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Abstract

This paper deals with a sharp smoothing e�ect for entropy solutions of one-dimensional

scalar conservation laws with a degenerate convex �ux. We brie�y explain why degenerate

�uxes are related with the optimal smoothing e�ect conjectured by Lions, Perthame, Tadmor

for entropy solutions of multidimensional conservation laws. It turns out that generalized

spaces of bounded variation BVΦ are particularly suitable -better than Sobolev spaces- to

quantify the regularizing e�ect and to obtain traces as in BV. The function Φ in question is

linked to the degeneracy of the �ux. Up to the present, the Lax-Ole��nik formula has provided

optimal results for a uniformly convex �ux. This formula is validated in this paper for the

more general class of C1 strictly convex �uxes -which contains degenerate convex �uxes- and

enables the BVΦ smoothing e�ect in this class. We give a complete proof that for a C1 strictly

convex �ux the Lax-Ole��nik formula provides the unique entropy solution, namely the Kruºkov

solution.
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1 Introduction

This paper focuses on a smoothing e�ect for the entropy solution of the nonlinear scalar conserva-

tion law:

∂tu+ ∂xf(u) = 0, u(x, t = 0) = u0(x) ∈ L∞. (1.1)

This regularizing e�ect is linked to the nonlinearity of the �ux f . Indeed, if f(u) = c u is a linear

�ux, then the solution is u(x, t) = u0(x − c t), so that the regularity of the initial data is not

improved. Lax and Ole��nik proved in the 1950s ([La2, O]) that, if f is a uniformly convex �ux,

then the solution becomes immediately more regular. More precisely, for all t > 0, x 7→ u(x, t)

is locally in BV , the space of functions of bounded variation. In particular, the solution admits

traces everywhere -right traces and left traces-, like shock waves. For degenerate convex �uxes

with vanishing second derivative like f(u) = |u|3 or f(u) = u4, K.S. Cheng ([Cheng1]) showed that

there is no more regularization in BV . There are only few results quantifying in some Banach

spaces the improved regularity of the entropy solutions. After Lax-Ole��nik in the 1950s it took

until the 1990s ([LPT]) to get a smoothing e�ect in Sobolev spaces for a general multidimensional

nonlinear �ux. Furthermore Lions, Perthame, Tadmor conjectured the optimal smoothing e�ect.

We �rst point out a link between the multidimensional regularizing e�ect and the one-dimensional

one for degenerate �uxes. So consider the scalar conservation law

∂tv + divXF (v) = 0, v(X, 0) = v0(X) ∈ L∞(Rd,R),

2



where X ∈ Rd. Assume for example that d = 3 and F (v) = (f(v), g(v), h(v)), then the equation

becomes

∂tv + ∂xf(v) + ∂yg(v) + ∂zh(v) = 0, v(x, y, z, 0) = v0(x, y, z) ∈ L∞(R3,R).

Consider the nonlinear most degenerate scalar �ux among f, g, h (assume that it is h) and then

the one-dimensional corresponding equation

∂tu+ ∂zh(u) = 0, u(0, z) = u0(z).

If we choose v0(x, y, z) = u0(z), then the entropy solution is v(x, y, z, t) = u(z, t), thus the multidi-

mensional smoothing e�ect cannot exceed the one-dimensional one associated to the less nonlinear

scalar �ux. This is a key point in [Ju] to bound the maximal regularizing e�ect conjectured by

Lions, Perthame, Tadmor in [LPT] and also to enable the propagation of high frequency waves in

[CJR]. For instance, the simplest genuinely nonlinear mutidimensional �ux ([CJR, COW]) gener-

ating a smoothing e�ect is not f(v) = v2, g(v) = v2, h(v) = v2 (since v(x, y, z, t) = U(x− y) is a

stationary solution) but

f(v) = v2, g(v) = v3, h(v) = v4.

This vectorial �ux involves the nonlinear degenerate cubic and quartic �uxes, for which there is no

BV smoothing e�ect [Cheng1]. This is the reason why we are interested in degenerate nonlinear

�uxes.

Another regularizing e�ect was obtained by De Lellis, Otto, Westdickenberg in [DOW1]: with

only an L∞ initial data, entropy solutions have got traces like BV functions. Lions, Perthame,

Tadmor did not recover this traces regularity, since their work involves fractional Sobolev spaces

W s,p with too small regularity. More precisely, the exponents s and p satisfy s p < 1 in the one-

dimensional case, which does not enable traces. However if s p > 1, then the regularity is too large

-functions are continuous-, which does not enable shocks. The suitable Sobolev space could only

be W s,p(R) with p = 1
s
, but it does not work neither. So our idea was to look for a space which

would give the smoothing e�ect and the traces properties simultaneously. The generalized space

of bounded variation BVΦ provides the satisfying framework. This space might also prove useful

without the convexity assumption on the �ux. Shortly speaking, the function u is in BVΦ if the

total Φ-variation of u:

TV Φu = sup
n∈N∗, x0<x1<...<xn

n∑
i=1

Φ
(∣∣ u(xi)− u(xi−1)

∣∣)
is �nite. We precisely recall in Section 5 the properties of generalized BV spaces related to a

positive convex function Φ. The function Φ quanti�es the regularity of the solutions and is linked

to the nonlinearity of the �ux f . If the degeneracy of the �ux is like a power law, then the optimal

function Φ is simply a power law and we get the fractional BV spaces BV s (Remark 3, Section 5.1).
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In this case the optimality of the smoothing e�ect is obtained for a smooth general convex �ux in

[CJ1] and [BGJ]. It yields the optimal smoothing e�ect conjectured by [LPT] in W s,p(Rx,R) with

the optimal s and the optimal p = 1
s
. We extend the smoothing e�ect proved in [BGJ] for any C1

strictly convex �ux, more general than a �ux with a power law behavior.

The �rst tool which has provided optimal regularity results is the Lax-Ole��nik formula for a uni-

formly convex �ux. In order to get our smoothing e�ect -in the end part of this article- we �rst

need to rigorously validate the well-known Lax-Ole��nik formula for a nonlinear degenerate convex

�ux. The proof given in this article is self-contained and follows Lax's proof ([La2]). Another

possibility was to use the Lax-Hopf formula for the corresponding Hamilton-Jacobi equation ([E]).

But to get a �ne regularity of the entropy solutions it is convenient to work on the conservation

law instead of the Hamilton-Jacobi equation ([CEL]).

Then we will give a uniformly BVΦ regularizing e�ect for entropy solutions of a one-dimensional

nonlinear scalar conservation law with only an L∞ data and a C1 strictly convex �ux. Usually

authors consider a uniformly convex �ux f , i.e. a C2 �ux such that inff ′′ > 0. The main example

is the Burgers' �ux: f(u) = u2. Subsequently we consider the more general case of a C1 strictly

convex �ux:

De�nition 1. [C1 strictly convex �ux] f is a C1 strictly convex �ux if its derivative f ′ is

increasing.

Many papers -for instance [ADGV, AMV, AV, Gh, JVG, Le]- use the Lax-Ole��nik formula under

this weaker assumption to study discontinuous �uxes or controllability for scalar conservation laws.

However, up to our knowledge, the direct link with the Kruºkov entropy solution for this larger

class of �uxes was never written. An important part of the paper (Sections 3, 4 and Appendix)

is devoted to the Lax-Ole��nik formula for a C1 strictly convex �ux with an L∞ initial data. In

particular we show that the Lax-Ole��nik formula provides traces. Regulated functions -which have

a left limit and a right limit everywhere- are strongly related to the generalized BV spaces. Indeed,

for every regulated function u, there exists a function Φ such that u ∈ BVΦ ([GMW]). In the end

of our paper we show that the function Φ is the same for all t > 0 and for all solutions with the

same bound |u| ≤M .

There are also other approaches of the regularizing e�ect for entropy solutions and also for a larger

class of solutions, the solutions with bounded entropy production (BEP solutions). For entropy

solutions of one-dimensional scalar conservation laws, a generalized one-sided Ole��nik condition

and a BV regularity for a(u) := f ′(u) are obtained by Dafermos, Cheng, Jenssen, Sinestrari

([D1, Cheng2, JS]). This regularity does not provide immediately regularity for u. For instance,

set f(u) = u3

3
and a(u) = u2, then a function taking only the values 1 and − 1 will not be in BV

but satis�es a(u) = 1 everywhere! Nevertheless, some authors use the regularity of a(u) coupled

with the kinetic formulation to obtain traces ([DR]) and also an optimal smoothing e�ect in W s,1

([Ja]). The bounds of the optimality are established in [DW] and [CJ1]. The Hamilton-Jacobi

approach ([E]) provides the entropy solution but the regularity is not easy to obtain since we
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have to di�erentiate the viscosity solution to study the entropy solution. Notice also that the

compactness result given by Panov ([Pa2, Pa3]) for a continuous or discontinuous �ux can be

interpreted as a regularizing e�ect. In the multidimensional case, a BV regularity only for some

averagings of u on some hyperplanes is obtained in [Chev].

BEP solutions are not studied in our paper. This larger class of solutions is the natural framework

to use the kinetic formulation of scalar conservation laws ([LPT]). In the one-dimensional case

and for a uniformly convex �ux, the regularity is bounded from above ([DW]) and its optimality

is proved ([Go, GP]) using quantitative estimates through compensated compactness.

The paper is organized as follows. In Section 2 we set out the main results namely the BVΦ

smoothing e�ect and the validity of the Lax-Ole��nik formula. Section 3 recalls basics on the Lax-

Ole��nik formula and we give then some stability results and traces properties, which will be used

in the following section. In Section 4 we prove that the Lax-Ole��nik formula provides the Kruºkov

(entropy) solution for a larger class of degenerate convex �uxes. Finally, we recall in Section 5 the

de�nitions and the main properties of the BVΦ spaces, we quantify the degeneracy of a C1 strictly

convex �ux and we prove the smoothing e�ect in this class of �uxes.

2 Main results

Our main result is the uniform BVΦ regularizing e�ect for entropy solutions of (1.1) with only an

L∞ initial data and a C1 strictly convex �ux (see De�nition 1). In order to prove this, we will

�rst validate the Lax-Ole��nik formula for this larger class of �uxes, which contains for instance the

convex power law �uxes: f(u) = |u|1+α, α > 0.

The main object de�ning the new functional setting BVΦ is the convex function Φ. The regularizing

e�ect depends on the nonlinearity of the �ux. A sharp measurement of this nonlinearity is obtained

by introducing the modulus of degeneracy of a C1 strictly convex �ux f . Suppose that u0(R) ⊂
[−M,M ], M > 0. The modulus of degeneracy of f for h ∈ [0, 2M ] is de�ned with its derivative

a = f ′:

ϕ(h) = min
|v−u|=h, |u|≤M, |v|≤M

|a(v)− a(u)| = min
−M ≤u≤M−h

|a(u+ h)− a(u)| . (2.1)

In order to get the optimal convex function Φ, one sets Φ as the greatest convex function such

that 0 ≤ Φ ≤ ϕ on [0, 2M ].

Theorem 1. Let the initial data u0 belong to L∞(R,R), M ≥ ‖u0‖∞ and f be a C1([−M,M ],R)

strictly convex �ux. Then the Kruºkov entropy solution x 7→ u(x, t) belongs to BVΦ,loc(Rx,R) for

all t > 0.

Remark 1.

1. The strict convexity of f on [inf u0, supu0] is enough since the entropy solution satis�es the

maximum principle.
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2. The bound of the total Φ-variation in BVΦ,loc depends only on M and t > 0, i.e. for any

�xed t > 0 it is uniform for the L∞ ball of initial data {u0, ‖u0‖∞ ≤M}.

3. For a convex power law �ux f(u) = |u|1+α
1+α

, α > 0 , we have Φ(u) = ϕ(u) = |u|s, s = max(1, α)

and then BVΦ = BV s ([BGJ]).

4. Our results handle a more general degeneracy than the power law degeneracy. Take for

instance the very �at �ux f(u) = exp(−2/u2), |u| ≤ 1 or a "near power law" �ux: f(u) =

− |u|
1+α

ln(|u|)
, |u| < 1, α > 1.

5. For every positive time the entropy solution is a regulated function. Thus, the Lax entropy

condition is then well de�ned and enough to single out the unique Kruºkov entropy solution.

It is well known for a uniformly convex �ux that one entropy is enough to characterize the

Kruºkov solution ([D2, DOW2, Pa1]).

We now recall the Lax-Ole��nik formula in De�nition 2 below. Historically it was established for a

uniformly convex and superlinear �ux f . We claim that we can generalize this formula for a C1

strictly convex �ux on [inf u0, supu0], without assuming f to be superlinear. The precise arguments

are given in Section 3, in which we also give some useful properties about the Lax-Ole��nik formula :

stability, traces, Lax's entropy condition.

De�nition 2. [Lax-Ole��nik solution]

Let f be a C1 strictly convex �ux and u0 ∈ L∞. If necessary, we modify f outside [inf u0, supu0]

so that f becomes superlinear. We denote a = f ′ the velocity, b = a−1 its inverse function, g the

Legendre-Fenchel transform of f which satis�es g′ = b, and U ′0 = u0 an antiderivative of u0. The

following function

h(x,t)(y) = U0(y) + tg

(
x− y
t

)
admits at least one minimizer y = y(x, t) for t > 0 and a unique minimizer for almost all x. The

Lax-Ole��nik solution denoted by LO[f, u0] is:

LO[f, u0](x, t) = u(x, t) = b

(
x− y(x, t)

t

)
. (2.2)

Fact 1. Notice that this formula does not depend on the extension of f (see Proposition 8).

According to [La1, La2, E] the function u(x, t) is uniquely de�ned almost everywhere. Notice that

the Legendre-Fenchel transform g is strictly convex and superlinear. Lax and Ole��nik used their

formula in the 1950s. Twenty years later, Kruºkov [K] stated his general existence and uniqueness

theorem related to entropy condition and for all C1 �uxes without any convex assumptions. Let

us recall the de�nition of a Kruºkov entropy solution.
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De�nition 3. [Kruºkov entropy solution]

A solution is said to be a Kruºkov entropy solution if for every convex function η,

∂

∂t
(η(u)) +

∂

∂x
(q(u)) ≤ 0 in the sense of distributions on (0, T )× R, where q′ = η′f ′ ; (2.3)

and if the initial data is recovered in L1
loc(R,R):

ess lim
t→ 0

u(x, t) = u0(x). (2.4)

Kruºkov [K] showed that there exists a unique solution u(x, t) of (1.1) satisfying both conditions

(2.3) and (2.4) above. The solution given by Kruºkov's theorem will be denoted by K[f, u0].

Notice that the Kruºkov solution is a weak solution of (1.1) with the convex (degenerate) entropies

η(u) = ±u.

A natural question, already asked by Lax himself in 1954 ([La1] �rst conjecture p.6), is the link

between LO[f, u0] and the solution given by the viscosity method, which will be twenty years later

known as K[f, u0].

Theorem 2. If u0 ∈ L∞(R) and f ∈ C1 is strictly convex on [inf u0, supu0], then

LO[f, u0] = K[f, u0].

In other terms the Kruºkov entropy solution is represented by the Lax-Ole��nik formula.

Remark 2. We need the continuity of the velocity a = f ′ to generalize the Lax-Ole��nik formula

and also to de�ne the function Φ. An open question is what occurs with a nonlinear convex but

not di�erentiable �ux, for instance with a Lipschitz nonlinear convex �ux?

To prove Theorem 2 in Section 4, we �rst prove in Subsection 3.2 the stability of the Lax-Ole��nik

formula with respect to the �ux and the initial data. Then we use the same well-known stability

for the Kruºkov solution.

3 Lax-Ole��nik formula for a C1 strictly convex �ux

In this section we give some useful results on the Lax-Ole��nik formula before proving in the next

section that the Lax-Ole��nik solution is the Kruºkov solution.

First, we recall shortly that the Lax-Ole��nik formula is well de�ned for a C1strictly convex and su-

perlinear �ux, see also [ADGV, AMV, AV]. Second, we obtain stability of the Lax-Ole��nik formula

with respect to the �ux and the initial data. Third, the traces property is simply derived from

the Lax-Ole��nik formula, without any BV regularity and before the proof of the BVΦ regularity.

Finally, we explain why the superlinearity of the �ux is not a fundamental assumption.
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3.1 Lax-Ole��nik formula revisited

We �rst emphasize on the convexity involved in our paper : f ∈ C1 is strictly convex if a(u) = f ′(u)

is an increasing function. [La1] considers the uniformly convex case: f ′′(u) > δ > 0 on R. Various
authors [E, H, La1, La2] consider the convex case f ′′(u) > 0 everywhere. Indeed, on any compact

set this condition is equivalent to the uniform convexity. De�nition 1 allows the second derivative

f ′′ to vanish, when f is smooth (for instance power law). In order to use the Lax-Ole��nik formula,

we �rst need to suppose f to be superlinear, i.e. lim
|u|−→+∞

f(u)

|u|
= +∞. In fact, this assumption is

not essential since the behavior of f is important only on the segment [inf u0, supu0].

The Lax-Ole��nik formula is related to the Legendre-Fenchel transform g of the �ux f ([E]) and

the inverse b of the function velocity a. The general de�nition of the Legendre-Fenchel transform

g is : ∀v ∈ R, g(v) = max
u

(v u− f(u)). In particular, when f is a C1 strictly convex function, then

g′ = b and :

∀v ∈ R, g(v) = v b(v)− f(b(v)). (3.1)

This last equality is used later in the Appendix.

Lemma 1. 1) a : R→ R is a homeomorphism.

2) Let b be the inverse of a and let g be the antiderivative of b such that g(a(0)) = 0. Then g is

strictly convex and superlinear.

The second part of the lemma is well known for the Legendre-Fenchel transformation and useful

to have a well posed minimization problem. The �rst part is simple but new. Indeed, notice that

the velocity a(.) is not a di�eomorphism as in [La2, O]. It is the reason why BV regularity is lost

([BGJ, CJ1]).

Proof. 1) Since f is strictly convex, a(u) = f ′(u) is increasing. If a ≤ C, then for u ≥ 0,

f(u) − f(0) ≤ C u, in contradiction with the superlinearity of f . In the same way, we have

inf a = −∞. So a is not bounded and is a homeomorphism.

2) Since b = a−1, b is also an increasing homeomorphism and then g is strictly convex. Let

A > 0, for u large enough (v ≥ vA), b(v) ≥ A, so g(v) − g(vA) ≥ A(v − vA), which proves

lim
v−→+∞

g(v)

v
= +∞. We prove similarly that lim

v−→−∞

g(v)

v
= −∞. Then g is superlinear.

We de�ne U0(y) =

ˆ y

0

u0(z)dz. The two following results are already proved in [H, La2] (see also

for instance [E] for the case f uniformly convex). The proof is valid for f strictly convex.

Proposition 1. [Minimizer y(x, t)]

1) For all (x, t) with t > 0 , there exists at least a real y = y(x, t) which minimizes

h(x,t)(y) = U0(y) + tg

(
x− y
t

)
.
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2) Let t > 0. For all x, except on a set at most countable, there exists only one real y = y(x, t)

which minimizes h(x,t)(y).

Notice that U0 has at most a linear growth at in�nity, so the superlinearity and the convexity

of the function g is enough to get a well posed minimization problem with at least one solution.

Again, the convexity of g yields to monotonicity of the minimizer [E, H, La2].

Lemma 2. Let t > 0. If for all x, y(x, t) denotes a minimizer related to (x, t), then for all x1, x2

such that x1 < x2, y(x1, t) ≤ y(x2, t) (we say that x 7→ y(x, t) is non-decreasing).

For convenience, we recall here that the Lax-Ole��nik solution is given by

LO[f, u0](x, t) = b

(
x− y(x, t)

t

)
uniquely a. e. and also everywhere but not uniquely since it can depend on the choice of y(x, t).

For �xed (x, t), denote by y+(x, t) and y−(x, t) the largest and smallest of y for which the function

h(x,t)(y) assumes its minimum. The Lax-Ole��nik formula can be de�ned uniquely everywhere by

LO+ or LO− :

LO±[f, u0](x, t) = b

(
x− y±(x, t)

t

)
. (3.2)

There are obvious consequences of this representation formula, �rst when u0 is continuous and

then for only u0 in L∞ in Proposition 5.

Proposition 2. Let u0 be a continuous bounded function.

1) [Method of characteristics] If (x, t) is a point of continuity of y(x, t) and if u0 is continuous

at y(x, t), then:

LO[f, u0](x, t) = u0(y(x, t)). (3.3)

In particular, if u0 is continuous, then Equality (3.3) is valid almost everywhere.

2) [Maximum principle] For almost all (x, t): inf
y∈R

u0(y) ≤ u(x, t) ≤ sup
y∈R

u0(y). In particular:

|u(x, t)| ≤ ‖u0‖∞.
3) [Finite speed of propagation] For almost all (x, t): |y(x, t)− x| ≤ t ‖a(u0)‖∞.

Proof. According to the de�nition of y(x, t) we have indeed:

0 =
∂h(x,t)

∂y
(y(x, t)) = u0(y(x, t))− b

(
x− y(x, t)

t

)
,

So for almost all (x, t):

u0(y(x, t)) = b

(
x− y(x, t)

t

)
and y(x, t) = x− t a(u0(y(x, t))).

The three statements follow from these last equalities.
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3.2 Stability

We start this subsection by proving two lemmas, which we use later to get stability properties.

Lemma 3. For n ∈ N, let αn : R→ R be a continuous, bijective and increasing function. Assume

that (αn) converges pointwise to a function α which is continuous, bijective and increasing. Then

(βn) converges uniformly to β on each segment of R, where βn (respectively β) is the inverse of αn

(respectively α).

Proof. Let J = [l, r] be a segment of R. Let I = β(J) = [β(l), β(r)] and for n ∈ N, In = βn(J) =

[βn(l), βn(r)].

i) We �rst prove the pointwise convergence of (βn) towards β. Let ε > 0 and x ∈ R. Since

αn(β(x) + ε) −→ α(β(x) + ε) and α(β(x) + ε) > x, then for n large enough, αn(β(x) + ε) ≥ x.

It follows that β(x) + ε ≥ βn(x). Similarly for n large enough, the following inequality holds:

β(x)− ε ≤ βn(x). Then βn(x) −→ β(x).

ii) It follows in particular from i) that there exists a segment K such that I ⊂ K and for n large

enough (n ≥ n0), In ⊂ K.

iii) It follows from Dini's second theorem that the convergence of (αn) to α is uniform on K. Let

ε > 0. Since α is a homeomorphism, β is continuous, so β is uniformly continuous on the segment

J : there exists η > 0 such that for all y, y′ ∈ J , |y − y′| ≤ η =⇒ |β(y)− β(y′)| ≤ ε. Since (αn)

converges uniformly to α on K, there exists n1 ≥ n0 such that for all n ≥ n1 and for all x ∈ K,

|αn(x)− α(x)| ≤ η. For all n ≥ n1 and y ∈ J , |αn(βn(y))− α(βn(y))| ≤ η, i.e. |y − α(βn(y))| ≤ η,

therefore: |β(y)− βn(y)| ≤ ε. It follows that (βn) converges uniformly to β on J .

The second lemma is a simple "gamma-convergence" result.

Lemma 4. Let K be a segment of R. Let ϕ and ϕn, n ∈ N be functions de�ned on K such that:

1) ϕ has a unique minimizer x in K ;

2) ϕn has a minimizer xn in K ;

3) (ϕn) converges uniformly to ϕ on K.

Then (xn) converges to x.

Proof. Let r > 0. By the uniqueness of the minimizer x, there exists γ > 0 such that for all

y ∈ K, |y − x| > r =⇒ ϕ(y) > ϕ(x) + 2γ. For n large enough, ‖ϕn − ϕ‖∞ ≤ γ, so if |y − x| > r,

then ϕn(y) ≥ ϕ(y)− γ > ϕ(x) + γ whereas ϕn(x) ≤ ϕ(x) + γ. It follows that for n large enough,

|xn − x| ≤ r, so (xn) converges to x.

We are now in a position to prove stability properties in the next two propositions.

Proposition 3. [Stability with regard to the �ux] Let u0 ∈ L∞ and for n ∈ N, fn strictly con-
vex and superlinear such that (fn) converges to f in C1

loc, where f is strictly convex and superlinear.

Then (LO[fn, u0])n converges to LO[f, u0] in L1
loc and also pointwise a.e..
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Proof. We choose (x, t) such that y(x, t) is uniquely de�ned so the minimization problem has a

unique minimizer. According to (2.2) , we write: LO[f, u0](x, t) = b

(
x− y(x, t)

t

)
(respectively

LO[fn, u0](x, t) = bn

(
x− yn(x, t)

t

)
), where y(x, t) (respectively yn(x, t)) minimizes h(x,t)(y) =

U0(y) + tg

(
x− y
t

)
(respectively hn(x,t)(y) = U0(y) + tgn

(
x− y
t

)
). First note that (gn) converges

towards g in C1
loc, since from Lemma 3 (bn) converges uniformly to b. Since g is convex and

superlinear, we can restrict the minimization on a �xed compact set K. Moreover (gn) converges

to g in C1(K) so, for n large enough, gn admits its global minimizer in K. Indeed, we choose

K = [c, d] large enough such that g on the boundary is greater than |g(0)|+1 and g′(c) < 0 < g′(d).

We can choose ε > 0 small enough and n large enough such that g′(c) + ε < 0 < g′(d) − ε,

‖gn − g‖C1(K) < ε, thus the minimizers of gn are still in the same compact K. I follows from

Lemma 4 that (yn(x, t))n converges to y(x, t). We conclude then that (LO[fn, u0])n converges

pointwise to LO[f, u0]. Furthermore, the inequality 2) from Proposition 2 yields the convergence

in L1
loc.

Proposition 4. [Stability with regard to the initial data] Let f ∈ C1 be strictly convex and

superlinear and for n ∈ N, un0 ∈ C0 ∩ BV such that (un0 ) converges to u0 in L1
loc and for all n,

‖un0‖∞ ≤ ‖u0‖∞, where u0 ∈ L∞. Then (LO[f, un0 ])n converges to LO[f, u0] in L1
loc.

This result is already written in [La2] for a uniformly convex �ux, also with respect to the weak

convergence of the initial data. Notice that Proposition 4 is only a step to prove Theorem 2.

Once this theorem is proved, Lax-Ole��nik formula inherits stronger stability results thanks to the

stability of the entropy solution with respect to the initial data ([K, LPT, CR]). We give a proof

to be self-contained.

Proof. We choose (x, t) such that y(x, t) is uniquely de�ned so the minimization problem has

a unique minimizer. According to (2.2), we write: LO[f, u0](x, t) = b

(
x− y(x, t)

t

)
(respec-

tively LO[f, un0 ](x, t) = b

(
x− yn(x, t)

t

)
), where y(x, t) (respectively yn(x, t)) minimizes h(x,t)(y) =

U0(y) + tg

(
x− y
t

)
(respectively hn(x,t)(y) = Un

0 (y) + tg

(
x− y
t

)
). I follows from Lemma 4 that

(yn(x, t))n converges to y(x, t). Since b is continuous, we conclude that (LO[f, un0 ])n converges

pointwise a.e. to LO[f, u0]. Furthermore, the inequality 2) from Proposition 2 and the assumption

‖un0‖∞ ≤ ‖u0‖∞ yield the convergence in L1
loc.

Thanks to Proposition 4 and Lemma 4 we can extend two results given above in Proposition 2:

the maximum principle and the �nite speed of propagation.

Proposition 5. The points 2) and 3) of Proposition 2 are still valid for u0 ∈ L∞.

11



Proof. i) According to Proposition 2, we have for almost all (x, t): inf
y∈R

u0(y) ≤ u(x, t) ≤ sup
y∈R

u0(y)

for u0 ∈ C0 ∩ L∞. Then by stability with respect to the initial data we keep the same result for

u0 ∈ L∞.
ii) According to Proposition 2, we have for almost all (x, t) : |y(x, t)− x| ≤ t ‖a(u0)‖∞ for u0 ∈
C0 ∩ L∞. Suppose now that u0 ∈ L∞. There exists a sequence (un0 ) of C0 which converges

pointwise to u0. For all n, we get: |yn(x, t)− x| ≤ t ‖a(un0 )‖∞. The inequality for u0 follows then

from Lemma 4.

3.3 Traces and Lax-entropy condition

The traces are a direct consequence of the Lax-Ole��nik formula. We �nd these traces again in

Section 5 thanks to the BVΦ regularizing e�ect.

Proposition 6. For all t > 0, x 7→ LO[f, u0](x, t) is a regulated function (it admits a left limit

and a right limit at each point).

This result implies that for each time t > 0, the entropy solution belongs to a space BVΦ. Indeed,

for every regulated function u, there exists a convex function Φ such that u ∈ BVΦ ([GMW]). In

the end of our paper we show that the function Φ is the same for all t > 0 and for all solutions

with the same bound ‖u0‖∞ ≤ M . Moreover, for each t > 0, the total Φ-variation is also locally

uniformly bounded.

Proof. Let t > 0. Since x 7→ x and x 7→ y(x, t) are non-decreasing, x 7→ x− y(x, t)

t
is of

bounded variation and is then a regulated function. Since b is continuous, x 7→ LO[f, u0](x, t) =

b

(
x− y(x, t)

t

)
is also a regulated function.

Proposition 7. The function u = LO[f, u0] satis�es the Lax-entropy condition, i.e.: for each

discontinuity at (x, t), a(ur) <
f(ur)− f(ul)

ur − ul
< a(ul), where ur (respectively ul) denotes the right

(respectively left) limit of u(·, t).

Proof. Let t > 0 and x1, x2 such that x1 < x2. Let y1 (respectively y2) be a minimizer related to

(x1, t) (respectively (x2, t)). According to Lemma 2, y1 ≤ y2. Moreover: u(x1, t) = b

(
x1 − y1

t

)
and u(x2, t) = b

(
x2 − y2

t

)
. Since b is increasing, it follows that: b

(
x1 − y1

t

)
≥ b

(
x1 − y2

t

)
, so

we get the inequality: u(x2, t)− u(x1, t) ≤ b

(
x2 − y2

t

)
− b
(
x1 − y2

t

)
. According to Proposition

6, u(., t) is a regulated function. Since b is continuous, it follows from the previous inequality that

ur < ul, so we deduce: a(ur) < a(ul). Finally, since f is convex, the Lax-entropy condition is

satis�ed.
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3.4 About the �ux superlinearity

To conclude this section we show that the superlinearity can be removed, simply, by modifying

the �ux outside [inf u0, supu0].

Proposition 8. Let f, f̃ ∈ C1 be superlinear strictly convex �uxes and u0 ∈ C0 ∩ L∞ (u0(R) ⊂
K := [−M,M ], M > 0). If f = f̃ on K, then LO[f, u0] = LO[f̃ , u0].

Proof. We start with u0 ∈ C0 ∩ L∞ and then by the stability with respect to the initial data we

keep the same result for u0 ∈ L∞.
Since f = f̃ on K, it follows that a = ã on K, b = b̃ on a(K) and g = g̃ on a(K). Let

t > 0. For all x, except on a set at most countable, there exists only one real y = y(x, t) which

minimizes h(x,t)(y) and one real ỹ = ỹ(x, t) which minimizes h̃(x,t)(y). For almost all x, (x, t) is a

point of continuity of both y(x, t) and ỹ(x, t), therefore b

(
x− y
t

)
= LO[f, u0](x, t) = u0(y) and

b̃

(
x− ỹ
t

)
= LO[f̃ , u0](x, t) = u0(ỹ). In particular,

x− y
t
∈ a(K) and

x− ỹ
t
∈ a(K). But g = g̃

on a(K), so h(x,t)(ỹ) = h̃(x,t)(ỹ) ≤ h̃(x,t)(y) = h(x,t)(y), which means that ỹ minimizes h(x,t). By

uniqueness of the minimizer, it follows that ỹ = y, and then LO[f, u0](x, t) = LO[f̃ , u0](x, t).

Fact 2. Proposition 8 above allows us to assume for instance (which we will afterwards) that f(u)

is quadratic for u large enough: f(u) = αu2, α > 0. Then for u large enough, a and b = a−1 will

be linear and g(u) = β u2 + γ, β > 0.

We can now de�ne the Lax-Ole��nik formula for a not superlinear �ux.

De�nition 4. [Lax-Ole��nik formula for a general strictly convex �ux] Let f be a strictly

convex �ux on [inf u0, supu0] and f̃ be a superlinear strictly convex �ux on R such that f̃ = f on

[inf u0, supu0], then we de�ne LO[f, u0] := LO[f̃ , u0].

According to Proposition 8 this de�nition does not depend on the extension f̃ , but it depends on

the initial data u0.

We will prove in the next section that LO[f, u0] = K[f, u0].

4 Lax-Ole��nik solution and Kruºkov solution

We prove in this section that the Lax-Ole��nik solution is the Kruºkov entropy solution for a

general strictly convex �ux and a bounded initial data. This result is well known for a uniformly

convex �ux. It is for instance proved through the Hamilton-Jacobi approach ([E]), which provides

the entropy solution thanks to the viscosity solution. We did not chose this method for several

reasons: to be self-contained ; to stay in the framework of scalar conservation laws ; to obtain the

regularity, since we do not have to di�erentiate the viscosity solution to study the entropy solution.

Incidentally we obtain a smoothing e�ect also for the viscosity solution.
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In the simpler case where the initial data is smooth, we detail completely Lax's proof in the

Appendix. We derive the general case from the smooth case by using the stability arguments with

respect to the �ux and to the initial data (Propositions 3 and 4). We can assume without loss of

generality that the �ux is superlinear (see De�nition 4).

We �rst prove the result for a general �ux and a smooth initial data and then for an L∞ initial

data.

Proposition 9. Assume that f ∈ C1 is strictly convex and superlinear and that u0 ∈ C0
c ∩ BV .

Then LO[f, u0] = K[f, u0].

Proof. Consider a sequence (fn) of �uxes of class C2 and uniformly convex such that (fn) converges

to f in C1
loc. It follows from Proposition 3 that (LO[fn, u0])n converges to LO[f, u0] in L1

loc and

also pointwise a.e. and from Proposition 11 that LO[fn, u0] = K[fn, u0], for all n. According to

[Ser], we have for all t > 0 and for all A > 0:ˆ A

−A
|K[fn, u0](x, t)−K[fn, u0](x, t)| dx ≤ t Lip(fn− f)TV u0[−A− t ‖a(u0)‖∞ , A+ t ‖a(u0)‖∞], so

we deduce that (K[fn, u0])n converges to K[f, u0] in L1
loc. The equality LO[f, u0] = K[f, u0] follows

then from the uniqueness of the limit in L1
loc.

We are �nally in a position to achieve the proof of Theorem 2.

Proof. Consider a sequence (un0 ) of initial data in C0
c ∩ BV such that (un0 ) converges to u0 in L1

loc

and is uniformly bounded. It follows from Proposition 4 that (LO[f, un0 ])n converges to LO[f, u0] in

L1
loc and also pointwise a.e. and from Proposition 9 that LO[f, un0 ] = K[f, un0 ], for all n. According

to the L1-contraction inequality of Kruºkov, we have for all t > 0:ˆ A

−A
|K[f, un0 ](x, t)−K[f, u0](x, t)| dx ≤

ˆ A+t‖a(u0)‖∞

−A−t‖a(u0)‖∞
|un0 (x)− u0(x)| dx for all A > 0, so we deduce

that (K[fn, u0])n converges to K[f, u0] in L1
loc. The equality LO[f, u0] = K[f, u0] follows then from

the uniqueness of the limit in L1
loc.

5 BVΦ uniform regularity

We show a smoothing e�ect in generalized spaces of bounded variation [MO]. A BV s smoothing

e�ect has already been proved in [BGJ] for any non �at C∞ convex �ux (more generally any �ux

with a power law degeneracy as stated in De�nition 6 below). The optimality is proved in [CJ1].

For a more general convex and nonlinear �ux (C1 strictly convex �ux) we obtain a BVΦ smoothing

e�ect. We recall brie�y the de�nition of these generalized BV spaces. The interest is that BVΦ

keeps the same features as BV : left and right traces everywhere and compactness in L1
loc, but

with less smoothness. Moreover, this space provides a �ner estimation of the regularity, as shown

for instance on the critical example in [CJ2]. The function Φ which measures the regularity of

functions in BVΦ is related to the �ux. The key tool to quantify the nonlinearity of f is the

modulus of degeneracy de�ned by (2.1).

14



5.1 Generalized BV spaces

We recall brie�y the de�nitions of these generalized BV spaces. We refer the reader to [MO] for

the �rst extensive study of BVΦ spaces.

De�nition 5. [BVΦ spaces] Let I be an non-empty interval of R and let S(I) be the set of

subdivisions of I : {(x0, x1, ..., xn), n ≥ 1, xi ∈ I, x0 < x1 < ... < xn}.
Let M > 0 and Φ a positive convex function on ]0, 2M ] such that Φ(0) = 0.

i) If u is a function de�ned on I, such that |u| ≤M the total Φ-variation of u on I is:

TV Φu[I] = sup
S(I)

n∑
i=1

Φ
(∣∣ u(xi)− u(xi−1)

∣∣)
where the supremum is taken on all subdivisions of the interval I.

ii) If Φ satis�es the condition

(∆2) ∃h0 > 0, k > 0, Φ(2 h) ≤ kΦ(h) for 0 ≤ h ≤ h0,

then the space BVΦ(I) is the set of functions u de�ned on I such that TV Φu[I] < +∞ and in

this case BVΦ(I) is a linear space. Else BVΦ(I) =
{
u : I 7→ R, ∃ λ > 0, TV Φ(λu)[I] < +∞

}
is a

metric space.

Notice that [MO] consider the case Φ(u) = o (|u|) near 0, which leads to a less regular space than

BV : BV * BVΦ. The case where Φ(u) = u or Φ(u) ∼ u near 0 yields BV = BVΦ. For degenerate

�uxes, we are in the context of [MO]: Φ(u) = o (|u|) near 0.

Remark 3. In the particular case where Φ is a power function: Φ(u) = |u|α , α > 1, with p =
1

s
,

we get a space known as BV s(I). For s = 1, we get the space of functions of bounded variation.

Example 1. 1) Let Φ(u) = exp

(
− 2

u2

)
, |u| ≤ 1. Since Φ(u) = o (|u|α) for all α ≥ 1, it follows

that for all s ∈]0, 1], BV s ⊂ BVΦ. In particular, it follows that for all s ∈]0, 1], BV s 6= BVΦ.

2) Let Φ(u) = − |u|
α

|lnu|
, |u| < 1, α ≥ 1. The following inclusions hold for all ε > 0 and for s =

1

α
,

BV s ⊂ BVΦ ⊂ BV s−ε.

We recall the compact embedding theorem in L1
loc:

Theorem 3. [Helly's extracting theorem [MO]] Every sequence (un) ∈ BVΦ(I) bounded in

total Φ-variation includes a subsequence convergent to a function u of the class BVΦ(I) pointwise

in I.

The L1
loc(I) convergence of the subsequence follows from the inclusion BVΦ(I) ⊂ L∞(I).

Remark 4. The total Φ-variation can be extended to the class of measurable functions de�ned

almost everywhere by setting: TV Φu[I] = inf
v=u a.e.

TV Φv[I]. For a function u de�ned a.e. we can
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also estimate TV Φu[I] by TV Φu[I] ≤ sup
S̃(I)

∑n
i=1 Φ

(∣∣ u(xi)− u(xi−1)
∣∣), where S̃(I) is the set of

subdivisions of I rD and D is a measure-zero set where u is not de�ned.

5.2 Modulus of degeneracy

In [BGJ] we can �nd the following de�nition of the degeneracy for nonlinear convex �uxes:

De�nition 6. Let f ∈ C1(K,R), where K is a compact interval of R. We say that the degeneracy

of f on K is at least q > 0 if the continuous derivative a(u) = f ′(u) satis�es:

inf
(u,v)∈(K×K)rDK

|a(u)− a(v)|
|u− v|q

> 0, (5.1)

where DK is the diagonal {(u, v) ∈ (K ×K) | u = v}. The lowest real number q, if there exists, is
called the degeneracy of f on K and denoted p.

However, this de�nition is not enough general to consider all C1 strictly convex �uxes such as

�at �uxes. So we introduce for the monotonic function a(.) the modulus of degeneracy, which is

the key function to obtain new sharp generalized BV estimates. Suppose that u0(R) ⊂ [−M,M ],

M > 0. We recall formula (2.1) for convenience: for h ∈ [0, 2M ],

ϕ(h) = min
−M ≤x≤M−h

|a(x+ h)− a(x)|

and for h < 0, ϕ(h) = ϕ(−h). Note that ϕ(0) = 0 and for all x, y:

ϕ (|x− y|) ≤ |a(x)− a(y)| ≤ ω (|x− y|) , (5.2)

where ω(h) = sup
|x−y|≤h

|a(x)− a(y)| is the continuity modulus.

Remark 5. We can assume that a is increasing ; else, if a is not and is only non-decreasing, then

ϕ is identically zero for h small enough.

Let us give some examples of modulus of degeneracy.

Example 2. If a = f ′ is convex, then ϕ(h) = a(h −M) − a(−M) and if a = f ′ is concave, then

ϕ(h) = a(M)− a(M − h).

Lemma 5. If a(u) is odd, increasing and convex for u ≥ 0, then ϕ(h) = 2 a

(
|h|
2

)
. In particular,

ϕ(h) is convex for h ≥ 0.

Proof. Let h > 0. Since a(u) is convex for u ≥ 0, the slope function x 7→ a(x+ h)− a(x)

h
is

increasing for x > 0, so minx≥0(a(x+h)− a(x)) = a(h)− a(0) = a(h). In the same way, since a(u)

is odd, a(u) is concave for u ≤ 0 and minx≤−h(a(x + h)− a(x)) = a(0)− a(−h) = a(h). Suppose
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now that −h < x < 0: it follows from the convexity of a(u) for u ≥ 0 that a(x + h) − a(x) =

a(x+h) +a(−x) ≥ 2 a

(
x+ h

2
+
−x
2

)
= 2 a

(
h

2

)
. Finally, since 2 a

(
h

2

)
< a(h), we deduce that

ϕ(h) = min
−M ≤x≤M−h

(a(x+ h)− a(x)) = 2 a

(
h

2

)
.

Example 3. It follows from Lemma 5 that a convex power law �ux has got a convex modulus of

degeneracy: if f(u) =
|u|1+α

1 + α
, α > 1, then a(u) = sgn(u) |u|α and ϕ(h) = 21−α |h|α.

Notice that ϕ is not necessary convex:

Example 4. If a(u) = u− s(u), where s(u) =
sin(2 π u)

2 π
on [− 2, 2], then ϕ(h) = 2(h− |s(h)|), so

that ϕ is not convex for h > 1.

Lemma 6. Assume that f is strictly convex. Then the function ϕ satis�es:

1) ϕ is increasing on [0, 2M ].

2) ϕ(h) > 0 for h 6= 0.

3) ϕ is continuous.

Proof. 1) Let h1 < h2. Let x1 ∈ [−M,M − h1] and x2 ∈ [−M,M − h2] ⊂ [−M,M − h1] such that

ϕ(h1) = a(x1 +h1)−a(x1) and ϕ(h2) = a(x2 +h2)−a(x2). We have: ϕ(h1) ≤ a(x2 +h1)−a(x2) <

a(x2 + h2)− a(x2) = ϕ(h2), so ϕ is increasing.

2) ϕ(0) = 0 and ϕ is increasing for h > 0 yields 2).

3) It is a slight generalization of the classical following result: let D(x) = supy∈[α,β] d(x, y), where

d is continuous on R× [α, β]. Then D is continuous on R.

5.3 BVΦ estimate

As we notice in Example 4 above, we cannot expect in general the modulus of degeneracy ϕ to

be convex. However, the convexity is necessary to de�ne the space BVΦ. So we de�ne in the next

subsection the closest convex function Φ related to ϕ.

Proposition 10. [The convex function Φ] We denote by Φ the greatest convex, even function

such that 0 ≤ Φ ≤ ϕ on [0, 2M ]. This function Φ is increasing and satis�es: Φ(0) = 0 and for all

u, v ∈ [−M,M ], u 6= v,

0 < Φ (|u− v|) ≤ |a(u)− a(v)| . (5.3)

Proof. We show that Φ is well-de�ned. Let C = {ψ | ψ is convex, even and 0 ≤ ψ ≤ ϕ on [0, 2M ]}.
Since 0 ∈ C, C 6= ∅. We set: Φ(x) = sup

ψ∈C
ψ(x). Then Φ is convex, even and such that 0 ≤ Φ ≤ ϕ on

[0, 2M ]. We prove that Φ 6≡ 0. Let D = sup {d ∈ [0, 2M ] | Φ(d) = 0} and assume that D 6= 0. We

de�ne then the piecewise linear function ψ by ψ(0) = 0, ψ

(
D

2

)
= 0 and ψ(M) = ϕ

(
D

2

)
> 0.
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Setting Ψ = max(Φ, ψ), we get a convex, even function such that 0 ≤ Ψ ≤ ϕ on [0, 2M ] and

Ψ > Φ on

[
D

2
, D

]
, which is a contradiction. Since Φ is convex, Φ is at least continuous on ]0, 2M [.

Moreover, Φ(0) = 0 and Φ > 0 on ]0, 2M ], so that Φ is increasing on [0, 2M ]. Finally, note that

for all u, v, u 6= v: 0 < Φ (|u− v|) ≤ ϕ (|u− v|) ≤ |a(u)− a(v)|.

Remark 6. Another proof of Proposition 10 highligts the connection between the modulus of

degeneracy and the modulus of continuity (5.2) and gives an alternative de�nition of the same

function Φ. Let Φ be the inverse function of ω̃, which is the smallest concave modulus of continuity

of a− 1. Then Φ is convex and inequality (5.3) holds since

Φ (|u− v|) = Φ
(∣∣a− 1(a(u))− a− 1(a(v))

∣∣) ≤ Φ (ω̃ (|a(u)− a(v)|)) = |a(u)− a(v)| .

In the case of invertible linear operators, (5.2) reduces to the well-known optimal inequality:

1

‖L− 1‖
|X| ≤ |LX| ≤ ‖L‖ |X|,

where ‖L‖ = sup
|X|≤1

|LX|, ω(h) = ‖L‖h = sup
|X−Y |≤h

|LX − LY | and ω̃(h) = ‖L− 1‖h.

We are now able to prove here Theorem 1.

Proof. Let (xi)1≤i≤n be a partition of an interval [A,B] and ` := B − A. Then it follows from
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Proposition 10, Lemma 2 and Proposition 5:

n−1∑
i=0

Φ (|u(xi+1, t)− u(xi, t)|) =
n−1∑
i=0

Φ

(∣∣∣∣b(xi+1 − y(xi+1, t)

t

)
− b
(
xi − y(xi, t)

t

)∣∣∣∣)

≤
n−1∑
i=0

∣∣∣∣a(b(xi+1 − y(xi+1, t)

t

))
− a

(
b

(
xi − y(xi, t)

t

))∣∣∣∣
≤ 1

t

n−1∑
i=0

|xi+1 − xi − (y(xi+1, t)− y(xi, t))|

≤ 1

t

n−1∑
i=0

(xi+1 − xi + y(xi+1, t)− y(xi, t))

=
1

t
(xn − x0 + y(xn, t)− y(x0, t))

≤ 2

t
(`+ t ‖a(u0)‖∞) .

Notice that the Lax-Ole��nik formula is not de�ned everywhere, so that the previous inequalities do

not consider all the subdivisions of [A,B]. We can use Remark 4 or Formula (3.2) to bound the

total Φ-variation on [A,B]. Moreover, this bound depends only on t, M ≥ ‖u0‖∞, and the length

of the interval [A,B]:

TV Φu(·, t)[A,B] ≤ 2

(
B − A
t

+ sup
[−M,M ]

|a|

)
.
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6 Appendix : LO[f, u0] = K[f, u0] (smooth case)

In this whole Appendix, we assume that f ∈ C2 is uniformly convex (f ′′ ≥ δ > 0 , [La2, La3]) and

also that u0 ∈ C0
c ∩BV . We detail completely Lax's proof to obtain the well known following result:

for a uniformly convex �ux, the Lax-Ole��nik solution is the Kruºkov entropy solution. There are

three steps in our proof. First, we prove that the Lax-Ole��nik solution is a weak solution of the

conservation law. Second, we show that the Lax-Ole��nik solution satis�es the Lax-entropy condition

and then the Kruºkov entropy condition (2.3). Third, we focus on the L1 strong continuity in time

(2.4).

Proposition 11. If f ∈ C2 is uniformly convex and u0 ∈ C0
c ∩ BV , then LO[f, u0] is a weak

solution of (1.1).

To prove that LO[f, u0] is a weak solution of (1.1), we will use following lemma, related to Laplace's

method:

Lemma 7. Let h be a continuous function on R such that

lim
|y|−→+∞

h(y)

|y|
= +∞ (6.1)

and let p be a continuous function on R such that

ˆ
R
|p(y)| e−h(y)dy < +∞. (6.2)

If there exists a real y0 such that for all y 6= y0, h(y) > h(y0), then:

lim
n−→+∞

ˆ
R
p(y)e−nh(y)dy
ˆ
R
e−nh(y)dy

= p(y0). (6.3)

Proof. Let n ∈ N∗. According to (6.1), the integral
ˆ
R
e−nh(y)dy is convergent and according to

both (6.1) and (6.2), the integral
ˆ
R
p(y)e−nh(y)dy is also convergent.

Considering h̃(y) = h(y + y0) and p̃(y) = p(y + y0) if necessary, we can assume that y0 = 0.

Moreover, ˆ
R
p(y)e−nh(y)dy
ˆ
R
e−nh(y)dy

− p(y0) =

ˆ
R
(p(y)− p(y0))e−nh(y)dy
ˆ
R
e−nh(y)dy

,

so we can suppose that p(0) = 0.

Let ε > 0. Since p is continuous at 0, there exists η > 0 such that for all y, |y| ≤ η ⇒ |p(y)| ≤ ε.

The continuous function h is bounded on the compact set [0, 1]: there exists C > 0 such that for
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all y ∈ [0, 1], |h(y)| ≤ C. According to (6.1) there exists A > 0 (we can assume that A > η) such

that for all y, |y| ≥ A ⇒ h(y) ≥ 2C. We set K = [−A,A]r ] − η, η[. The continuous function

h achieves its minimum m > h(0) on the compact set K. We set: δ =
m− h(0)

2
> 0. The

continuous function p is bounded on the compact set [−A,A]: there exists C ′ > 0 such that for

all y, |y| ≤ A⇒ |p(y)| ≤ C ′. Since h is continuous at 0, there exists ν > 0 (we may suppose that

ν < η) such that for all y, |y| ≤ ν ⇒ |h(y)− h(0)| ≤ δ.

We write now:

ˆ
R
p(y)e−nh(y)dy
ˆ
R
e−nh(y)dy

=

ˆ
|y|≤η

p(y)e−nh(y)dy

ˆ
R
e−nh(y)dy︸ ︷︷ ︸

+

ˆ
y∈K

p(y)e−nh(y)dy

ˆ
R
e−nh(y)dy︸ ︷︷ ︸

+

ˆ
|y|≥A

p(y)e−nh(y)dy

ˆ
R
e−nh(y)dy︸ ︷︷ ︸

.

I1(n) I2(n) I3(n)

The integral I1(n) satis�es:

|I1(n)| ≤

ˆ
|y|≤η
|p(y)| e−nh(y)dy

ˆ
R
e−nh(y)dy

≤

ˆ
|y|≤η

εe−nh(y)dy

ˆ
R
e−nh(y)dy

≤ ε

ˆ
R
e−nh(y)dy

ˆ
R
e−nh(y)dy

= ε.

The integral I2(n) satis�es:

|I2(n)| ≤

ˆ
y∈K
|p(y)| e−nh(y)dy

ˆ
R
e−nh(y)dy

≤

ˆ
y∈K

C ′e−nmdy
ˆ
|y|≤ν

e−n(h(0)+δ)dy

≤ 2AC ′e−nm

2νe−n(h(0)+δ)
=
AC ′

ν
e−nδ,

so that lim
n−→+∞

I2(n) = 0.

Next:

|I3(n)| ≤

ˆ
|y|≥A

|p(y)| e−nh(y)dy

ˆ
R
e−nh(y)dy

≤

ˆ
|y|≥A

|p(y)| e−nh(y)dy

ˆ
y∈[0,1]

e−nCdy
=

ˆ
|y|≥A

|p(y)| e−n(h(y)−C)dy.

De�ning sn(y) = |p(y)| e−n(h(y)−C), we get for |y| ≥ A: lim
n−→+∞

sn(y) = 0 and 0 ≤ sn(y) ≤

|p(y)| e−(h(y)−C) = s(y). Since from (6.2) s is integrable, we deduce from the dominated convergence

theorem that lim
n−→+∞

ˆ
|y|≥A

|p(y)| e−n(h(y)−C)dy = 0, and then lim
n−→+∞

I3(n) = 0. Finally:
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lim
n−→+∞

ˆ
R
p(y)e−nh(y)dy
ˆ
R
e−nh(y)dy

= 0.

We now turn to the proof of Proposition 11.

Proof. (Proposition 11) That formula (2.2) de�nes a function u almost everywhere follows from

both Proposition 1 and Lemma 1. We will now prove that u is a weak solution of (1.1) on ]0,+∞[.

In order to do so, we divide the proof into �ve parts.

We set for all (x, t): h(x,t)(y) = U0(y) + tg

(
x− y
t

)
and p(x,t)(y) = b

(
x− y
t

)
, and for all positive

integers n:

un(x, t) =

ˆ
R
p(x,t)(y)e−nh(x,t)(y)dy
ˆ
R
e−nh(x,t)(y)dy

and fn(x, t) =

ˆ
R
f
(
p(x,t)(y)

)
e−nh(x,t)(y)dy

ˆ
R
e−nh(x,t)(y)dy

.

1) We will prove the pointwise convergence of (un(x, t))n (respectively (fn(x, t))n) to u(x, t) (re-

spectively f(u(x, t))) for all t > 0 and for almost all x.

From de�nitions of U0 and g and the continuity of b, we state that the functions h(x,t) and p(x,t) are

continuous on R. Since u0 is compactly supported, U0 is bounded. Furthermore, g is superlinear.

Then:

lim
|y|−→+∞

h(x,t)(y)

|y|
= +∞. (6.4)

i) According to Fact 2, b(u) is linear for u large enough. Considering limit (6.4), we claim then

that
ˆ
R

∣∣p(x,t)(y)
∣∣ e−h(x,t)(y)dy < +∞. Moreover, we have for all t > 0 and for almost all x: for

all y, h(x,t)(y) > h(x,t)(y(x, t)). Hypothesis of Lemma 7 being satis�ed, it follows from (6.3) that:

lim
n−→+∞

un(x, t) = p(x,t)(y(x, t)), i.e.:

lim
n−→+∞

un(x, t) = b

(
x− y(x, t)

t

)
= u(x, t). (6.5)

ii) As f(u) is quadratic for u large enough, it follows that:
ˆ
R

∣∣f (p(x,t)(y)
)∣∣ e−h(x,t)(y)dy < +∞.

So we deduce as above that:

lim
n−→+∞

fn(x, t) = f(u(x, t)). (6.6)

2) We bound un(x, t) and fn(x, t) regardless of n.

i) Let us begin with un(x, t). For almost all y:
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∂

∂y
(h(x,t)(y)) = u0(y)− b

(
x− y
t

)
= u0(y)− p(x,t)(y),

so:

un(x, t) =

ˆ
R
p(x,t)(y)e−nh(x,t)(y)dy
ˆ
R
e−nh(x,t)(y)dy

=

ˆ
R

(
u0(y)− ∂

∂y
(h(x,t)(y))

)
e−nh(x,t)(y)dy

ˆ
R
e−nh(x,t)(y)dy

=

ˆ
R
u0(y)e−nh(x,t)(y)dy
ˆ
R
e−nh(x,t)(y)dy

, where the last equality follows from the superlinearity of h(x,t). Then:

|un(x, t)| ≤

ˆ
R
|u0(y)| e−nh(x,t)(y)dy
ˆ
R
e−nh(x,t)(y)dy

≤ ‖u0‖∞.

Note that the previous inequality yields: for almost all (x, t), |u(x, t)| ≤ ‖u0‖∞.
ii) We bound now fn(x, t) for (x, t) ∈ [x0, x1] × [t0, t1] ⊂ R×]0,+∞[. With the substitution

z =
x− y
t

, we get:

fn(x, t) =

ˆ
R
f(b(z))e−nh(x,t)(x−tz)dz
ˆ
R
e−nh(x,t)(x−tz)dz

,

where: h(x,t)(x− tz) = U0(x− tz) + tg(z).

According to Fact 2 we can write for z large enough (|z| ≥ A > 0): f(b(z)) = αz2 and g(z) = βz2+γ

(with α > 0 and β > 0). Moreover, since u0 is compactly supported, U0(x−tz) is constant (= V ) for

z large enough (|z| ≥ B = B(x0, x1, t0, t1) > 0). Let M = max(A,B) > 0 and D = sup
|z|≤M

|f(b(z))|.

We write then:

fn(x, t) =

ˆ
|z|≤M

f(b(z))e−nh(x,t)(x−tz)dz
ˆ
R
e−nh(x,t)(x−tz)dz

+

ˆ
|z|≥M

f(b(z))e−nh(x,t)(x−tz)dz
ˆ
R
e−nh(x,t)(x−tz)dz

,

so that:

|fn(x, t)| ≤

ˆ
R
De−nh(x,t)(x−tz)dz
ˆ
R
e−nh(x,t)(x−tz)dz

+

ˆ
|z|≥M

αz2e−n(V+t(βz2+γ))dz

ˆ
|z|≥M

e−n(V+t(βz2+γ))dz

= D + α

ˆ
z≥M

z2e−ntβz
2

dz

ˆ
z≥M

e−ntβz
2

dz

.

23



But the function t 7−→

ˆ
z≥M

z2e−ntβz
2

dz

ˆ
z≥M

e−ntβz
2

dz

is decreasing, since its derivative

nβ

(ˆ
z≥M

z2e−ntβz
2

dz

)2

−
ˆ
z≥M

z4e−ntβz
2

dz

ˆ
z≥M

e−ntβz
2

dz(ˆ
z≥M

e−ntβz
2

dz

)2

is non-positive (according to the Cauchy-Schwarz inequality in L2). Moreover, integrating by parts

the numerator and considering the in�nitesimal behavior of the complementary error function, we

claim that

lim
n→+∞

ˆ
z≥M

z2e−nt0βz
2

dz

ˆ
z≥M

e−nt0βz
2

dz

=
M2

2
,

which enables us to conclude.

3) We prove that for all positive integers n:

un(x, t) = − 1

n

∂

∂x
(vn(x, t)) (6.7)

and

fn(x, t) =
1

n

∂

∂t
(vn(x, t)), (6.8)

where vn = ln(wn) and wn(x, t) =

ˆ
R
e−nh(x,t)(y)dy =

ˆ
R
te−n(U0(x−tz)+tg(z))dz.

i) Let t > 0. For all x:
∂

∂x

(
h(x,t)(x− tz)

)
= u0(x− tz). Moreover u0 and U0 are bounded. By

di�erentiation under the integral sign, we get then:
∂

∂x
wn =

ˆ
R
−ntu0(x− tz)e−nh(x,t)(x−tz)dz.

But: ˆ
R
u0(x− tz)e−nh(x,t)(x−tz)dz =

ˆ
R
b(z)e−nh(x,t)(x−tz)dz,

since
ˆ
R
(u0(x− tz)− b(z))e−nh(x,t)(x−tz)dz =

ˆ
R

1

nt

∂

∂z

(
e−nh(x,t)(x−tz)

)
dz =

1

nt

[
e−nh(x,t)(x−tz)

]+∞
−∞ = 0.

It follows that:
∂

∂x
wn = −n

ˆ
R
tb(z)e−nh(x,t)(x−tz)dz = −n

ˆ
R
b

(
x− y
t

)
e−nh(x,t)(y)dy = −nwnun, so

that (6.7) is satis�ed.

ii) Let x ∈ R. For all t > 0:
∂

∂t

(
h(x,t)(x− tz)

)
= −zu0(x− tz) + g(z). Similarly as above, we get
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by di�erentiation under the integral sign:
∂

∂t
wn =

ˆ
R
(1− nt(−zu0(x− tz) + g(z)))e−nh(x,t)(x−tz)dz.

But:

ˆ
R
(1 + ntzu0(x− tz))e−nh(x,t)(x−tz)dz =

ˆ
R
ntzb(z)e−nh(x,t)(x−tz)dz,

since
ˆ
R
(1 + ntzu0(x− tz)− ntzb(z))e−nh(x,t)(x−tz)dz =

ˆ
R

∂

∂z

(
ze−nh(x,t)(x−tz)

)
dz =

[
ze−nh(x,t)(x−tz)

]+∞
−∞ = 0.

Therefore:
∂

∂t
wn = nt

ˆ
R
(zb(z)− g(z)))e−nh(x,t)(x−tz)dz. (6.9)

Finally, it follows from the relation (3.1) that:
∂

∂t
wn = nt

ˆ
R
f(b(z))e−nh(x,t)(x−tz)dz and then:

∂

∂t
wn = n

ˆ
R
f

(
b

(
x− y
t

))
e−nh(x,t)(y)dy = nwnfn, so that (6.8) is satis�ed.

4)We deduce from both (6.7) and (6.8) and from Schwarz theorem that the equation
∂un
∂t

+
∂fn
∂x

= 0

is satis�ed in the sense of distributions.

5) Considering limits (6.5) and (6.6) and the bounds obtained at the step 2), we deduce from

the dominated convergence theorem that the equation
∂u

∂t
+
∂f(u)

∂x
= 0 is satis�ed in the sense of

distributions. In other words, u is a weak solution of (1.1) on ]0,+∞[.

In this section, we brie�y explain why the Lax-Ole��nik solution satis�es the Kruºkov entropy

inequalities. For a bounded initial data and a uniformly convex �ux, this result is well known

[D2]. We recall that a Kruºkov entropy inequality is

∂η(u)

∂t
+
∂q(u)

∂x
6 0 (6.10)

where η is a convex function called the entropy and q is the associated entropy-�ux, de�ned by

q′ = η′f ′. In Kruºkov's theorem the previous inequalities have to be satis�ed for all convex

entropies η.

Proposition 12. The Lax-Ole��nik solution satis�es the condition (6.10).

Proof. We recall the arguments to be self-contained (see [D2]). Since u0 ∈ BV and is smooth,

y(., t) is increasing, it follows from the expression u(x, t) = u0(y(x, t)) (since u0 is continuous)

that u(., t) ∈ BV . The Lax-Ole��nik solution is a weak solution of the conservation law. Thus,

u ∈ BV ([0, T ] × R). The structure of BV space is used in [D2] for instance to show that it is

su�cient to check the following inequality almost everywhere on the shock curves:

s[η(u)] + [q(u)] 6 0, (6.11)
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where s =
[f(u)]

[u]
is the slope of the shock curve and [u] = u+ − u−. The Lax-Ole��nik solution

satis�es u+ < u−, i.e. [u] < 0. This condition is equivalent to (6.11). To see that, it su�ces to

consider only the Kruºkov entropy η(u) = |u− k| with the entropy �ux q(u) = sign(u− k)(f(u)−
f(k)) ([D2] second edition : p. 78 (4.5.5) and p. 219 (8.4.3)). Then the inequality (6.11) becomes

simply for all k between u+ and u−:

f(k)− f(u−)

k − u−
≥ f(u+)− f(u−)

u+ − u−
≥ f(u+)− f(k)

u+ − k
By convexity of the �ux f , we get inequality (6.11).

Proposition 13. [L1 strong continuity in time] The Lax-Ole��nik solution satis�es the following

condition strongly in L1
loc:

ess lim
t→ 0

u(x, t) = u0(x).

We give a simple direct proof. Notice that the nonlinearity of the �ux, the entropy conditions and

the weak trace for the initial data are su�cient to recover strongly the initial data ([CR, V]).

Proof. Since u(x, t) = u0(y(x, t)), we deduce from Proposition 5 that lim
t→ 0

u(x, t) = u0(x). More-

over, for almost all (x, t), |u(x, t)| ≤ ‖u0‖∞. Then lim
t→ 0

u(x, t) = u0(x) in L1
loc(R,R), so that (2.4)

is satis�ed.

Finally, we have proved :

Proposition 14. If f ∈ C2 is uniformly convex and u0 ∈ C0
c ∩BV , then LO[f, u0] = K[f, u0].
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