
HAL Id: hal-01133705
https://hal.science/hal-01133705

Preprint submitted on 20 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction to moduli spaces of connections: some
explicit constructions

Frank Loray

To cite this version:
Frank Loray. Introduction to moduli spaces of connections: some explicit constructions. 2015. �hal-
01133705�

https://hal.science/hal-01133705
https://hal.archives-ouvertes.fr


INTRODUCTION TO MODULI SPACES OF CONNECTIONS:

SOME EXPLICIT CONSTRUCTIONS

FRANK LORAY

Abstract. We give some concrete examples of moduli spaces of connections.
Precisely, we explain how to explicitely construct the moduli spaces of rank 2
fuchsian systems and logarithmic connections on the Riemann sphere with 4
poles. The former ones are affine cubic surfaces; the latter ones are analytically
isomorphic to affine surfaces but not algebraically: they do not carry non
constant regular functions. We end with some remark on arbitrary number of
poles.

1. Introduction: variation on an example of Serre

Given a complex smooth projective curve X , a rank 1 (flat) connection, or equiva-
lently a rank 1 local system on X , is an element of the cohomology group H1(X,C∗).
This is the easiest example of a moduli space of connections. From the exact se-
quence of sheaves

0 → C
∗ → O∗ → Ω1 → 0

(where O∗ → Ω1 is given by f 7→ df

f
), we can derive the associate long exact

sequence of cohomology groups and extract the following

(1) 0 → H0(X,Ω1) → H1(X,C∗) → Jac(X) → 0

making H1(X,C∗) into a principal Cg-bundle over the Jacobian of the curve.
Even simpler is the case when X is an elliptic curve: we get a C-bundle over the

curve X ≃ Jac(X) itself. One may compactify it by adding a section at infinity in
order to get a P1-bundle P → X : it is one of the two undecomposable P1-bundles
found by Atiyah in [2]. The section at infinity σ : X → P is the unique section
whose image Σ := σ(X) has zero self-intersection in the total space S := Tot(P )
of the bundle. The group H1(X,C∗) identifies, as a variety, with the complement
S \ Σ.

Viewing X as a Riemann surface, we get the Riemann-Hilbert correspondence

RH : H1(X,C∗) −→ Hom(π1(X),C∗)

which associates to a local system its monodromy representation. Once we choose
a system of generators for the fundamental group, we get an identification between
the space of representations and the group C

∗×C
∗. We thus get a complex analytic

group isomorphism

(2) H1(X,C∗) −→ C
∗ × C

∗.

However, the two underlying varieties are not isomorphic from the algebraic point
of view: while C∗×C∗ is an affine variety, there is no non constant regular functions
on S. Indeed, such a function would extend as a rational function on S with polar
divisor nΣ; one easily check that the zero divisor of such function should define a
complete curve not intersecting Σ. But there is no complete curve in S since it is
analytically isomorphic to an affine variety. This famous example is due to Serre.
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There is a natural non degenerate 2-form ω on S constructed from the exact
sequence (1) by choosing non zero 1-forms on the base X and on the fiber; it is
well-defined up to a scalar constant. Isomorphism (2) sends it to the 2-form du

u
∧ dv

v

(up to a scalar). The 2-form ω extends on S as a rational 2-form with divisor 2Σ.
Let us briefly mention two other facts. The maximal compact subgroup given

by unitary connections/representation is an analytic real torus providing a real
section of P → X , and turns to be real algebraic on representation-side, namely
S
1 × S

1 ⊂ C
∗ × C

∗. The fibration P → X is sent to the foliation defined by
u∂u + τv∂v where (1 : τ) is commensurable to periods of X .

One can modify Serre’s example as follows. The elliptic involution ι : X → X
lifts-up as a biregular involution ϕ : S → S. This follows from the unicity of the
undecomposable bundle P , or equivalently from the natural action of the involution
ι on local systems. The quotient surface S fibers over X/ι ≃ P1. The involution
ϕ has 2 fixed points over each of the 4 Weierstrass points: one of them lie on
the section at infinity Σ (which is invariant) and the other one is corresponding
to a 2-torsion point of H1(X,C∗). We thus get 8 conic singular points on the

quotient that we have to blow-up. The resulting surface Ŝ → S is equipped with

the quotient 2-form ω having polar divisor 2Σ̂ + E1 + E2 + E3 + E4 where Ei are
exceptional divisors of conic points along Σ (the image of Σ); ω is non degenerate

on the open set M := Ŝ \ (Σ̂∪E1∪E2∪E3∪E4). This open set is no more a group,
but share all other nice properties with Serre example. For instance, the divisor
2Σ̂ + E1 + E2 + E3 + E4 at infinity is (from the numerical point of view) like a
degenerate elliptic fiber of type I∗0 in Kodaira list, there is no non constant regular
function on M and it is analytically conjugated to an affine surface, namely the
Cayley cubic, quotient of C∗ × C∗ by the involution (u, v) 7→ ( 1

u
, 1
v
). This second

example is actually a particular case of moduli space of connections arising as space
of initial conditions of one of the Painlevé VI equations, namely that one found by
Picard.

These nice properties are common to general moduli spaces of connections (ex-
cept structure of group, particular for the rank one) and this is a good motivation to
study them. On the other hand, they naturally appear as spaces of initial conditions
for isomonodromy equations, but we skip this point of view from our dicussion.

2. Moduli space of fuchsian systems

Consider a sl2-fuchsian system on the Riemann sphere with 4 poles

(3)
dY

dx
=

A1

x− t1
+

A2

x− t2
+

A3

x− t3
+

A4

x− t4

with constant matrices Ai, i = 1, 2, 3, 4, satisfying

(4) Ai =

(

ai bi
ci −ai

)

∈ sl2(C) and A1 +A2 +A3 +A4 = 0

(here and after we assume all 4 poles ti’s in the affine part for simplicity). The group
SL2(C) acts on the Y -variable and thus on residues Ai’s by simultaneous conjugacy.
Indeed, change of variable Y = MY ′ induces change of residues A′

i = M−1AiM .
The spectrum of each matrix Ai is preserved by this action. Let us fix the spectral
data

(5) − det(Ai) = a2i + bici = θ2i
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for some θ = (θ1, θ2, θ3, θ4) (eigenvalues are ±θi). We want to describe the quotient

space Fuchs
θ(X,D) of those systems by this action:

(6)

{

(A1, A2, A3, A4) ∈ (sl2(C))
4 ;
∑

i

Ai = 0, det(Ai) = −θ2i

}

/SL2(C).

A straightforward computation shows that Fuchs
θ(X,D) is expected to be a surface

(depending on 4 parameters θi’s). However, it is non Hausdorff (as a topological
space) in general. For instance, the orbit of the triangular system

(7) Ai =

(

θi bi
0 −θi

)

under diagonal conjugacy is not closed; its closure contains the diagonal system
(with all bi’s vanishing) so that they define infinitesimally closed points in the
quotient. Note however that, in this case, we have θ1 + θ2 + θ3 + θ4 = 0.

Introduce the following functions on Fuchs
θ(X,D):

(8)
X1 := det(A2 +A3), X2 := det(A1 +A3), X3 := det(A1 +A2)

and Y = tr (A1[A2, A4])

where [A,B] = AB − BA is the Lie bracket. These functions are clearly invariant
under SL2(C)-action.

Proposition 1. Assume θ4 6= 0. Then, the map

(9) (X1, X2, X3, Y ) : Fuchs
θ(X,D) −→ C

4

sends the moduli space onto the affine cubic surface Sθ defined by

(10)

X1 +X2 +X3 = θ21 + θ22 + θ23 + θ24 and
Y 2

4 +X1X2X3 + (θ21 − θ23)(θ
2
2 − θ42)X1 + (θ22 − θ23)(θ

2
1 − θ42)X2

= (θ21 + θ22 − θ23 − θ42)(θ21θ
2
2 − θ23θ4

2)

The map (9) above is one-to-one over the smooth part of Sθ. Singularities arise
when

• θi = 0 and Ai = 0 for i = 1, 2, 3;
• ±θ1 ± θ2 ± θ3 ± θ4 = 0 and all Ai’s are simultaneously triangular up to

conjugacy.

In particular, apart from special values of θ listed just before, the quotient Fuchs
θ(X,D)

is Hausdorff and is isomorphic to the smooth cubic surface Sθ.

Proof. Since θ4 6= 0, we can assume A4 =

(

θ4 0
0 −θ4

)

. This normalization is well-

defined up to diagonal conjugacy so that the monomials ai and bicj are invariant.
Using A1 +A2 +A3 +A4 = 0, we can now express A3 in function of A1 and A2:







a3 = −a1 − a2 − θ4
b3 = −b1 − b2
c3 = −c1 − c2

Spectral data (5) gives the following conditions

(11)
a21 + b1c1 = θ21 , a22 + b2c2 = θ22 and

2a1a2 + 2θ4(a1 + a2) + b1c2 + b2c1 + θ21 + θ22 − θ23 + θ42 = 0.

On the other hand, we get

(12)
X1 = 2θ4a1 + θ24 + θ21
X2 = 2θ4a2 + θ24 + θ22
X3 = 2θ4a3 + θ24 + θ23

and Y = 4θ4(b1c2 − b2c1)
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Once we know X1, X2, X3, Y , we get the invariants a1, a2 and b1c2 − b2c1. From
relations (11), we promptly deduce b1c1, b2c2 and b1c2 + b2c1, and therefore b1c2
and b2c1. The cubic equation (10) just says that these invariants satisfy the obvious
relation (b1c1)(b2c2) = (b1c2)(b2c1). We can thus recover (b1, b2, c1, c2) uniquely up
to the diagonal action, except when either b1 = b2 = 0, or c1 = c2 = 0; in these
latter cases, there are several possible solutions (A1, A2, A3) up to diagonal action,
but all of them are triangular. �

3. Moduli space of connections

Fix D = t1+ · · ·+tn a reduced divisor (of poles) on the Riemann sphere X := P
1

with n ≥ 4. Fix eigenvalues {θ+i , θ
−
i } ⊂ C for each i = 1, . . . , n with integral sum

∑n

i=1 θ
+
i +θ−i = −d ∈ Z. For simplicity, assume generic condition θ±1 + · · ·+θ±n 6∈ Z

for any choice of signs ± to avoid reducible connections. Denote by θ = (θ±1 , . . . , θ
±
n )

the spectral data.
Consider the triples (E,∇, l) called “parabolic connections” where

• E is a rank 2 vector bundle of degree d over P1,
• ∇ is a logarithmic connection ∇ : E → E ⊗ Ω1(D) with polar divisor D,

having residual eigenvalues θ+i and θ−i over the pole ti,
• l = (l1, . . . , ln) is a parabolic structure on E such that li ⊂ E|ti belongs to

the eigenspace generated by θ+i .

When θ+i 6= θ−i , we note that the parabolic li is the eigendirection of θ+i ; the
parabolic structure is therefore relevant only in case of equality θ+i = θ−i . Note
also that Fuchs relation says that

∑n

i=1 θ
+
i + θ−i + deg(E) = 0, which explains the

constraints given by d in the above definitions.
We say that two parabolic connections (E,∇, l) and (E′,∇′, l′) are equivalent

when there is a bundle isomorphism φ : E → E′ conjugating connections and
parabolic structures. We denote by Conθ(X,D) the moduli space of parabolic
connections for this equivalence. This can be viewed as a stack (see [1]), but it can
actually be constructed by GIT method (see [3]); under our generic assumptions
on θ, we simply get:

Theorem 2 (Inaba-Iwasaki-Saito). The moduli space Conθ(X,D) is a smooth ir-
reducible quasi-projective variety of dimension 2(n − 3) equipped with a regular
symplectic 2-form ω.

The construction needs a choice of weights to impose stability condition; all
parabolic connections are stable under our assumptions and the resulting quotient
does not actually depends on this choice. However, if we allow non generic eigen-
values, then some reducible connections become unstable, and the quotient of semi-
stable points depends on the choice of weights. Note also that we could have avoid
parabolic structure in the discussion by assuming also θ+i 6= θ−i , but we will use
parabolics later; this is why we already introduce this notion.

3.1. Connection matrix. Let us now be more explicit for readers that are not
familiar to connections. Following Birkhoff, any rank vector bundle E on P1 splits
as a direct sum of line bundles. In particular, for the rank 2 case, we have

E = O(d1)⊕O(d2) with d1 ≤ d2 and d1 + d2 = d.

Choose sections ei of O(di) whose divisor (zero or pole) is supported by ∞ ∈ P1 so
that, over the affine part C = P1\{∞}, the vector bundle is trivial: E|C = Ce1⊕Ce2.
We can describe the connection ∇ as follows:

∇|C : Y 7→ dY +Ω · Y
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where Y is a section of E|C and Ω is a 2× 2-matrix of meromorphic 1-forms:

(13) Ω =

n
∑

i=1

Ai

x− ti
dx+B(x)dx

with B holomorphic (and x the affine variable of C = P1 \ {∞}). Let e′i be sections
of O(di) defined by ei = xdie′i. At infinity, we must express the connection in the
basis (e′1, e

′
2) and, setting

Y = MY ′ with M =

(

xd1 0
0 xd2

)

we find

∇|P1\{0} : Y ′ 7→ dY ′ +Ω′ · Y ′ with Ω′ = M−1ΩM +M−1dM

which must be holomorphic at ∞. If we now write Ω = A(x) dx∏
n
i=1

(x−ti)
, this

holomorphy conditions says that

A(x) = −

(

d1 0
0 d2

)

xn−1 +

(

a(x) b(x)
c(x) d(x)

)

with







b polynomial of degree ≤ n− 2− (d2 − d1)
a, d polynomials of degree ≤ n− 2
c polynomial of degree ≤ n− 2 + (d2 − d1)

Fuchsian systems are just logarithmic connections on the trivial bundle d1 = d2 = 0.

Example 3 (Case n = 4). When E = O⊕O(1), then holomorphy at infinity gives
the following constraints

A1 +A2 +A3 +A4 =

(

0 0
⋆ −1

)

and B(x) ≡ 0.

When E = O(−1)⊕O(1), then we get constraints

A1 +A2 +A3 +A4 =

(

1 0
⋆ −1

)

, B(x) ≡

(

0 0
⋆ 0

)

(constant matrices)

and
∑

i

Ai

x− ti
=

(

⋆ b∏
i
(x−ti)

⋆ ⋆

)

.

Finally, when d2 − d1 > 2, the [1, 2]-coefficient of all Ai’s and B(x) must be zero
so that we are in the reducible case. In other words, under our generic assumption
on θ, we have d2 − d1 = 0, 1, 2. For degree d = 0 or 1, we are led to the following
possibilities

• d = 0 and (d1, d2) = (0, 0) or (−1, 1),
• d = 1 and (d1, d2) = (0, 1).

We now impose spectral data by

tr(Ai) = θ+1 + θ−i and det(Ai) = θ+1 · θ−i .

The parabolic structure is therefore given by

li = C ·

(

bi
θ+i − ai

)

or C ·

(

θ+i − di
ci

)

where Ai =

(

ai bi
ci di

)

except when θ+i = θ−i and Ai is a scalar matrix, in which case li may be arbitrarily
choosen: it is an extra data in this case.
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3.2. Bundle automorphisms. So far, we have described the space of parabolic
connections up to Birkhoff normalization of the bundle. Then, we would like to
quotient by the action of bundle automorphisms on connections. They can be
described as follows.

• When d1 = d2, then E is just the twist of the trivial bundle by O(d1) and
automorphisms are the same: GL2(C) acts by conjugacy on the connection
matrix (13), i.e. on matrices Ai’s (B is scalar and the action is trivial on
it).

• When d1 < d2, then the automorphism group is given in the trivialization
chart E|C = Ce1 ⊕ Ce2 by
{

M =

(

λ1 0
f(x) λ2

)

with f(x) polynomial of degree ≤ d2 − d1

}

,

and it is acting on connection matrix (13) by

Ω 7→ Ω′ = M−1ΩM +M−1dM.

The action on parabolics is obvious.

Example 4. Assume n = 4 and (d1, d2) = (−1, 1); for simplicity, assume also
(θ+i , θ

−
i ) = (θi,−θi). The matrix connection writes Ω = A(x) dx∏

i
(x−ti)

where

A(x) =

(

x3 + a(x) b
c(x) −x3 − a(x)

)

with







b ∈ C

a polynomial of degree ≤ 2
c polynomial of degree ≤ 4

Note that b 6= 0 otherwise the connection would be reducible. Conjugating by a
diagonal matrix M , we can assume b = 1. The action of unipotent isomorphisms
is described by

M =

(

1 0
f(x) 1

)

:

(

x3 + a 1
c −x3 − a

)

7→

(

x3 + a+ f 1
c− 2(x3 + a)f − f2 + f ′ −x3 − a− f

)

where f is any degree 2 polynomial. Choosing f = −a, we derive a unique normal
form

Ω =

(

x3 1
c̃(x) −x3

)

dx
∏

i(x− ti)
where

c̃(x)
∏

i(x− ti)
= c0+

∑

i

τiθ
2
i

x− ti
with c0 ∈ C

and constants τi are defined by

(14)
1

∏

i(x− ti)
=
∑

i

1

τi(x− ti)
, i.e. τi =

∏

j 6=i

(ti − tj).

It follows that the moduli space of connections on the fixed bundle E = O(−1)⊕
O(1) is the affine line A1 ∋ c0 (extra parameter in the above normal form). To
get the full moduli space Conθ(P1, {t1, t2, t3, t4}) of degree 0 bundles with the same
eigenvalues (satisfying (θ+i , θ

−
i ) = (θi,−θi) and ±θ1 ± θ2 ± θ3 ± θ4 6∈ Z), we have

to patch together this affine line A1 with the affine cubic surface Sθ of Fuchsian
systems given by Proposition 1 (see remark ending example 3). Following Theorem
2, one should obtain a smooth irreducible quasi-projective surface.

3.3. Isomorphisms between moduli spaces. There are many isomorphisms be-
tween moduli spaces of connections Conθ(X,D) modifying spectral data. First, one
can twist a parabolic connection (E,∇, l) by a rang 1 logarithmic connection (L, ζ):

• L is a line bundle of degree k, L = O(k),
• ζ : L → L⊗ Ω1(D) is determined by its eigenvalues λi satisfying

λ1 + · · ·+ λn + k = 0.
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The action on connection matrix (13) is given by

Ω 7→ Ω +
∑

i

(

λi 0
0 λi

)

dx

x− ti

and this defines an isomorphism

(15) Conθ(X,D)
⊗(L,ζ)
−→ Conθ

′

(X,D) where

{

(θ+i )
′ = θ+i + λi

(θ−i )
′ = θ−i + λi

The degree is changed by d 7→ d′ = d + 2k. In case of even degree, we can assume
up to such an isomorphism that d = 0 and moreover θ+i + θ−i = 0 for all i (we
get a sl2-connection). In the odd case, we can assume d = 1; then, in case n = 4,
necessarily E = O ⊕O(1) (see remark ending example 3).

The other family of isomorphisms comes from elementary transformations

of parabolic bundles. Given a parabolic bundle (E, l) over (X,D), then we define
(E′, l′) := Elm−

ti
(E, l) by

• E′ is the vector bundle defined by the subsheaf E′ ⊂ E generated by those
sections directed by li, i.e. defined by the exact sequence of morphisms of
sheaves

0 → E′ → E → E/li → 0

where li is viewed as a sky-scrapper sheaf.
• the new parabolic direction l′i ⊂ E′|ti is defined by the kernel of the inclusion

morphism E′ → E.

A connection ∇ on E induces a connection ∇′ on the subsheaf E′ ⊂ E; if (E,∇, l)
is parabolic, ∇ preserves the direction li and ∇′ is still parabolic with respect to
(E′, l′). Over ti, the new eigenvalues are (θ+i , θ

−
i )

′ := (θ−i + 1, θ+i ) (l′i is now in the
eigenspace corresponding to θ−i + 1). Over other tj ’s, the morphism E′ → E is a
local bundle isomorphism and the eigenvalues remain unchanged. This operation
induces a map

(16) Conθ(X,D)
Elm−

ti−→ Conθ
′

(X,D) where







(θ+i )
′ = θ−i + 1

(θ−i )
′ = θ+i

all other (θ±j )
′ = θ±j

In local trivialization of the bundle E around ti, with basis (e1, e2) such that e1
generates the parabolic direction li at ti, we get a parabolic connection matrix of
the form

Ω =

(

θ+i ⋆
0 θ−i

)

dx

x− ti
+ holomorphic matrix, and li = C

(

1
0

)

.

The new vector bundle E′ is generated near ti by (e1, (x − ti)e2) so that the con-
nection matrix of ∇′ is given by

Ω′ = M−1ΩM +M−1dM where M =

(

1 0
0 x− ti

)

which gives

Ω′ =

(

θ+i 0
⋆ θ−i + 1

)

dx

x− ti
+ holomorphic matrix, and li = C

(

0
1

)

.

One easily check that applying twice Elm−
ti

gives the twist by the unique logarithmic
connection on O(−1) having a single pole (with residue +1) at ti:

Elm−
ti
◦ Elm−

ti
(E,∇, l) = (O(−1),

dx

x− ti
)⊗ (E,∇, l).
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Note that Elm−
ti

decreases the degree of the vector bundle by −1 (whence the sign);

one can also define Elm+
ti
(E, l) := (O(−1), dx

x−ti
)⊗Elm−

ti
(E, l) increasing the degree

of the vector bundle by +1, it is actually the inverse map

Elm+
ti
◦ Elm−

ti
(E,∇, l) ≃ (E,∇, l).

In fact, all these isomorphisms commute together.
One can also define an isomorphism permuting θ+i and θ−i , modifying the para-

bolic structure (we switch to the other eigenspace) and get a non abelian group. We
omit this from our discussion. Finally, up to isomorphism, we can always assume
degree d = 0 and θ+i + θ−i = 0 for all i. However, this may be not the best choice
as we shall see.

4. The Painlevé case n = 4

In order to get an explicit irreducible moduli space, it is obviously better to
choose d = 1 instead of d = 0 since then, we can work on the single vector bundle
E = O ⊕O(1) (see remark ending example 3).

4.1. An explicit construction. We start proceeding like in example 4. The con-
nection matrix writes Ω = A(x) dx∏

i
(x−ti)

where

A(x) =

(

a(x) b(x)
c(x) −x3 + d(x)

)

with







b polynomial of degree ≤ 1
a, d polynomials of degree ≤ 2
c polynomial of degree ≤ 3

Again, b(x) 6≡ 0 otherwise the connection is reducible. Assume for the moment
that b(x) is not constant so that we can normalize it to b(x) = x − q. The action
by unipotent matrices is not enough to kill a(x) however (the freedom f(x) like in
example 4 is now of degree 1). The idea is to apply an elementary transformation
Elm+

q at the parabolic direction given by O(1). Concretely, we apply the bundle
birational isomorphism given by

M =

(

1 0
0 1

x−q

)

and obtain the new connection matrix

M−1ΩM +M−1dM =

(

a(x)∏
i
(x−ti)

1∏
i
(x−ti)

(x−q)c(x)∏
i(x−ti)

−x3+d(x)∏
i(x−ti)

− 1
x−q

)

dx

On the new bundle E′ = O ⊕O(2), we have more automorphisms and we are able
to kill the polynomial coefficient a(x) by means of unipotent automorphisms. We
now get the normal form

(17) Ω′ =

(

0 1∏
i(x−ti)

c̃(x)
(x−q)

∏
i(x−ti)

−x3+d̃(x)∏
i(x−ti)

− 1
x−q

)

dx

with c̃(x) polynomial of degree 5. Taking into account the spectral data, we get

Ω =
∑

i

(

0 1
τi

−τiθ
+
i θ

−
i θ+i + θ−i

)

dx

x− ti
+

(

0 0
p −1

)

dx

x− q
+

(

0 0
c0 0

)

dx

for constants p, c0 ∈ C. Here, we have also assumed q ∈ C \ {t1, t2, t3, t4}. Indeed,
when q = ti, we apply an elementary transformation over the pole which might
change the eigenvalues. Finally, note that x = q must be an apparent singular
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point, which means, by Fuchs’ local theory, that around x = q the kernel of the
residual part is also an eigenvector for the constant part of the connection matrix:

Ω ·

(

1
p

)

= ⋆

(

1
p

)

+ o(x− q);

this fixes the value of c0. Finally, the initial connection is determined by the
parameters (p, q) which have the following geometrical meaning:

• q stands for the position of the apparent singular point of the new connec-
tion,

• p stands for the kernel of the residue of ∇ over x = q.

Note also that, over x = ti, the two eigendirections of ∇ are given by
(

1
τiθ

+
i

)

and

(

1
τiθ

−
i

)

corresponding respectively to eigenvalues θ+i and θ−i .
Let us identify O(2) = Ω1(D), and consider the projectivization P(O ⊕ Ω1(D))

of our vector bundle E as the fiber-compactification of Ω1(D): the line bundles in
E generated by

(

1
0

)

,

(

1
1

)

and

(

0
1

)

respectively correspond to the zero section, the section dx∏
i
(x−ti)

and the section

at infinity. If S denotes the associated ruled surface (total space of the projective
bundle), then the total space of Ω1(D) identifies with S\Σ where Σ is the section at
infinity. On fibers Fi : {x = ti}, a natural affine coordinate if given by the residue:
the section dx∏

i
(x−ti)

has residue 1
τi

at x = ti. Therefore, the two eigendirections over

x = ti correspond to the points s+i , s
−
i ∈ Fi satisfying x = ti and Resti(s

±
i ) = θ±i .

Over x = q, the kernel of the residual matrix also defines a point s:

s±i :

(

1
τiθ

±
i

)

and s :

(

1
p
∏

i(q − ti)

)

.

We have just defined a birational map

Conθ(X,D) 99K S ; (E,∇, l) 7→ s.

Now consider the blow-up of the surface π : Ŝ → S at all 8 points s±i : we denote

by E±
i the exceptional divisors and Σ̂, F̂i the strict transforms. When θ+i = θ−i ,

then first blow-up the point si := s+i = s−i , and then blow-up the intersection
point between the exceptional divisor Ei and the strict transform of the fiber Fi;
denote by E′

i the last exceptional divisor. Then the birational map above induces
an isomorphism:

Conθ(X,D)
∼
−→ Mθ := Ŝ \ Σ̂ ∪ F̂1 ∪ F̂2 ∪ F̂3 ∪ F̂4.

For a general point s ∈ Mθ, formula (17) gives a parabolic connection with an
extra apparent singular point; after elementary transformation over x = q, we get
a parabolic connection in Conθ(X,D). When q → ∞, there is a limit point in
Conθ(X,D) provided that s tends to an affine point of the fiber. When q → ti,
one can find a limit point in Conθ(X,D) if, and only if, s tends to one of the

exceptional divisors, not to F̂i; over the point s−i , we get all parabolic connections
in Conθ(X,D) such that the parabolic li lies in the destabilizing subbundle O(1).

With our notations, the 2-form dp∧ dq has polar divisor 2Σ̂+ F̂1 + F̂2 + F̂3 + F̂4

and is non zero at any other point: it defines a non degenerate holomorphic volume
form on the moduli space that should better viewed as a symplectic structure.
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4.2. Description and properties of moduli spaces. Fix (X,D) = (P1, {t1, t2, t3, t4})
as before and consider the Hirzebruch surface S given by the total space of the pro-
jective bundle P(O⊕Ω1(D)). This surface may be obtained from the total space of
the projective bundle P(O⊕Ω1) by applying 4 elementary transformations directed
by the section at infinity O; from this point of view, the Liouville form on the
total space of Ω1 induces a rational 2-form ω on P(O ⊕ Ω1(D)) with polar divisor
2Σ+F1 +F2 +F3 +F4: as before, Σ is the section defined by O and Fi is the fiber
over ti. An affine chart is defined by

(x, y) : P(O ⊕ Ω1) \ Σ ∪ F∞ → C× C

where F∞ is the fiber over x = ∞ and y is normalized so that

• y = 0 corresponds to the section defined by 0 ∈ H0(X,O ⊕ Ω1(D)),
• y = 1 corresponds to the section defined by dx∏

i
(x−ti)

∈ H0(X,O ⊕ Ω1(D))

(and y = ∞ is defined by O). For each finite point y ∈ Fi, we can associate
the residue Resti(y

dx∏
i(x−ti)

) = y

τi
(see definition (14)). This gives us a natural

parametrization of fibers Fi.
Choose 2 points s±i on each fiber Fi (possibly, s+i = s−i ). Then, blow-up these 8

points and denote by Ŝ the blow-up surface, and still denote by Σ̂ and F̂i the strict
transforms. Then consider the open part

Mθ := Ŝ \ Σ̂ ∪ F̂1 ∪ F̂2 ∪ F̂3 ∪ F̂4.

The 2-form ω extends as a holomorphic symplectic form on M with polar divisor

(ω)∞ = 2Σ̂ + F̂1 + F̂2 + F̂3 + F̂4.

Consider on each fiber Fi the point mi defined by the arithmetic mean of s+i and s−i .

Precisely, if we denote Resti(s
±
i ) = θ±i , then mi is defined by Resti(mi) =

θ+

i
+θ−

i

2 .

Since S \ Σ is the total space of Ω1(D), there is a one-to-one correspondence
between global holomorphic sections of Ω1(D) and global sections of S → P1 not
intersecting Σ. These sections form a 3-dimensional family. Assume first that
there exists such a section passing through all 4 points mi; this is equivalent to say
∑

i(θ
+
i + θ−i ) = 0. In this case, it can be checked that 2Σ̂+ F̂1+ F̂2+ F̂3+ F̂4 is the

degenerate fiber of an elliptic fibration on Ŝ. In this case, the open part M may
be viewed as a moduli space of Higgs bundles and this fibration is the well-known
Hitchin fibration. The fibration is defined by those elements of the linear system
|2Σ̂ + F̂1 + F̂2 + F̂3 + F̂4| on S passing through the 8 points s±i .

Assume now that
∑

i(θ
+
i + θ−i ) 6= 0. Then, after applying a bundle isomorphism

of the form y 7→ cy, we may assume
∑

i(θ
+
i + θ−i ) = 1. If θ±1 + θ±2 + θ±3 + θ±4 6∈ Z

whatever the choice of signs, the surface Mθ identifies with the moduli space of
connections Conθ(X,D) discussed in the previous section. On the other hand, when
θ±1 + θ±2 + θ±3 + θ±4 ∈ Z for some (maybe several) choices of signs, then Mθ can
still be viewed as a moduli space of stable connections (we have to delete some
reducible connection to obtain a GIT moduli space, see [3]). By the Riemann-
Hilbert correspondance (see [3]), there is an analytic mapping

RH : Mθ −→ χ ⊂ C
3

where χ is an affine cubic surface. For generic θ, this is an analytic isomorphism;
for special values of θ like above, the affine surface χ is singular and the map RH
is a minimal analytic resolution of singularities. It follows that the only occurence
of complete curves in Mθ is for special values of θ: they come from exceptional
divisors in the resolution of singularities of χ: they are rational, and there are at
most 4 such curves in a given Mθ. In particular, the divisor 2Σ̂+ F̂1+ F̂2+ F̂3+ F̂4

is no more contained in an elliptic fibration.
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The surface Mθ is not affine however. In fact, there are no non-constant regular
functions on Mθ (see [1]). This mainly follows from numerical properties

(2Σ̂ + F̂1 + F̂2 + F̂3 + F̂4) · Σ̂ = (2Σ̂ + F̂1 + F̂2 + F̂3 + F̂4) · F̂i = 0;

indeed, a rational function on Ŝ whose polar divisor is contained in the support
of 2Σ̂ + F̂1 + F̂2 + F̂3 + F̂4 would define a fibration of complete curves inside the
complement Mθ, contradicting the (almost) non existence of complete curves. This
generalize Serre example.

4.3. How complete curves arise for special parameters. When θ+i = θ−i for
some i, then the two points s+i and s−i coincide in S. In this case, we have to blow-

up twice over s+i = s−i to get the surface Ŝ. Precisely, we first blow-up this point
to get an exceptional divisor Ei, and then blow-up the intersection point between
Ei and the strict transform of Fi; we get a second exceptional divisor E′

i and still

denote by Ei and F̂i the strict transforms in the resulting surface Ŝ. We define

similarly the open set Mθ := Ŝ \ Σ̂ ∪ F̂1 ∪ F̂2 ∪ F̂3 ∪ F̂4. Then, Ei is a rational
curve in Mθ having −2 self-intersection number. This curve corresponds to the
locus of those parabolic connections (E,∇, l) for which the residual matrix at ti is
the scalar matrix θ+i · I.

Similarly, when θ+i = θ−i + 1, from Fuchs’ local theory, we can check that a
generic element (E,∇, l) of Conθ(X,D) will have a logarithmic singular point at ti
(the local monodromy has a non trivial Jordan block); however, for some special
parabolic connections, the singular point is not logarithmic anymore (it has diagonal
monodromy). The locus of those special connections is a complete and smooth
rational curve in Mθ, namely the strict transform of the curve C ⊂ S characterized
as follows:

• q : C → P1 has degree 2 and C does not intersect Σ;
• C intersects Fi at s+i and has two smooth local branches at this point;
• C intersects other fibers Fj at both s+j and s−j .

The first condition fixes the linear system on S that contains the curve: C ∈
|2Σ + F1 + F2 + F3 + F4|. The two other conditions characterize C in this linear

system. After blowing-up, the resulting curve Ĉ becomes smooth and does not
intersect strict transforms Fj ’s anymore.

When θ+i − θ−i ∈ Z, the story is the same. Let us just characterize the special
curve C in the case θ+i = θ−i + 2:

• q : C → P1 has degree 4 and C does not intersect Σ;
• C intersects Fi three times at s+i and one time at s−i ;
• C intersects other fibers Fj twice at both s+j and s−j .

This can be checked by straightforward formal computation.
Another occurence of complete curves in Mθ comes from reducible connections.

When say θ+1 + θ+2 + θ+3 + θ+4 = 0, then some reducible connections arise in
Conθ(X,D): each of them stabilize a trivial subbundle O ⊂ E and induces on
it a logarithmic rank 1 connection with eigenvalue θ+i at ti. The locus of these

reducible connections form a section Ĉ for the projection q : Mθ → P1. The corre-
sponding curve C ⊂ S is the section of q : C → P1 that does not intersect Σ and
intersecting each Fi at s+i .

4.4. Link with Fuchsian systems. As we shall see here, if we delete one of the
exceptional divisors E±

i → s±i from Mθ, then the surface becomes affine.
Consider the moduli space Conθ(X,D) with eigenvalues θ satisfying

{

θ+i = θi
θ−i = −θi

except

{

θ+4 = −θ4
θ−4 = θ4 − 1
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After applying an elementary transformation

Elm−
t4

: Conθ(X,D)
∼
−→ Conθ

′

(X,D)

we obtain new eigenvalues
{

(θ+i )
′ = θi

(θ−i ) = −θi
for all i = 1, 2, 3, 4.

This latter moduli space splits into the disjoint union of those connection defined
on the trivial bundle, namely Fuchsian systems discussed in section 2, and those
defined on E = O(−1) ⊕ O(1) (see section 4). In fact, a parabolic connection
(E = O ⊕ O(1),∇, l) of Conθ(X,D) is sent to a connection on the non trivial
bundle by the elementary transformation if, and only if, its parabolic l4 lie on the
subbundle O(1) ⊂ E. The locus of those special parabolic connections in Mθ is
given by the exceptional divisor E−

4 → s−4 (or we better should say the affine part
of this divisor once we have deleted the intersection point with F4). Therefore, E−

4

identifies via Elm−
t4

to the moduli space A1 of those connections on O(−1)⊕O(1)

discussed in section 4. Moreover, after deleting E−
4 from Mθ, we get an isomorphism

with the moduli space of Fuchsian systems computed in section 2, i.e. a cubic affine
surface:

Mθ \ E−
4

Elm−

t4
∼
−→ Fuchs

θ
′

(X,D)
∼
−→ Sθ ⊂ C

4.

We can do in a similar way with other elementary transformations Elm±
ti

(that we
have to compose with a convenient twist in order to fit with sl2-systems discussed
in section 2) and we promtly deduce that Mθ becomes a cubic affine surface once
we delete any one of the exceptional divisors E±

i .

5. The Garnier case n > 4

The computation of section 4.1 generalizes as follows. Fix D = t1 + · · · + tn a
reduced divisor one X := P1, n ≥ 4. Fix eigenvalues θ, θ±i ∈ C for each i = 1, . . . , n,
with

∑n

i=1(θ
+
i + θ−i ) + 1 = 0. Assume θ generic for simplicity:

θ+i − θ−i 6∈ Z and θ±1 + · · ·+ θ±n 6∈ Z.

Consider the moduli space Conθ(X,D) of corresponding connections. Note that
we can omit parabolic structure from the discussion: under genericity of θ, the
parabolic structure l is determined by the connection (E,∇).

We would like to explicitely describe the generic connection and derive an explicit
open subset of Conθ(X,D). Let us first assume E = O⊕O(1). The special subbun-
dle O(1) ⊂ E is stabilized by ∇ at exactly n− 3 points counted with multiplicity;
these are the zeroes of the composition map

L = O(1)
inclusion
−→ E

∇
−→ E ⊗ Ω1(D)

quotient
−→ (E/L)⊗ Ω1(D).

These points are also the extra apparent singular points for the fuchsian scalar
equation derived from ∇ and the cyclic vector L. Let us consider the case where
these zeroes and the poles ti’s are two-by-two distinct; denote the by q1, . . . , qn−3

the apparent points. We also assume qj 6= ∞ for simplicity.

Consider now the parabolic structure l̃ defined over each qj by the special line
bundle L. Still assuming all ti’s and qj ’s two-by-two distinct, apply a positive

elementary transformation at each qj directed by l̃ (i.e. by L = O(1) ⊂ E). Let

(E′,∇′, l̃
′
) be the resulting parabolic connection; note that E′ = O ⊕O(n− 2).
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Proposition 5. The connection (E′,∇′) is given, up to bundle automorphism, by
the connection matrix (we follow notations of section 3.1)

Ω =

n
∑

i=1

(

0 1
τi

−τiθ
+
i θ

−
i θ+i + θ−i

)

dx

x− ti
+

n−3
∑

j=1

(

0 0
pj −1

)

dx

x− qj
+

(

0 0
c(x) 0

)

dx

where c(x) is polynomial of degree n− 4, determined by the fact that all poles qj’s
are non logarithmic (with scalar monodromy). The connection is determined by the

new parabolic structure l̃
′
defined by kernel of residual matrices over the qj’s.

Proof. We proceed like in section 4.1. On the initial bundle E = O ⊕ O(1), the
connection matrix writes Ω = A(x) dx∏

i
(x−ti)

where

A(x) =

(

a(x) b(x)
c(x) −xn−1 + d(x)

)

with







deg(b) ≤ n− 3
deg(a), deg(d) ≤ n− 2

deg(c) ≤ n− 1

Then, up to a diagonal automorphism, we have b(x) =
∏n−3

j=1 (x − qj). We now
apply the n− 3 elementary transformations and get the new connection matrix

(

a(x)∏
i(x−ti)

1∏
i(x−ti)

c(x)
∏

j
(x−qj)

∏
i
(x−ti)

−−xn−1+d(x)∏
i
(x−ti)

−
∑n−3

j=1
1

x−qj

)

dx

On the new bundle E′ = O⊕O(n− 2), we can use unipotent automorphisms of E′

to kill the polynomial coefficient a(x). We now get the unique normal form

(18) Ω′ =

(

0 1∏
i(x−ti)

c̃(x)∏
i(x−ti)

∏
j(x−qj)

−xn−1+d̃(x)∏
i(x−ti)

−
∑n−3

j=1
1

x−qj

)

dx

with c̃(x) and d̃(x) polynomials of degree 3n−7 and n−2 respectively. Now, taking
into account the spectral data, we get the normal form of the statement. �

From this statement, one easily derive the following open subset of Conθ(X,D).
Consider the surface S defined by the total space of P(O ⊕ Ω1(D)) and denote by
Σ the section defined by Ω1(D): S \ Σ naturally identifies with the total space of
Ω1(D). In particular, the affine part of the fiber Fi over ti has the natural chart

Resti : Fi \Σ
∼
−→ C given by taking the residue of sections of Ω1(D); we define two

points s±i ∈ Fi by Resti(s
±
i ) = θ±i . Let π = Ŝ → S be the blow-up of S at all 2n

points and denote by Σ̂ and F̂i the strict transforms. Then consider the open part

Mθ := Ŝ \ (Σ̂ ∪ F̂1 ∪ · · · ∪ F̂n)

and the symetric product

(Mθ)(n−3) := Mθ × · · · ×Mθ/Perm(1, · · · , n).

Then the above normal form defines an embedding

(Mθ)(n−3) \∆ →֒ Conθ(X,D)

where ∆ is the “codimension one diagonal” defined by those {qi, pi} for which qi = qj
for some i 6= j. This is the point of view developped by Oblezin in [5] where
the compactification of this picture is discussed. Another point of view has been
recently studied by Saito and the author in [4].
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