related to an advective time scale, is ∆t . ‖∇u‖−1. A
second one, related to the viscosity, is ∆t . ρ∆X2/η. A third one, related to the yield
stress (and taking into account that by (2.5) κ ∼ p), is ∆t . ρ∆X2‖Du‖/p. If the latter
bound is too restrictive (in particular if ‖Du‖ is small), it can be replaced by the regularized
one ∆t . ρǫ∆X2/p (this regularized condition imposing ∆t to be proportional to ǫ has been
considered for stability reasons in the explicit algorithm of [7]). With the above data, knowing
that ‖∇u‖ ∼ 1s−1, p ∼ 103Pa, the above bounds lead to the values 1s, 10−1s, 10−4s. This
motivates the choice ∆tmax = 10−4s, except eventually if ǫ and Du are both small, in which
case we should take an even smaller time step. This difficulty is related to computing the
interface position accurately. Note that the above time-scale analysis shows that the plastic
effects dominate the viscous ones.

The simulations and experiments proceed from t = 0s to t = 1.02s, until the granular
material stops. Initially, we consider the granular material at rest by enforcing a zero initial
velocity.

In this framework, we study the evolution of the free surface, i.e., the thickness profile,
the velocity profiles, and the position of the interface between static and flowing material in
the granular collapse.

5.1 Comparison with the augmented Lagrangian method

Here we compare our results to those obtained with the augmented Lagrangian formulation
of [31]. We consider a trapezoidal and a rectangular geometry over a rigid bed, i.e., 5-(I)-(II).
In this test, for both methods (regularization and augmented Lagrangian) we take a constant
time step ∆t = 10−3s and a constant stopping tolerance εstop = 10−3. We superimpose the
profiles of the free surface obtained by each numerical method at different times.
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Figure 6: Evolution of the free surface calculated with the regularization method (full lines) and
with the augmented Lagrangian method (dashed lines), at different times t = 0.18s, 0.3s,
0.48s, 1.02s. Left: trapeze. Right: rectangle. The value X = 0 corresponds to the left
wall.

Figure 6 shows that the free surfaces calculated with the regularization and augmented
Lagrangian methods are quite similar for both the trapezoidal and the rectangular geometries.
We observe that the thickness of the mass on the left wall of the domain decreases more
rapidly with the augmented Lagrangian method than with the regularization method, and
the regularization method leads to a slightly faster front propagation, i.e., a larger runout
distance. In terms of computational time performance, the regularization method performs
7.8 times faster than the augmented Lagrangian method in the trapezoidal case, and 5 times
faster in the rectangular case.
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Figure 7: Comparison of the horizontal velocity profile UX (left) and vertical velocity profile UZ

(right), for a trapezoidal geometry, at different times from t = 0.18s to t = 0.66s, be-
tween the regularization method (full lines) and the augmented Lagrangian method (dot-
ted lines), at three different vertical sections located at X = Xg − 10cm, X = Xg , and
X = Xg + 10cm, where Xg = 29.7cm is the position of the front of the released mass.

In the case of a trapezoidal geometry, we present the profiles of the two components of the
velocity, UX and UZ as a function of Z, for three vertical sections located at X = Xg −10cm,
X = Xg, and X = Xg +10cm, where Xg = 29.7cm is the position of the front of the released
mass. Figure 7 shows that both components of the velocity increase (in absolute value) with
Z, and decrease with time except at the very beginning. The velocity profiles calculated
by the two numerical methods are quite similar for each vertical section X = Xg − 10cm,
X = Xg, and X = Xg + 10cm, and each time (t = 0.18s to t = 0.66s). The horizontal
and vertical velocities are however slightly higher with the regularization method at times
t = 0.48s and t = 0.66s, at X = Xg + 10cm.
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We then compare the static-flowing interface obtained with the regularization and the
augmented Lagrangian methods. To do this numerically, we use a threshold εu = 10−3 m/s
for the velocity, to select the lower limit of the flowing part, approximated by the set of points
such that |u| > εu.
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Figure 8: Comparison of the static-flowing interface Z(t, X) at different times t = 0.18s, t = 0.3s,
t = 0.48s, t = 0.66s, t = 0.78s, between the regularization (full lines) and augmented
Lagrangian methods (dotted lines).

Although the regularization method predicts a slightly lower position of the interface,
both methods lead to very similar results. The difference obtained at time t = 0.78s can be
explained by the fact that ‖Du‖ becomes very small at this time, and the domain is extremely
narrow in the upstream part of the flow. Thus, it is difficult to extract the interface position
with accuracy.

In order to evaluate further the impact of the choice of ǫ in the regularization method,
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we run the simulation with the larger value ǫ = 10−1s−1. We plot the interface profiles in
Figure 9. We see that the larger values for ǫ lead to slightly rougher profiles. The difference
is more noticeable on the left wall of the flowing mass and at the front. Nevertheless, the
position of the interface is still well captured, without any systematic deviation. The gain in
computational time with respect to the previous test with ǫ = 10−6s−1 turns out to be only
of 1.2. In this test case, we conclude that the regularization method is not very sensitive to
the choice of ǫ in the considered range, for accuracy as well as for computational time, except
near the left wall and near the upstream part of the flow when the mass is close to stopping.
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Figure 9: Comparison of the static-flowing interface Z(t, X) at different times t = 0.18s, t = 0.3s,
t = 0.48s, t = 0.66s, between the regularization method with ǫ = 10−1s−1 and with
ǫ = 10−6s−1.

For illustrative purpose, we have plotted in Figure 10 the initial and final meshes for the
regularization method run with ǫ = 10−6s−1.
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Figure 10: Initial and final (t ≥ 0.7s) meshes for the regularization method in the case of trapezoidal
geometry with ǫ = 10−6s−1.

5.2 Comparison with laboratory experiments

The experimental results presented here are processed from a series of experiments partially
published in [22] where more details about the experiments and the measurements methods
made with a high-speed camera can be found. In particular, we have extracted the evolution
of the flow thickness, the velocity profiles, and the static-flowing interface, in order to compare
with the numerical simulations from the regularization method described in Section 3. The
measurements of the velocity profile and of the static-flowing interface are not accurate, but
provide an estimate of the time change of these quantities and of their spatial variations. In
the line of the granular collapse experiments performed in [46, 22], we focus on two main
configurations. The first one deals with a granular collapse over a rigid bed. The second one
deals with a granular collapse over an erodible bed made of the same material.

h
0

l
0

x

h
e

z

�
0

U
x

Figure 11: Experimental set-up: the initial mass with initial thickness h0 = 25cm, initial slope angle
α0 = 70◦, and initial width l0 = 30cm, is released and spreads (light gray) down a plane
covered by an erodible bed of thickness he = 5mm, by opening very rapidly a gate (thick
red) at time t = 0s.

The experimental setup consists of a channel bordered by transparent plastic walls spaced
by 10cm, topped with a reservoir. A granular mass in the reservoir is sustained by a sliding
gate, see Figure 11. The reservoir shape is either trapezoidal (Figure 5-(I)), with a gate
inclined at 70◦ with respect to the horizontal, or rectangular (Figure 5-(II)) with a gate
perpendicular to the channel base. Laboratory experiments related to the erodible bed,
(Figure 5-(III)), are performed on an erodible layer of 5mm of thickness, made of the same
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material, deposited along the channel base. The granular mass is initially released from the
reservoir by quickly opening the gate and spreads over the channel base.

5.2.1 Collapse of a trapezoidal and a rectangular mass over a rigid bed

We consider first the case 5-(I) of a trapezoidal granular mass over a rigid bed. We compare
the evolution of the free surface (i.e., of the thickness profiles), of the velocity profiles UX , UZ

for two different vertical sections located at X = Xg and X = Xg +10cm with Xg = 29.7cm,
and of the position of the static-flowing interface.
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Figure 12: Comparison of the evolution of the free surface for a trapezoidal granular mass over a
rigid bed, at different times t = 0.18s, t = 0.3s, t = 0.48s, t = 0.66s, t = 0.78s, t = 1.02s,
between the regularization method (full lines) and experimental results (dotted lines).

The simulated thickness profiles are in good agreement with the experimental observa-
tions, especially during the second part of the collapse (t = 0.66s, t = 0.78s, t = 1.02s), when
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the flow is close to stopping. The time at which the numerical mass stops in the trapezoidal
case 5-(I) is t = 0.86s. The shape of the flow is very well reproduced (Figure 12), except
near the left wall of the domain and near the front flow. On the left wall, the numerical
thickness decreases more rapidly than the experimental one. However, it decreases less than
the numerical thickness predicted by the augmented Lagrangian method. The position of
the front is overestimated by the numerical simulations. These discrepancies are more visible
during the starting phase of the flow. The shape of the final deposit and the runout distance
are, however, very well reproduced. Part of the discrepancy between the simulation and the
experiments is due to the effect of removing the gate, as shown in [31]. Indeed, taking the
gate into account slows down the mass spreading but leads to the same deposit.
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Figure 13: Comparison of the horizontal velocity profile UX (left) and of the vertical velocity profile
UZ (right), for a trapezoidal geometry, at different times from t = 0.18s to t = 0.66s, be-
tween the regularization method (full lines) and the experimental measurements (dotted
lines plus error bars), for two different positions located at X = Xg and X = Xg +10cm,
where the position of the gate in the experimental setup is Xg = 29.7cm.

For comparing the velocity profiles UX and UZ , we consider two vertical sections located
at X = Xg and X = Xg + 10cm. Figure 13 shows that the model qualitatively reproduces
the change in time of velocity profiles, even though significant quantitative differences can
be observed. The maximum horizontal velocity is reached close to the free surface. The
roughness of the experimental measurements prevents however to perform a more precise
comparison.

Then, we study the evolution of the interface representing the transition between the
static and flowing zones in the granular mass. We use a threshold εu = 10−3 m/s to select
the lower limit of the flowing part, approximated by the set of points such that |u| > εu.
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Figure 14: Comparison of the static-flowing interface Z(t, X) at different times t = 0.18s, t = 0.3s,
t = 0.48s, t = 0.66s, t = 0.78s, between the regularization method (full lines) and the
experimental measurements (dotted lines).

Figure 14 shows that the position of the static-flowing interface within the granular mass
is fairly well predicted numerically, except in the upper part of the left wall where the
elevation of this interface is underestimated. The same qualitative difference was observed
when comparing the regularization method with the augmented Lagrangian method (Figure
8). This underestimation of the position of the static-flowing interface may also be related to
the fact that the gate is not taken into account here, leading to a faster flow dynamics than
in the experiments.

21



 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=0.18s (REG)
t=0.18s (EXP)

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35  40  45

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=0.3s (REG)
t=0.3s (EXP)

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35  40  45  50

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=0.42s (REG)
t=0.42s (EXP)

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=0.5s (REG)
t=0.5s (EXP)

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=0.78s (REG)
t=0.78s (EXP)

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60

Z
(c

m
)

X(cm)

freesurface (rectangle)

t=1.06s (REG)
t=1.06s (EXP)

Figure 15: Comparison of the evolution of the free surface for a rectangular granular mass over a rigid
bed, at different times t = 0.18s, t = 0.3s, t = 0.42s, t = 0.5s, t = 0.78s, t = 1.06s, between
the regularization method (full lines) and the experimental measurements (dotted lines).

Similar results are obtained in the case of a rectangular granular mass released over a rigid
bed (Figure 5-(II)), with an even better agreement between the simulated and experimental
results. As shown in Figure 15, the collapse of a rectangular mass is quite well reproduced.
Similarly to configuration 5-(I), the shape of the granular mass is very similar during its
spreading over the rigid bed except on the left wall and close to the front of the flow. In the
rectangular case 5-(II) the numerical mass stops around time t = 0.92s. In the simulations,
the thickness of the granular mass on the left wall is smaller, and the flow front propagates
more rapidly than in the experiments. The shape of the final deposit and the runout distance
are very well reproduced.
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5.2.2 Collapse of a trapezoidal mass over an erodible bed

In order to mimic real cases where erosion of material along the slope is often observed,
we investigate the configuration of a granular collapse over an erodible bed made of the
same material. The presence of an erodible layer along the spreading surface has been
shown to change the flow dynamics and the deposit of the material over slopping beds, as
investigated in [13, 19, 22, 33, 45, 46, 47]. For a granular collapse over an horizontal bed, the
runout distance is only very slightly affected by the presence of the erodible bed. Here we
reproduce the spreading of the granular mass over an erodible layer and compare our results
to experiments of granular collapse over horizontal plane with erodible beds performed in
[22].

We consider the trapezoidal geometry, and the erodible bed is represented by a thin layer
of thickness he = 5mm under the trapezoidal column, see Figure 5-(III). Figure 16 shows that
the numerical and experimental thickness profiles of the granular mass at different times are
comparable all along the spreading of the mass. The final thickness profile and the shape of
the deposit are also very similar. In contrast with the case of the rigid bed, at the beginning
of the simulation, the front propagation is slower than in the experiments. Then, at times
between 0.42s and 0.5s, the numerical front catches up with the experimental front, whereas
in the case of a rigid bed the front propagation is overestimated all along the simulation.
Furthermore, the simulation does not reproduce the more rounded front obtained for flows
over an erodible bed, compared to flows over a rigid bed. As a result, some processes may be
missing in the rheology used here, such as a pressure and rate-dependent viscosity that may
be important for describing flows over an erodible bed. The numerical mass stops around
t = 0.81s, earlier than in the experiments (t = 1.02s).
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Figure 16: Comparison of the evolution of the free surface for a trapezoidal granular mass over an
erodible bed of thickness he = 5mm, at different times t = 0.18s, t = 0.3s, t = 0.48s, t =
0.66s, t = 0.78s, t = 1.02s, between regularization method (full lines) and experimental
results (dotted lines).

Conclusions

We have proposed a regularization method for the simulation of two-dimensional flows of vis-
coplastic materials with pressure-dependent Drucker–Prager yield stress. An ALE method is
also applied to deal with the displacement of the domain. We have verified our method on
a simple shear flow configuration and compared our results with those obtained by the aug-
mented Lagrangian method. We have shown that the regularization method is able to deal
with geophysically relevant configurations such as granular column collapses. Moreover, for
the first time, we have formulated a method, with numerical surface tension, capable of sim-
ulating granular collapse with an erodible bed and a free surface. The regularization method
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has been shown to be more efficient in terms of computational time than the augmented
Lagrangian method, while delivering results with similar accuracy.
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