Introduction to moduli spaces of connections: some explicit constructions

Frank Loray

To cite this version:

Frank Loray. Introduction to moduli spaces of connections: some explicit constructions. 2015. hal01133705

HAL Id: hal-01133705

https://hal.science/hal-01133705

Preprint submitted on 20 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION TO MODULI SPACES OF CONNECTIONS: SOME EXPLICIT CONSTRUCTIONS

FRANK LORAY

Abstract

We give some concrete examples of moduli spaces of connections. Precisely, we explain how to explicitely construct the moduli spaces of rank 2 fuchsian systems and logarithmic connections on the Riemann sphere with 4 poles. The former ones are affine cubic surfaces; the latter ones are analytically isomorphic to affine surfaces but not algebraically: they do not carry non constant regular functions. We end with some remark on arbitrary number of poles.

1. Introduction: variation on an example of Serre

Given a complex smooth projective curve X, a rank 1 (flat) connection, or equivalently a rank 1 local system on X, is an element of the cohomology group $H^{1}\left(X, \mathbb{C}^{*}\right)$. This is the easiest example of a moduli space of connections. From the exact sequence of sheaves

$$
0 \rightarrow \mathbb{C}^{*} \rightarrow \mathcal{O}^{*} \rightarrow \Omega^{1} \rightarrow 0
$$

(where $\mathcal{O}^{*} \rightarrow \Omega^{1}$ is given by $f \mapsto \frac{d f}{f}$), we can derive the associate long exact sequence of cohomology groups and extract the following

$$
\begin{equation*}
0 \rightarrow H^{0}\left(X, \Omega^{1}\right) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right) \rightarrow \operatorname{Jac}(X) \rightarrow 0 \tag{1}
\end{equation*}
$$

making $H^{1}\left(X, \mathbb{C}^{*}\right)$ into a principal \mathbb{C}^{g}-bundle over the Jacobian of the curve.
Even simpler is the case when X is an elliptic curve: we get a \mathbb{C}-bundle over the curve $X \simeq \operatorname{Jac}(X)$ itself. One may compactify it by adding a section at infinity in order to get a \mathbb{P}^{1}-bundle $P \rightarrow X$: it is one of the two undecomposable \mathbb{P}^{1}-bundles found by Atiyah in [2]. The section at infinity $\sigma: X \rightarrow P$ is the unique section whose image $\Sigma:=\sigma(X)$ has zero self-intersection in the total space $S:=\operatorname{Tot}(P)$ of the bundle. The group $H^{1}\left(X, \mathbb{C}^{*}\right)$ identifies, as a variety, with the complement $S \backslash \Sigma$.

Viewing X as a Riemann surface, we get the Riemann-Hilbert correspondence

$$
R H: H^{1}\left(X, \mathbb{C}^{*}\right) \longrightarrow \operatorname{Hom}\left(\pi_{1}(X), \mathbb{C}^{*}\right)
$$

which associates to a local system its monodromy representation. Once we choose a system of generators for the fundamental group, we get an identification between the space of representations and the group $\mathbb{C}^{*} \times \mathbb{C}^{*}$. We thus get a complex analytic group isomorphism

$$
\begin{equation*}
H^{1}\left(X, \mathbb{C}^{*}\right) \longrightarrow \mathbb{C}^{*} \times \mathbb{C}^{*} \tag{2}
\end{equation*}
$$

However, the two underlying varieties are not isomorphic from the algebraic point of view: while $\mathbb{C}^{*} \times \mathbb{C}^{*}$ is an affine variety, there is no non constant regular functions on S. Indeed, such a function would extend as a rational function on S with polar divisor $n \Sigma$; one easily check that the zero divisor of such function should define a complete curve not intersecting Σ. But there is no complete curve in S since it is analytically isomorphic to an affine variety. This famous example is due to Serre.

[^0]There is a natural non degenerate 2 -form ω on S constructed from the exact sequence (1) by choosing non zero 1 -forms on the base X and on the fiber; it is well-defined up to a scalar constant. Isomorphism (2) sends it to the 2 -form $\frac{d u}{u} \wedge \frac{d v}{v}$ (up to a scalar). The 2 -form ω extends on S as a rational 2 -form with divisor 2Σ.

Let us briefly mention two other facts. The maximal compact subgroup given by unitary connections/representation is an analytic real torus providing a real section of $P \rightarrow X$, and turns to be real algebraic on representation-side, namely $\mathbb{S}^{1} \times \mathbb{S}^{1} \subset \mathbb{C}^{*} \times \mathbb{C}^{*}$. The fibration $P \rightarrow X$ is sent to the foliation defined by $u \partial_{u}+\tau v \partial_{v}$ where $(1: \tau)$ is commensurable to periods of X.

One can modify Serre's example as follows. The elliptic involution $\iota: X \rightarrow X$ lifts-up as a biregular involution $\varphi: S \rightarrow S$. This follows from the unicity of the undecomposable bundle P, or equivalently from the natural action of the involution ι on local systems. The quotient surface \underline{S} fibers over $X / \iota \simeq \mathbb{P}^{1}$. The involution φ has 2 fixed points over each of the 4 Weierstrass points: one of them lie on the section at infinity Σ (which is invariant) and the other one is corresponding to a 2 -torsion point of $H^{1}\left(X, \mathbb{C}^{*}\right)$. We thus get 8 conic singular points on the quotient that we have to blow-up. The resulting surface $\underline{\hat{S}} \rightarrow \underline{S}$ is equipped with the quotient 2 -form $\underline{\omega}$ having polar divisor $2 \underline{\hat{\Sigma}}+E_{1}+E_{2}+E_{3}+E_{4}$ where E_{i} are exceptional divisors of conic points along $\underline{\Sigma}$ (the image of Σ); $\underline{\omega}$ is non degenerate on the open set $M:=\underline{\hat{S}} \backslash\left(\underline{\hat{\Sigma}} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4}\right)$. This open set is no more a group, but share all other nice properties with Serre example. For instance, the divisor $2 \underline{\hat{\Sigma}}+E_{1}+E_{2}+E_{3}+E_{4}$ at infinity is (from the numerical point of view) like a degenerate elliptic fiber of type I_{0}^{*} in Kodaira list, there is no non constant regular function on M and it is analytically conjugated to an affine surface, namely the Cayley cubic, quotient of $\mathbb{C}^{*} \times \mathbb{C}^{*}$ by the involution $(u, v) \mapsto\left(\frac{1}{u}, \frac{1}{v}\right)$. This second example is actually a particular case of moduli space of connections arising as space of initial conditions of one of the Painlevé VI equations, namely that one found by Picard.

These nice properties are common to general moduli spaces of connections (except structure of group, particular for the rank one) and this is a good motivation to study them. On the other hand, they naturally appear as spaces of initial conditions for isomonodromy equations, but we skip this point of view from our dicussion.

2. Moduli space of fuchsian systems

Consider a $\mathfrak{s l}_{2}$-fuchsian system on the Riemann sphere with 4 poles

$$
\begin{equation*}
\frac{d Y}{d x}=\frac{A_{1}}{x-t_{1}}+\frac{A_{2}}{x-t_{2}}+\frac{A_{3}}{x-t_{3}}+\frac{A_{4}}{x-t_{4}} \tag{3}
\end{equation*}
$$

with constant matrices $A_{i}, i=1,2,3,4$, satisfying

$$
A_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \tag{4}\\
c_{i} & -a_{i}
\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \quad \text { and } \quad A_{1}+A_{2}+A_{3}+A_{4}=0
$$

(here and after we assume all 4 poles t_{i} 's in the affine part for simplicity). The group $\mathrm{SL}_{2}(\mathbb{C})$ acts on the Y-variable and thus on residues A_{i} 's by simultaneous conjugacy. Indeed, change of variable $Y=M Y^{\prime}$ induces change of residues $A_{i}^{\prime}=M^{-1} A_{i} M$. The spectrum of each matrix A_{i} is preserved by this action. Let us fix the spectral data

$$
\begin{equation*}
-\operatorname{det}\left(A_{i}\right)=a_{i}^{2}+b_{i} c_{i}=\theta_{i}^{2} \tag{5}
\end{equation*}
$$

for some $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ (eigenvalues are $\left.\pm \theta_{i}\right)$. We want to describe the quotient space $\mathcal{F} u \operatorname{chs}^{\boldsymbol{\theta}}(X, D)$ of those systems by this action:

$$
\begin{equation*}
\left\{\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \in\left(\mathfrak{s l}_{2}(\mathbb{C})\right)^{4} ; \sum_{i} A_{i}=0, \operatorname{det}\left(A_{i}\right)=-\theta_{i}^{2}\right\} / \operatorname{SL}_{2}(\mathbb{C}) \tag{6}
\end{equation*}
$$

A straightforward computation shows that $\mathcal{F} u \operatorname{chs}^{\boldsymbol{\theta}}(X, D)$ is expected to be a surface (depending on 4 parameters θ_{i} 's). However, it is non Hausdorff (as a topological space) in general. For instance, the orbit of the triangular system

$$
A_{i}=\left(\begin{array}{cc}
\theta_{i} & b_{i} \tag{7}\\
0 & -\theta_{i}
\end{array}\right)
$$

under diagonal conjugacy is not closed; its closure contains the diagonal system (with all b_{i} 's vanishing) so that they define infinitesimally closed points in the quotient. Note however that, in this case, we have $\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=0$.

Introduce the following functions on $\mathcal{F} u \operatorname{chs}^{\boldsymbol{\theta}}(X, D)$:

$$
\begin{gather*}
X_{1}:=\operatorname{det}\left(A_{2}+A_{3}\right), X_{2}:=\operatorname{det}\left(A_{1}+A_{3}\right), X_{3}:=\operatorname{det}\left(A_{1}+A_{2}\right) \tag{8}\\
\text { and } Y=\operatorname{tr}\left(A_{1}\left[A_{2}, A_{4}\right]\right)
\end{gather*}
$$

where $[A, B]=A B-B A$ is the Lie bracket. These functions are clearly invariant under $\mathrm{SL}_{2}(\mathbb{C})$-action.

Proposition 1. Assume $\theta_{4} \neq 0$. Then, the map

$$
\begin{equation*}
\left(X_{1}, X_{2}, X_{3}, Y\right): \mathcal{F u c h s}^{\boldsymbol{\theta}}(X, D) \longrightarrow \mathbb{C}^{4} \tag{9}
\end{equation*}
$$

sends the moduli space onto the affine cubic surface $S^{\boldsymbol{\theta}}$ defined by

$$
\begin{gathered}
X_{1}+X_{2}+X_{3}=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2} \quad \text { and } \\
\frac{Y^{2}}{4}+X_{1} X_{2} X_{3}+\left(\theta_{1}^{2}-\theta_{3}^{2}\right)\left(\theta_{2}^{2}-\theta 4^{2}\right) X_{1}+\left(\theta_{2}^{2}-\theta_{3}^{2}\right)\left(\theta_{1}^{2}-\theta 4^{2}\right) X_{2} \\
=\left(\theta_{1}^{2}+\theta_{2}^{2}-\theta_{3}^{2}-\theta 4^{2}\right)\left(\theta_{1}^{2} \theta_{2}^{2}-\theta_{3}^{2} \theta 4^{2}\right)
\end{gathered}
$$

The map (9) above is one-to-one over the smooth part of $S^{\boldsymbol{\theta}}$. Singularities arise when

- $\theta_{i}=0$ and $A_{i}=0$ for $i=1,2,3$;
- $\pm \theta_{1} \pm \theta_{2} \pm \theta_{3} \pm \theta_{4}=0$ and all A_{i} 's are simultaneously triangular up to conjugacy.
In particular, apart from special values of $\boldsymbol{\theta}$ listed just before, the quotient \mathcal{F} uchs ${ }^{\boldsymbol{\theta}}(X, D)$ is Hausdorff and is isomorphic to the smooth cubic surface $S^{\boldsymbol{\theta}}$.

Proof. Since $\theta_{4} \neq 0$, we can assume $A_{4}=\left(\begin{array}{cc}\theta_{4} & 0 \\ 0 & -\theta_{4}\end{array}\right)$. This normalization is welldefined up to diagonal conjugacy so that the monomials a_{i} and $b_{i} c_{j}$ are invariant. Using $A_{1}+A_{2}+A_{3}+A_{4}=0$, we can now express A_{3} in function of A_{1} and A_{2} :

$$
\left\{\begin{array}{llc}
a_{3} & = & -a_{1}-a_{2}-\theta_{4} \\
b_{3} & = & -b_{1}-b_{2} \\
c_{3} & = & -c_{1}-c_{2}
\end{array}\right.
$$

Spectral data (5) gives the following conditions

$$
\begin{gather*}
a_{1}^{2}+b_{1} c_{1}=\theta_{1}^{2}, \quad a_{2}^{2}+b_{2} c_{2}=\theta_{2}^{2} \quad \text { and } \\
2 a_{1} a_{2}+2 \theta_{4}\left(a_{1}+a_{2}\right)+b_{1} c_{2}+b_{2} c_{1}+\theta_{1}^{2}+\theta_{2}^{2}-\theta_{3}^{2}+\theta 4^{2}=0 . \tag{11}
\end{gather*}
$$

On the other hand, we get

$$
\begin{align*}
& X_{1}=2 \theta_{4} a_{1}+\theta_{4}^{2}+\theta_{1}^{2} \\
& X_{2}=2 \theta_{4} a_{2}+\theta_{4}^{2}+\theta_{2}^{2} \quad \text { and } \quad Y=4 \theta_{4}\left(b_{1} c_{2}-b_{2} c_{1}\right) \tag{12}\\
& X_{3}=2 \theta_{4} a_{3}+\theta_{4}^{2}+\theta_{3}^{2}
\end{align*}
$$

Once we know X_{1}, X_{2}, X_{3}, Y, we get the invariants a_{1}, a_{2} and $b_{1} c_{2}-b_{2} c_{1}$. From relations (11), we promptly deduce $b_{1} c_{1}, b_{2} c_{2}$ and $b_{1} c_{2}+b_{2} c_{1}$, and therefore $b_{1} c_{2}$ and $b_{2} c_{1}$. The cubic equation (10) just says that these invariants satisfy the obvious relation $\left(b_{1} c_{1}\right)\left(b_{2} c_{2}\right)=\left(b_{1} c_{2}\right)\left(b_{2} c_{1}\right)$. We can thus recover $\left(b_{1}, b_{2}, c_{1}, c_{2}\right)$ uniquely up to the diagonal action, except when either $b_{1}=b_{2}=0$, or $c_{1}=c_{2}=0$; in these latter cases, there are several possible solutions $\left(A_{1}, A_{2}, A_{3}\right)$ up to diagonal action, but all of them are triangular.

3. Moduli space of connections

Fix $D=t_{1}+\cdots+t_{n}$ a reduced divisor (of poles) on the Riemann sphere $X:=\mathbb{P}^{1}$ with $n \geq 4$. Fix eigenvalues $\left\{\theta_{i}^{+}, \theta_{i}^{-}\right\} \subset \mathbb{C}$ for each $i=1, \ldots, n$ with integral sum $\sum_{i=1}^{n} \theta_{i}^{+}+\theta_{i}^{-}=-d \in \mathbb{Z}$. For simplicity, assume generic condition $\theta_{1}^{ \pm}+\cdots+\theta_{n}^{ \pm} \notin \mathbb{Z}$ for any choice of signs \pm to avoid reducible connections. Denote by $\boldsymbol{\theta}=\left(\theta_{1}^{ \pm}, \ldots, \theta_{n}^{ \pm}\right)$ the spectral data.

Consider the triples $(E, \nabla, \boldsymbol{l})$ called "parabolic connections" where

- E is a rank 2 vector bundle of degree d over \mathbb{P}^{1},
- ∇ is a logarithmic connection $\nabla: E \rightarrow E \otimes \Omega^{1}(D)$ with polar divisor D, having residual eigenvalues θ_{i}^{+}and θ_{i}^{-}over the pole t_{i},
- $\boldsymbol{l}=\left(l_{1}, \ldots, l_{n}\right)$ is a parabolic structure on E such that $\left.l_{i} \subset E\right|_{t_{i}}$ belongs to the eigenspace generated by θ_{i}^{+}.
When $\theta_{i}^{+} \neq \theta_{i}^{-}$, we note that the parabolic l_{i} is the eigendirection of θ_{i}^{+}; the parabolic structure is therefore relevant only in case of equality $\theta_{i}^{+}=\theta_{i}^{-}$. Note also that Fuchs relation says that $\sum_{i=1}^{n} \theta_{i}^{+}+\theta_{i}^{-}+\operatorname{deg}(E)=0$, which explains the constraints given by d in the above definitions.

We say that two parabolic connections $(E, \nabla, \boldsymbol{l})$ and $\left(E^{\prime}, \nabla^{\prime}, \boldsymbol{l}^{\prime}\right)$ are equivalent when there is a bundle isomorphism $\phi: E \rightarrow E^{\prime}$ conjugating connections and parabolic structures. We denote by $\operatorname{Con}^{\boldsymbol{\theta}}(X, D)$ the moduli space of parabolic connections for this equivalence. This can be viewed as a stack (see [1]), but it can actually be constructed by GIT method (see [3]); under our generic assumptions on $\boldsymbol{\theta}$, we simply get:

Theorem 2 (Inaba-Iwasaki-Saito). The moduli space $\mathcal{C}{ }^{\text {on }}{ }^{\boldsymbol{\theta}}(X, D)$ is a smooth irreducible quasi-projective variety of dimension $2(n-3)$ equipped with a regular symplectic 2 -form ω.

The construction needs a choice of weights to impose stability condition; all parabolic connections are stable under our assumptions and the resulting quotient does not actually depends on this choice. However, if we allow non generic eigenvalues, then some reducible connections become unstable, and the quotient of semistable points depends on the choice of weights. Note also that we could have avoid parabolic structure in the discussion by assuming also $\theta_{i}^{+} \neq \theta_{i}^{-}$, but we will use parabolics later; this is why we already introduce this notion.
3.1. Connection matrix. Let us now be more explicit for readers that are not familiar to connections. Following Birkhoff, any rank vector bundle E on \mathbb{P}^{1} splits as a direct sum of line bundles. In particular, for the rank 2 case, we have

$$
E=\mathcal{O}\left(d_{1}\right) \oplus \mathcal{O}\left(d_{2}\right) \quad \text { with } \quad d_{1} \leq d_{2} \quad \text { and } \quad d_{1}+d_{2}=d
$$

Choose sections e_{i} of $\mathcal{O}\left(d_{i}\right)$ whose divisor (zero or pole) is supported by $\infty \in \mathbb{P}^{1}$ so that, over the affine part $\mathbb{C}=\mathbb{P}^{1} \backslash\{\infty\}$, the vector bundle is trivial: $\left.E\right|_{\mathbb{C}}=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$. We can describe the connection ∇ as follows:

$$
\left.\nabla\right|_{\mathbb{C}}: Y \mapsto d Y+\Omega \cdot Y
$$

where Y is a section of $\left.E\right|_{\mathbb{C}}$ and Ω is a 2×2-matrix of meromorphic 1-forms:

$$
\begin{equation*}
\Omega=\sum_{i=1}^{n} \frac{A_{i}}{x-t_{i}} d x+B(x) d x \tag{13}
\end{equation*}
$$

with B holomorphic (and x the affine variable of $\mathbb{C}=\mathbb{P}^{1} \backslash\{\infty\}$). Let e_{i}^{\prime} be sections of $\mathcal{O}\left(d_{i}\right)$ defined by $e_{i}=x^{d_{i}} e_{i}^{\prime}$. At infinity, we must express the connection in the basis ($e_{1}^{\prime}, e_{2}^{\prime}$) and, setting

$$
Y=M Y^{\prime} \quad \text { with } \quad M=\left(\begin{array}{cc}
x^{d_{1}} & 0 \\
0 & x^{d_{2}}
\end{array}\right)
$$

we find

$$
\left.\nabla\right|_{\mathbb{P}^{1} \backslash\{0\}}: Y^{\prime} \mapsto d Y^{\prime}+\Omega^{\prime} \cdot Y^{\prime} \quad \text { with } \quad \Omega^{\prime}=M^{-1} \Omega M+M^{-1} d M
$$

which must be holomorphic at ∞. If we now write $\Omega=A(x) \frac{d x}{\prod_{i=1}^{n}\left(x-t_{i}\right)}$, this holomorphy conditions says that

$$
\begin{gathered}
A(x)=-\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right) x^{n-1}+\left(\begin{array}{cc}
a(x) & b(x) \\
c(x) & d(x)
\end{array}\right) \\
\text { with }\left\{\begin{array}{l}
b \text { polynomial of degree } \leq n-2-\left(d_{2}-d_{1}\right) \\
a, d \text { polynomials of degree } \leq n-2 \\
c \text { polynomial of degree } \leq n-2+\left(d_{2}-d_{1}\right)
\end{array}\right.
\end{gathered}
$$

Fuchsian systems are just logarithmic connections on the trivial bundle $d_{1}=d_{2}=0$.
Example 3 (Case $n=4$). When $E=\mathcal{O} \oplus \mathcal{O}(1)$, then holomorphy at infinity gives the following constraints

$$
A_{1}+A_{2}+A_{3}+A_{4}=\left(\begin{array}{cc}
0 & 0 \\
\star & -1
\end{array}\right) \quad \text { and } \quad B(x) \equiv 0 .
$$

When $E=\mathcal{O}(-1) \oplus \mathcal{O}(1)$, then we get constraints

$$
\begin{aligned}
A_{1}+A_{2}+A_{3}+A_{4} & =\left(\begin{array}{cc}
1 & 0 \\
\star & -1
\end{array}\right), B(x) \equiv\left(\begin{array}{cc}
0 & 0 \\
\star & 0
\end{array}\right) \text { (constant matrices) } \\
\text { and } & \sum_{i} \frac{A_{i}}{x-t_{i}}=\left(\begin{array}{cc}
\star & \frac{b}{\prod_{i}\left(x-t_{i}\right)} \\
\star & \star
\end{array}\right) .
\end{aligned}
$$

Finally, when $d_{2}-d_{1}>2$, the $[1,2]$-coefficient of all A_{i} 's and $B(x)$ must be zero so that we are in the reducible case. In other words, under our generic assumption on $\boldsymbol{\theta}$, we have $d_{2}-d_{1}=0,1,2$. For degree $d=0$ or 1 , we are led to the following possibilities

- $d=0$ and $\left(d_{1}, d_{2}\right)=(0,0)$ or $(-1,1)$,
- $d=1$ and $\left(d_{1}, d_{2}\right)=(0,1)$.

We now impose spectral data by

$$
\operatorname{tr}\left(A_{i}\right)=\theta_{1}^{+}+\theta_{i}^{-} \quad \text { and } \quad \operatorname{det}\left(A_{i}\right)=\theta_{1}^{+} \cdot \theta_{i}^{-} .
$$

The parabolic structure is therefore given by

$$
l_{i}=\mathbb{C} \cdot\binom{b_{i}}{\theta_{i}^{+}-a_{i}} \quad \text { or } \quad \mathbb{C} \cdot\binom{\theta_{i}^{+}-d_{i}}{c_{i}} \quad \text { where } \quad A_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right)
$$

except when $\theta_{i}^{+}=\theta_{i}^{-}$and A_{i} is a scalar matrix, in which case l_{i} may be arbitrarily choosen: it is an extra data in this case.
3.2. Bundle automorphisms. So far, we have described the space of parabolic connections up to Birkhoff normalization of the bundle. Then, we would like to quotient by the action of bundle automorphisms on connections. They can be described as follows.

- When $d_{1}=d_{2}$, then E is just the twist of the trivial bundle by $\mathcal{O}\left(d_{1}\right)$ and automorphisms are the same: $\mathrm{GL}_{2}(\mathbb{C})$ acts by conjugacy on the connection matrix (13), i.e. on matrices A_{i} 's (B is scalar and the action is trivial on it).
- When $d_{1}<d_{2}$, then the automorphism group is given in the trivialization chart $\left.E\right|_{\mathbb{C}}=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$ by

$$
\left\{M=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
f(x) & \lambda_{2}
\end{array}\right) \text { with } f(x) \text { polynomial of degree } \leq d_{2}-d_{1}\right\}
$$

and it is acting on connection matrix (13) by

$$
\Omega \mapsto \Omega^{\prime}=M^{-1} \Omega M+M^{-1} d M
$$

The action on parabolics is obvious.
Example 4. Assume $n=4$ and $\left(d_{1}, d_{2}\right)=(-1,1)$; for simplicity, assume also $\left(\theta_{i}^{+}, \theta_{i}^{-}\right)=\left(\theta_{i},-\theta_{i}\right)$. The matrix connection writes $\Omega=A(x) \frac{d x}{\prod_{i}\left(x-t_{i}\right)}$ where

$$
A(x)=\left(\begin{array}{cc}
x^{3}+a(x) & b \\
c(x) & -x^{3}-a(x)
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{l}
b \in \mathbb{C} \\
a \text { polynomial of degree } \leq 2 \\
c \text { polynomial of degree } \leq 4
\end{array}\right.
$$

Note that $b \neq 0$ otherwise the connection would be reducible. Conjugating by a diagonal matrix M, we can assume $b=1$. The action of unipotent isomorphisms is described by
$M=\left(\begin{array}{cc}1 & 0 \\ f(x) & 1\end{array}\right):\left(\begin{array}{cc}x^{3}+a & 1 \\ c & -x^{3}-a\end{array}\right) \mapsto\left(\begin{array}{cc}x^{3}+a+f & 1 \\ c-2\left(x^{3}+a\right) f-f^{2}+f^{\prime} & -x^{3}-a-f\end{array}\right)$
where f is any degree 2 polynomial. Choosing $f=-a$, we derive a unique normal form
$\Omega=\left(\begin{array}{cc}x^{3} & 1 \\ \tilde{c}(x) & -x^{3}\end{array}\right) \frac{d x}{\prod_{i}\left(x-t_{i}\right)} \quad$ where $\frac{\tilde{c}(x)}{\prod_{i}\left(x-t_{i}\right)}=c_{0}+\sum_{i} \frac{\tau_{i} \theta_{i}^{2}}{x-t_{i}} \quad$ with $\quad c_{0} \in \mathbb{C}$ and constants τ_{i} are defined by

$$
\begin{equation*}
\frac{1}{\prod_{i}\left(x-t_{i}\right)}=\sum_{i} \frac{1}{\tau_{i}\left(x-t_{i}\right)}, \text { i.e. } \tau_{i}=\prod_{j \neq i}\left(t_{i}-t_{j}\right) \tag{14}
\end{equation*}
$$

It follows that the moduli space of connections on the fixed bundle $E=\mathcal{O}(-1) \oplus$ $\mathcal{O}(1)$ is the affine line $\mathbb{A}^{1} \ni c_{0}$ (extra parameter in the above normal form). To get the full moduli space \mathcal{C} on ${ }^{\boldsymbol{\theta}}\left(\mathbb{P}^{1},\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}\right)$ of degree 0 bundles with the same eigenvalues (satisfying $\left(\theta_{i}^{+}, \theta_{i}^{-}\right)=\left(\theta_{i},-\theta_{i}\right)$ and $\pm \theta_{1} \pm \theta_{2} \pm \theta_{3} \pm \theta_{4} \notin \mathbb{Z}$), we have to patch together this affine line \mathbb{A}^{1} with the affine cubic surface $S^{\boldsymbol{\theta}}$ of Fuchsian systems given by Proposition 1 (see remark ending example 3). Following Theorem 2 , one should obtain a smooth irreducible quasi-projective surface.
3.3. Isomorphisms between moduli spaces. There are many isomorphisms between moduli spaces of connections \mathcal{C} on $^{\boldsymbol{\theta}}(X, D)$ modifying spectral data. First, one can twist a parabolic connection (E, ∇, l) by a rang 1 logarithmic connection (L, ζ) :

- L is a line bundle of degree $k, L=\mathcal{O}(k)$,
- $\zeta: L \rightarrow L \otimes \Omega^{1}(D)$ is determined by its eigenvalues λ_{i} satisfying

$$
\lambda_{1}+\cdots+\lambda_{n}+k=0 .
$$

The action on connection matrix (13) is given by

$$
\Omega \mapsto \Omega+\sum_{i}\left(\begin{array}{cc}
\lambda_{i} & 0 \\
0 & \lambda_{i}
\end{array}\right) \frac{d x}{x-t_{i}}
$$

and this defines an isomorphism

$$
\mathcal{C} \operatorname{con}^{\boldsymbol{\theta}}(X, D) \xrightarrow{\otimes(L, \zeta)} \mathcal{C o n}^{\boldsymbol{\theta}^{\prime}}(X, D) \quad \text { where } \quad\left\{\begin{array}{l}
\left(\theta_{i}^{+}\right)^{\prime}=\theta_{i}^{+}+\lambda_{i} \tag{15}\\
\left(\theta_{i}^{-}\right)^{\prime}=\theta_{i}^{-}+\lambda_{i}
\end{array}\right.
$$

The degree is changed by $d \mapsto d^{\prime}=d+2 k$. In case of even degree, we can assume up to such an isomorphism that $d=0$ and moreover $\theta_{i}^{+}+\theta_{i}^{-}=0$ for all i (we get a $\mathfrak{s l}_{2}$-connection). In the odd case, we can assume $d=1$; then, in case $n=4$, necessarily $E=\mathcal{O} \oplus \mathcal{O}(1)$ (see remark ending example 3).

The other family of isomorphisms comes from elementary transformations of parabolic bundles. Given a parabolic bundle (E, \boldsymbol{l}) over (X, D), then we define $\left(E^{\prime}, \boldsymbol{l}^{\prime}\right):=\operatorname{Elm}_{t_{i}}^{-}(E, \boldsymbol{l})$ by

- E^{\prime} is the vector bundle defined by the subsheaf $E^{\prime} \subset E$ generated by those sections directed by l_{i}, i.e. defined by the exact sequence of morphisms of sheaves

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E / l_{i} \rightarrow 0
$$

where l_{i} is viewed as a sky-scrapper sheaf.

- the new parabolic direction $\left.l_{i}^{\prime} \subset E^{\prime}\right|_{t_{i}}$ is defined by the kernel of the inclusion morphism $E^{\prime} \rightarrow E$.
A connection ∇ on E induces a connection ∇^{\prime} on the subsheaf $E^{\prime} \subset E$; if $(E, \nabla, \boldsymbol{l})$ is parabolic, ∇ preserves the direction l_{i} and ∇^{\prime} is still parabolic with respect to $\left(E^{\prime}, \boldsymbol{l}^{\prime}\right)$. Over t_{i}, the new eigenvalues are $\left(\theta_{i}^{+}, \theta_{i}^{-}\right)^{\prime}:=\left(\theta_{i}^{-}+1, \theta_{i}^{+}\right)\left(l_{i}^{\prime}\right.$ is now in the eigenspace corresponding to $\theta_{i}^{-}+1$). Over other t_{j} 's, the morphism $E^{\prime} \rightarrow E$ is a local bundle isomorphism and the eigenvalues remain unchanged. This operation induces a map

$$
\mathcal{C} \text { on }^{\boldsymbol{\theta}}(X, D) \xrightarrow{\operatorname{Elm}_{-t_{i}}^{-}} \mathcal{C o n}^{\boldsymbol{\theta}^{\prime}}(X, D) \quad \text { where } \quad\left\{\begin{array}{c}
\left(\theta_{i}^{+}\right)^{\prime}=\theta_{i}^{-}+1 \tag{16}\\
\left(\theta_{i}^{-}\right)^{\prime}=\theta_{i}^{+} \\
\text {all other }\left(\theta_{j}^{ \pm}\right)^{\prime}=\theta_{j}^{ \pm}
\end{array}\right.
$$

In local trivialization of the bundle E around t_{i}, with basis $\left(e_{1}, e_{2}\right)$ such that e_{1} generates the parabolic direction l_{i} at t_{i}, we get a parabolic connection matrix of the form

$$
\Omega=\left(\begin{array}{cc}
\theta_{i}^{+} & \star \\
0 & \theta_{i}^{-}
\end{array}\right) \frac{d x}{x-t_{i}}+\text { holomorphic matrix, and } \quad l_{i}=\mathbb{C}\binom{1}{0} .
$$

The new vector bundle E^{\prime} is generated near t_{i} by $\left(e_{1},\left(x-t_{i}\right) e_{2}\right)$ so that the connection matrix of ∇^{\prime} is given by

$$
\Omega^{\prime}=M^{-1} \Omega M+M^{-1} d M \quad \text { where } \quad M=\left(\begin{array}{cc}
1 & 0 \\
0 & x-t_{i}
\end{array}\right)
$$

which gives

$$
\Omega^{\prime}=\left(\begin{array}{cc}
\theta_{i}^{+} & 0 \\
\star & \theta_{i}^{-}+1
\end{array}\right) \frac{d x}{x-t_{i}}+\text { holomorphic matrix, and } \quad l_{i}=\mathbb{C}\binom{0}{1} .
$$

One easily check that applying twice $\mathrm{Elm}_{t_{i}}^{-}$gives the twist by the unique logarithmic connection on $\mathcal{O}(-1)$ having a single pole (with residue +1) at t_{i} :

$$
\operatorname{Elm}_{t_{i}}^{-} \circ \operatorname{Elm}_{t_{i}}^{-}(E, \nabla, \boldsymbol{l})=\left(\mathcal{O}(-1), \frac{d x}{x-t_{i}}\right) \otimes(E, \nabla, \boldsymbol{l})
$$

Note that $\mathrm{Elm}_{t_{i}}^{-}$decreases the degree of the vector bundle by -1 (whence the sign); one can also define $\operatorname{Elm}_{t_{i}}^{+}(E, \boldsymbol{l}):=\left(\mathcal{O}(-1), \frac{d x}{x-t_{i}}\right) \otimes \operatorname{Elm}_{t_{i}}^{-}(E, \boldsymbol{l})$ increasing the degree of the vector bundle by +1 , it is actually the inverse map

$$
\operatorname{Elm}_{t_{i}}^{+} \circ \operatorname{Elm}_{t_{i}}^{-}(E, \nabla, \boldsymbol{l}) \simeq(E, \nabla, \boldsymbol{l})
$$

In fact, all these isomorphisms commute together.
One can also define an isomorphism permuting θ_{i}^{+}and θ_{i}^{-}, modifying the parabolic structure (we switch to the other eigenspace) and get a non abelian group. We omit this from our discussion. Finally, up to isomorphism, we can always assume degree $d=0$ and $\theta_{i}^{+}+\theta_{i}^{-}=0$ for all i. However, this may be not the best choice as we shall see.

4. The Painlevé case $n=4$

In order to get an explicit irreducible moduli space, it is obviously better to choose $d=1$ instead of $d=0$ since then, we can work on the single vector bundle $E=\mathcal{O} \oplus \mathcal{O}(1)$ (see remark ending example 3).
4.1. An explicit construction. We start proceeding like in example 4. The connection matrix writes $\Omega=A(x) \frac{d x}{\prod_{i}\left(x-t_{i}\right)}$ where

$$
A(x)=\left(\begin{array}{cc}
a(x) & b(x) \\
c(x) & -x^{3}+d(x)
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{c}
b \text { polynomial of degree } \leq 1 \\
a, d \text { polynomials of degree } \leq 2 \\
c \text { polynomial of degree } \leq 3
\end{array}\right.
$$

Again, $b(x) \not \equiv 0$ otherwise the connection is reducible. Assume for the moment that $b(x)$ is not constant so that we can normalize it to $b(x)=x-q$. The action by unipotent matrices is not enough to kill $a(x)$ however (the freedom $f(x)$ like in example 4 is now of degree 1). The idea is to apply an elementary transformation $\operatorname{Elm}_{q}^{+}$at the parabolic direction given by $\mathcal{O}(1)$. Concretely, we apply the bundle birational isomorphism given by

$$
M=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{x-q}
\end{array}\right)
$$

and obtain the new connection matrix

$$
M^{-1} \Omega M+M^{-1} d M=\left(\begin{array}{cc}
\frac{a(x)}{\prod_{i}\left(x-t_{i}\right)} & \frac{1}{\prod_{i}\left(x-t_{i}\right)} \\
\frac{(x-q)(x)}{\prod_{i}\left(x-t_{i}\right)} & -x^{3}+d(x) \\
\prod_{i}\left(x-t_{i}\right)
\end{array} \frac{1}{x-q}\right) d x
$$

On the new bundle $E^{\prime}=\mathcal{O} \oplus \mathcal{O}(2)$, we have more automorphisms and we are able to kill the polynomial coefficient $a(x)$ by means of unipotent automorphisms. We now get the normal form

$$
\Omega^{\prime}=\left(\begin{array}{cc}
0 & \frac{1}{\prod_{i}\left(x-t_{i}\right)} \tag{17}\\
\frac{\tilde{c}(x)}{(x-q) \prod_{i}\left(x-t_{i}\right)} & \frac{-x^{+}+\tilde{d}(x)}{\prod_{i}\left(x-t_{i}\right)}-\frac{1}{x-q}
\end{array}\right) d x
$$

with $\tilde{c}(x)$ polynomial of degree 5 . Taking into account the spectral data, we get

$$
\Omega=\sum_{i}\left(\begin{array}{cc}
0 & \frac{1}{\tau_{i}} \\
-\tau_{i} \theta_{i}^{+} \theta_{i}^{-} & \theta_{i}^{+}+\theta_{i}^{-}
\end{array}\right) \frac{d x}{x-t_{i}}+\left(\begin{array}{cc}
0 & 0 \\
p & -1
\end{array}\right) \frac{d x}{x-q}+\left(\begin{array}{cc}
0 & 0 \\
c_{0} & 0
\end{array}\right) d x
$$

for constants $p, c_{0} \in \mathbb{C}$. Here, we have also assumed $q \in \mathbb{C} \backslash\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Indeed, when $q=t_{i}$, we apply an elementary transformation over the pole which might change the eigenvalues. Finally, note that $x=q$ must be an apparent singular
point, which means, by Fuchs' local theory, that around $x=q$ the kernel of the residual part is also an eigenvector for the constant part of the connection matrix:

$$
\Omega \cdot\binom{1}{p}=\star\binom{1}{p}+o(x-q) ;
$$

this fixes the value of c_{0}. Finally, the initial connection is determined by the parameters (p, q) which have the following geometrical meaning:

- q stands for the position of the apparent singular point of the new connection,
- p stands for the kernel of the residue of ∇ over $x=q$.

Note also that, over $x=t_{i}$, the two eigendirections of ∇ are given by

$$
\binom{1}{\tau_{i} \theta_{i}^{+}} \quad \text { and } \quad\binom{1}{\tau_{i} \theta_{i}^{-}}
$$

corresponding respectively to eigenvalues θ_{i}^{+}and θ_{i}^{-}.
Let us identify $\mathcal{O}(2)=\Omega^{1}(D)$, and consider the projectivization $\mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}(D)\right)$ of our vector bundle E as the fiber-compactification of $\Omega^{1}(D)$: the line bundles in E generated by

$$
\binom{1}{0},\binom{1}{1} \quad \text { and } \quad\binom{0}{1}
$$

respectively correspond to the zero section, the section $\frac{d x}{\prod_{i}\left(x-t_{i}\right)}$ and the section at infinity. If S denotes the associated ruled surface (total space of the projective bundle), then the total space of $\Omega^{1}(D)$ identifies with $S \backslash \Sigma$ where Σ is the section at infinity. On fibers $F_{i}:\left\{x=t_{i}\right\}$, a natural affine coordinate if given by the residue: the section $\frac{d x}{\prod_{i}\left(x-t_{i}\right)}$ has residue $\frac{1}{\tau_{i}}$ at $x=t_{i}$. Therefore, the two eigendirections over $x=t_{i}$ correspond to the points $s_{i}^{+}, s_{i}^{-} \in F_{i}$ satisfying $x=t_{i}$ and $\operatorname{Res}_{t_{i}}\left(s_{i}^{ \pm}\right)=\theta_{i}^{ \pm}$. Over $x=q$, the kernel of the residual matrix also defines a point s :

$$
s_{i}^{ \pm}:\binom{1}{\tau_{i} \theta_{i}^{ \pm}} \quad \text { and } \quad s:\binom{1}{p \prod_{i}\left(q-t_{i}\right)} .
$$

We have just defined a birational map

$$
\mathcal{C}^{\boldsymbol{\theta}}{ }^{\boldsymbol{\theta}}(X, D) \longrightarrow S ;(E, \nabla, \boldsymbol{l}) \mapsto s
$$

Now consider the blow-up of the surface $\pi: \hat{S} \rightarrow S$ at all 8 points $s_{i}^{ \pm}$: we denote by $E_{i}^{ \pm}$the exceptional divisors and $\hat{\Sigma}, \hat{F}_{i}$ the strict transforms. When $\theta_{i}^{+}=\theta_{i}^{-}$, then first blow-up the point $s_{i}:=s_{i}^{+}=s_{i}^{-}$, and then blow-up the intersection point between the exceptional divisor E_{i} and the strict transform of the fiber F_{i}; denote by E_{i}^{\prime} the last exceptional divisor. Then the birational map above induces an isomorphism:

$$
\mathcal{C o n}{ }^{\boldsymbol{\theta}}(X, D) \xrightarrow{\sim} M^{\theta}:=\hat{S} \backslash \hat{\Sigma} \cup \hat{F}_{1} \cup \hat{F}_{2} \cup \hat{F}_{3} \cup \hat{F}_{4} .
$$

For a general point $s \in M^{\theta}$, formula (17) gives a parabolic connection with an extra apparent singular point; after elementary transformation over $x=q$, we get a parabolic connection in $\mathcal{C} \operatorname{on}^{\boldsymbol{\theta}}(X, D)$. When $q \rightarrow \infty$, there is a limit point in $\mathcal{C} \operatorname{Con}^{\boldsymbol{\theta}}(X, D)$ provided that s tends to an affine point of the fiber. When $q \rightarrow t_{i}$, one can find a limit point in $\mathcal{C o n}^{\boldsymbol{\theta}}(X, D)$ if, and only if, s tends to one of the exceptional divisors, not to \hat{F}_{i}; over the point s_{i}^{-}, we get all parabolic connections in $\mathcal{C}_{\text {on }}{ }^{\boldsymbol{\theta}}(X, D)$ such that the parabolic l_{i} lies in the destabilizing subbundle $\mathcal{O}(1)$.

With our notations, the 2-form $d p \wedge d q$ has polar divisor $2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}$ and is non zero at any other point: it defines a non degenerate holomorphic volume form on the moduli space that should better viewed as a symplectic structure.
4.2. Description and properties of moduli spaces. Fix $(X, D)=\left(\mathbb{P}^{1},\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}\right)$ as before and consider the Hirzebruch surface S given by the total space of the projective bundle $\mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}(D)\right)$. This surface may be obtained from the total space of the projective bundle $\mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}\right)$ by applying 4 elementary transformations directed by the section at infinity \mathcal{O}; from this point of view, the Liouville form on the total space of Ω^{1} induces a rational 2-form ω on $\mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}(D)\right)$ with polar divisor $2 \Sigma+F_{1}+F_{2}+F_{3}+F_{4}$: as before, Σ is the section defined by \mathcal{O} and F_{i} is the fiber over t_{i}. An affine chart is defined by

$$
(x, y): \mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}\right) \backslash \Sigma \cup F_{\infty} \rightarrow \mathbb{C} \times \mathbb{C}
$$

where F_{∞} is the fiber over $x=\infty$ and y is normalized so that

- $y=0$ corresponds to the section defined by $0 \in H^{0}\left(X, \mathcal{O} \oplus \Omega^{1}(D)\right)$,
- $y=1$ corresponds to the section defined by $\frac{d x}{\prod_{i}\left(x-t_{i}\right)} \in H^{0}\left(X, \mathcal{O} \oplus \Omega^{1}(D)\right)$ (and $y=\infty$ is defined by \mathcal{O}). For each finite point $y \in F_{i}$, we can associate the residue $\operatorname{Res}_{t_{i}}\left(y \frac{d x}{\Pi_{i}\left(x-t_{i}\right)}\right)=\frac{y}{\tau_{i}}$ (see definition (14)). This gives us a natural parametrization of fibers F_{i}.

Choose 2 points $s_{i}^{ \pm}$on each fiber F_{i} (possibly, $s_{i}^{+}=s_{i}^{-}$). Then, blow-up these 8 points and denote by \hat{S} the blow-up surface, and still denote by $\hat{\Sigma}$ and \hat{F}_{i} the strict transforms. Then consider the open part

$$
M^{\theta}:=\hat{S} \backslash \hat{\Sigma} \cup \hat{F}_{1} \cup \hat{F}_{2} \cup \hat{F}_{3} \cup \hat{F}_{4}
$$

The 2-form ω extends as a holomorphic symplectic form on M with polar divisor

$$
(\omega)_{\infty}=2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4} .
$$

Consider on each fiber F_{i} the point m_{i} defined by the arithmetic mean of s_{i}^{+}and s_{i}^{-}. Precisely, if we denote $\operatorname{Res}_{t_{i}}\left(s_{i}^{ \pm}\right)=\theta_{i}^{ \pm}$, then m_{i} is defined by $\operatorname{Res}_{t_{i}}\left(m_{i}\right)=\frac{\theta_{i}^{+}+\theta_{i}^{-}}{2}$.

Since $S \backslash \Sigma$ is the total space of $\Omega^{1}(D)$, there is a one-to-one correspondence between global holomorphic sections of $\Omega^{1}(D)$ and global sections of $S \rightarrow \mathbb{P}^{1}$ not intersecting Σ. These sections form a 3 -dimensional family. Assume first that there exists such a section passing through all 4 points m_{i}; this is equivalent to say $\sum_{i}\left(\theta_{i}^{+}+\theta_{i}^{-}\right)=0$. In this case, it can be checked that $2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}$ is the degenerate fiber of an elliptic fibration on \hat{S}. In this case, the open part M may be viewed as a moduli space of Higgs bundles and this fibration is the well-known Hitchin fibration. The fibration is defined by those elements of the linear system $\left|2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}\right|$ on S passing through the 8 points $s_{i}^{ \pm}$.

Assume now that $\sum_{i}\left(\theta_{i}^{+}+\theta_{i}^{-}\right) \neq 0$. Then, after applying a bundle isomorphism of the form $y \mapsto c y$, we may assume $\sum_{i}\left(\theta_{i}^{+}+\theta_{i}^{-}\right)=1$. If $\theta_{1}^{ \pm}+\theta_{2}^{ \pm}+\theta_{3}^{ \pm}+\theta_{4}^{ \pm} \notin \mathbb{Z}$ whatever the choice of signs, the surface M^{θ} identifies with the moduli space of connections \mathcal{C} on $^{\boldsymbol{\theta}}(X, D)$ discussed in the previous section. On the other hand, when $\theta_{1}^{ \pm}+\theta_{2}^{ \pm}+\theta_{3}^{ \pm}+\theta_{4}^{ \pm} \in \mathbb{Z}$ for some (maybe several) choices of signs, then M^{θ} can still be viewed as a moduli space of stable connections (we have to delete some reducible connection to obtain a GIT moduli space, see [3]). By the RiemannHilbert correspondance (see [3]), there is an analytic mapping

$$
R H: M^{\theta} \longrightarrow \chi \subset \mathbb{C}^{3}
$$

where χ is an affine cubic surface. For generic $\boldsymbol{\theta}$, this is an analytic isomorphism; for special values of $\boldsymbol{\theta}$ like above, the affine surface χ is singular and the map $R H$ is a minimal analytic resolution of singularities. It follows that the only occurence of complete curves in $M^{\boldsymbol{\theta}}$ is for special values of $\boldsymbol{\theta}$: they come from exceptional divisors in the resolution of singularities of χ : they are rational, and there are at most 4 such curves in a given M^{θ}. In particular, the divisor $2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}$ is no more contained in an elliptic fibration.

The surface $M^{\boldsymbol{\theta}}$ is not affine however. In fact, there are no non-constant regular functions on M^{θ} (see [1]). This mainly follows from numerical properties

$$
\left(2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}\right) \cdot \hat{\Sigma}=\left(2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}\right) \cdot \hat{F}_{i}=0
$$

indeed, a rational function on \hat{S} whose polar divisor is contained in the support of $2 \hat{\Sigma}+\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+\hat{F}_{4}$ would define a fibration of complete curves inside the complement M^{θ}, contradicting the (almost) non existence of complete curves. This generalize Serre example.
4.3. How complete curves arise for special parameters. When $\theta_{i}^{+}=\theta_{i}^{-}$for some i, then the two points s_{i}^{+}and s_{i}^{-}coincide in S. In this case, we have to blowup twice over $s_{i}^{+}=s_{i}^{-}$to get the surface \hat{S}. Precisely, we first blow-up this point to get an exceptional divisor E_{i}, and then blow-up the intersection point between E_{i} and the strict transform of F_{i}; we get a second exceptional divisor E_{i}^{\prime} and still denote by E_{i} and \hat{F}_{i} the strict transforms in the resulting surface \hat{S}. We define similarly the open set $M^{\theta}:=\hat{S} \backslash \hat{\Sigma} \cup \hat{F}_{1} \cup \hat{F}_{2} \cup \hat{F}_{3} \cup \hat{F}_{4}$. Then, E_{i} is a rational curve in M^{θ} having -2 self-intersection number. This curve corresponds to the locus of those parabolic connections $(E, \nabla, \boldsymbol{l})$ for which the residual matrix at t_{i} is the scalar matrix $\theta_{i}^{+} \cdot I$.

Similarly, when $\theta_{i}^{+}=\theta_{i}^{-}+1$, from Fuchs' local theory, we can check that a generic element $(E, \nabla, \boldsymbol{l})$ of $\mathcal{C}^{\boldsymbol{o n}}{ }^{\boldsymbol{\theta}}(X, D)$ will have a logarithmic singular point at t_{i} (the local monodromy has a non trivial Jordan block); however, for some special parabolic connections, the singular point is not logarithmic anymore (it has diagonal monodromy). The locus of those special connections is a complete and smooth rational curve in M^{θ}, namely the strict transform of the curve $C \subset S$ characterized as follows:

- $q: C \rightarrow \mathbb{P}^{1}$ has degree 2 and C does not intersect Σ;
- C intersects F_{i} at s_{i}^{+}and has two smooth local branches at this point;
- C intersects other fibers F_{j} at both s_{j}^{+}and s_{j}^{-}.

The first condition fixes the linear system on S that contains the curve: $C \in$ $\left|2 \Sigma+F_{1}+F_{2}+F_{3}+F_{4}\right|$. The two other conditions characterize C in this linear system. After blowing-up, the resulting curve \hat{C} becomes smooth and does not intersect strict transforms F_{j} 's anymore.

When $\theta_{i}^{+}-\theta_{i}^{-} \in \mathbb{Z}$, the story is the same. Let us just characterize the special curve C in the case $\theta_{i}^{+}=\theta_{i}^{-}+2$:

- $q: C \rightarrow \mathbb{P}^{1}$ has degree 4 and C does not intersect Σ;
- C intersects F_{i} three times at s_{i}^{+}and one time at s_{i}^{-};
- C intersects other fibers F_{j} twice at both s_{j}^{+}and s_{j}^{-}.

This can be checked by straightforward formal computation.
Another occurence of complete curves in $M^{\boldsymbol{\theta}}$ comes from reducible connections. When say $\theta_{1}^{+}+\theta_{2}^{+}+\theta_{3}^{+}+\theta_{4}^{+}=0$, then some reducible connections arise in $\mathcal{C} \operatorname{con}^{\boldsymbol{\theta}}(X, D)$: each of them stabilize a trivial subbundle $\mathcal{O} \subset E$ and induces on it a logarithmic rank 1 connection with eigenvalue θ_{i}^{+}at t_{i}. The locus of these reducible connections form a section \hat{C} for the projection $q: M^{\boldsymbol{\theta}} \rightarrow \mathbb{P}^{1}$. The corresponding curve $C \subset S$ is the section of $q: C \rightarrow \mathbb{P}^{1}$ that does not intersect Σ and intersecting each F_{i} at s_{i}^{+}.
4.4. Link with Fuchsian systems. As we shall see here, if we delete one of the exceptional divisors $E_{i}^{ \pm} \rightarrow s_{i}^{ \pm}$from M^{θ}, then the surface becomes affine.

Consider the moduli space $\mathcal{C} \cos ^{\boldsymbol{\theta}}(X, D)$ with eigenvalues $\boldsymbol{\theta}$ satisfying

$$
\left\{\begin{array} { c }
{ \theta _ { i } ^ { + } = \theta _ { i } } \\
{ \theta _ { i } ^ { - } = - \theta _ { i } }
\end{array} \quad \text { except } \quad \left\{\begin{array}{c}
\theta_{4}^{+}=-\theta_{4} \\
\theta_{4}^{-}=\theta_{4}-1
\end{array}\right.\right.
$$

After applying an elementary transformation

$$
\operatorname{Elm}_{t_{4}}^{-}: \mathcal{C o n}{ }^{\boldsymbol{\theta}}(X, D) \xrightarrow{\sim} \mathcal{C o n}^{\boldsymbol{\theta}^{\prime}}(X, D)
$$

we obtain new eigenvalues

$$
\left\{\begin{array}{c}
\left(\theta_{i}^{+}\right)^{\prime}=\theta_{i} \\
\left(\theta_{i}^{-}\right)=-\theta_{i}
\end{array} \quad \text { for all } i=1,2,3,4\right.
$$

This latter moduli space splits into the disjoint union of those connection defined on the trivial bundle, namely Fuchsian systems discussed in section 2, and those defined on $E=\mathcal{O}(-1) \oplus \mathcal{O}(1)$ (see section 4). In fact, a parabolic connection ($E=\mathcal{O} \oplus \mathcal{O}(1), \nabla, \boldsymbol{l})$ of $\mathcal{C}_{\text {on }}{ }^{\boldsymbol{\theta}}(X, D)$ is sent to a connection on the non trivial bundle by the elementary transformation if, and only if, its parabolic l_{4} lie on the subbundle $\mathcal{O}(1) \subset E$. The locus of those special parabolic connections in $M^{\boldsymbol{\theta}}$ is given by the exceptional divisor $E_{4}^{-} \rightarrow s_{4}^{-}$(or we better should say the affine part of this divisor once we have deleted the intersection point with F_{4}). Therefore, E_{4}^{-} identifies via Elm $_{t_{4}}^{-}$to the moduli space \mathbb{A}^{1} of those connections on $\mathcal{O}(-1) \oplus \mathcal{O}(1)$ discussed in section 4. Moreover, after deleting E_{4}^{-}from M^{θ}, we get an isomorphism with the moduli space of Fuchsian systems computed in section 2, i.e. a cubic affine surface:

$$
M^{\boldsymbol{\theta}} \backslash E_{4}^{-} \xrightarrow{\stackrel{\mathrm{Elm}_{t_{4}}^{-}}{\sim}} \mathcal{F} \text { uchs }{ }^{\boldsymbol{\theta}^{\prime}}(X, D) \xrightarrow{\sim} S^{\boldsymbol{\theta}} \subset \mathbb{C}^{4} .
$$

We can do in a similar way with other elementary transformations $\operatorname{Elm}_{t_{i}}^{ \pm}$(that we have to compose with a convenient twist in order to fit with $\mathfrak{s l}_{2}$-systems discussed in section 2) and we promtly deduce that $M^{\boldsymbol{\theta}}$ becomes a cubic affine surface once we delete any one of the exceptional divisors $E_{i}^{ \pm}$.

5. The Garnier case $n>4$

The computation of section 4.1 generalizes as follows. Fix $D=t_{1}+\cdots+t_{n}$ a reduced divisor one $X:=\mathbb{P}^{1}, n \geq 4$. Fix eigenvalues $\boldsymbol{\theta}, \theta_{i}^{ \pm} \in \mathbb{C}$ for each $i=1, \ldots, n$, with $\sum_{i=1}^{n}\left(\theta_{i}^{+}+\theta_{i}^{-}\right)+1=0$. Assume $\boldsymbol{\theta}$ generic for simplicity:

$$
\theta_{i}^{+}-\theta_{i}^{-} \notin \mathbb{Z} \quad \text { and } \quad \theta_{1}^{ \pm}+\cdots+\theta_{n}^{ \pm} \notin \mathbb{Z}
$$

Consider the moduli space $\mathcal{C}{ }^{\circ}{ }^{\boldsymbol{\theta}}(X, D)$ of corresponding connections. Note that we can omit parabolic structure from the discussion: under genericity of $\boldsymbol{\theta}$, the parabolic structure \boldsymbol{l} is determined by the connection (E, ∇).

We would like to explicitely describe the generic connection and derive an explicit open subset of $\mathcal{C} \operatorname{on}^{\boldsymbol{\theta}}(X, D)$. Let us first assume $E=\mathcal{O} \oplus \mathcal{O}(1)$. The special subbundle $\mathcal{O}(1) \subset E$ is stabilized by ∇ at exactly $n-3$ points counted with multiplicity; these are the zeroes of the composition map

$$
L=\mathcal{O}(1) \xrightarrow{\text { inclusion }} E \xrightarrow{\nabla} E \otimes \Omega^{1}(D) \xrightarrow{\text { quotient }}(E / L) \otimes \Omega^{1}(D) .
$$

These points are also the extra apparent singular points for the fuchsian scalar equation derived from ∇ and the cyclic vector L. Let us consider the case where these zeroes and the poles t_{i} 's are two-by-two distinct; denote the by q_{1}, \ldots, q_{n-3} the apparent points. We also assume $q_{j} \neq \infty$ for simplicity.

Consider now the parabolic structure $\tilde{\boldsymbol{l}}$ defined over each q_{j} by the special line bundle L. Still assuming all t_{i} 's and q_{j} 's two-by-two distinct, apply a positive elementary transformation at each q_{j} directed by \tilde{l} (i.e. by $L=\mathcal{O}(1) \subset E$). Let $\left(E^{\prime}, \nabla^{\prime}, \tilde{l}^{\prime}\right)$ be the resulting parabolic connection; note that $E^{\prime}=\mathcal{O} \oplus \mathcal{O}(n-2)$.

Proposition 5. The connection $\left(E^{\prime}, \nabla^{\prime}\right)$ is given, up to bundle automorphism, by the connection matrix (we follow notations of section 3.1)
$\Omega=\sum_{i=1}^{n}\left(\begin{array}{cc}0 & \frac{1}{\tau_{i}} \\ -\tau_{i} \theta_{i}^{+} \theta_{i}^{-} & \theta_{i}^{+}+\theta_{i}^{-}\end{array}\right) \frac{d x}{x-t_{i}}+\sum_{j=1}^{n-3}\left(\begin{array}{cc}0 & 0 \\ p_{j} & -1\end{array}\right) \frac{d x}{x-q_{j}}+\left(\begin{array}{cc}0 & 0 \\ c(x) & 0\end{array}\right) d x$
where $c(x)$ is polynomial of degree $n-4$, determined by the fact that all poles q_{j} 's are non logarithmic (with scalar monodromy). The connection is determined by the new parabolic structure \tilde{l}^{\prime} defined by kernel of residual matrices over the q_{j} 's.

Proof. We proceed like in section 4.1. On the initial bundle $E=\mathcal{O} \oplus \mathcal{O}(1)$, the connection matrix writes $\Omega=A(x) \frac{d x}{\prod_{i}\left(x-t_{i}\right)}$ where

$$
A(x)=\left(\begin{array}{cc}
a(x) & b(x) \\
c(x) & -x^{n-1}+d(x)
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{c}
\operatorname{deg}(b) \leq n-3 \\
\operatorname{deg}(a), \operatorname{deg}(d) \leq n-2 \\
\operatorname{deg}(c) \leq n-1
\end{array}\right.
$$

Then, up to a diagonal automorphism, we have $b(x)=\prod_{j=1}^{n-3}\left(x-q_{j}\right)$. We now apply the $n-3$ elementary transformations and get the new connection matrix

$$
\left(\begin{array}{cc}
\frac{a(x)}{\prod_{1}\left(x-t_{i}\right)} & \frac{1}{\prod_{i}\left(x-t_{i}\right)} \\
\frac{c(x) \prod_{j}\left(x-q_{j}\right)}{\prod_{i}\left(x-t_{i}\right)} & -\frac{-x^{n-1}+d(x)}{\prod_{i}\left(x-t_{i}\right)}-\sum_{j=1}^{n-3} \frac{1}{x-q_{j}}
\end{array}\right) d x
$$

On the new bundle $E^{\prime}=\mathcal{O} \oplus \mathcal{O}(n-2)$, we can use unipotent automorphisms of E^{\prime} to kill the polynomial coefficient $a(x)$. We now get the unique normal form

$$
\Omega^{\prime}=\left(\begin{array}{cc}
0 & \frac{1}{\prod_{i}\left(x-t_{i}\right)} \tag{18}\\
\frac{\tilde{c}(x)}{\prod_{i}\left(x-t_{i}\right) \prod_{j}\left(x-q_{j}\right)} & \frac{-x^{n-1}+\tilde{d}^{(x)}}{\prod_{i}\left(x-t_{i}\right)}-\sum_{j=1}^{n-3} \frac{1}{x-q_{j}}
\end{array}\right) d x
$$

with $\tilde{c}(x)$ and $\tilde{d}(x)$ polynomials of degree $3 n-7$ and $n-2$ respectively. Now, taking into account the spectral data, we get the normal form of the statement.

From this statement, one easily derive the following open subset of \mathcal{C} on ${ }^{\boldsymbol{\theta}}(X, D)$. Consider the surface S defined by the total space of $\mathbb{P}\left(\mathcal{O} \oplus \Omega^{1}(D)\right)$ and denote by Σ the section defined by $\Omega^{1}(D)$: $S \backslash \Sigma$ naturally identifies with the total space of $\Omega^{1}(D)$. In particular, the affine part of the fiber F_{i} over t_{i} has the natural chart $\operatorname{Res}_{t_{i}}: F_{i} \backslash \Sigma \xrightarrow{\sim} \mathbb{C}$ given by taking the residue of sections of $\Omega^{1}(D)$; we define two points $s_{i}^{ \pm} \in F_{i}$ by $\operatorname{Res}_{t_{i}}\left(s_{i}^{ \pm}\right)=\theta_{i}^{ \pm}$. Let $\pi=\hat{S} \rightarrow S$ be the blow-up of S at all $2 n$ points and denote by $\hat{\Sigma}$ and \hat{F}_{i} the strict transforms. Then consider the open part

$$
M^{\theta}:=\hat{S} \backslash\left(\hat{\Sigma} \cup \hat{F}_{1} \cup \cdots \cup \hat{F}_{n}\right)
$$

and the symetric product

$$
\left(M^{\theta}\right)^{(n-3)}:=M^{\theta} \times \cdots \times M^{\theta} / \operatorname{Perm}(1, \cdots, n) .
$$

Then the above normal form defines an embedding

$$
\left(M^{\theta}\right)^{(n-3)} \backslash \Delta \hookrightarrow \mathcal{C o n}^{\boldsymbol{\theta}}(X, D)
$$

where Δ is the "codimension one diagonal" defined by those $\left\{q_{i}, p_{i}\right\}$ for which $q_{i}=q_{j}$ for some $i \neq j$. This is the point of view developped by Oblezin in [5] where the compactification of this picture is discussed. Another point of view has been recently studied by Saito and the author in [4].

References

[1] Arinkin, D. and Lysenko, S., Isomorphisms between moduli spaces of SL(2)-bundles with connections on $\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{4}\right\}$, Mathematical Research Letters, 4 (1997), 181-190.
[2] Atiyah, M.-F., Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452.
[3] Inaba, M., Iwasaki, K. and Saito, M.-H., Moduli of stable parabolic connections, RiemannHilbert correspondence and geometry of Painlevé equation of type VI, Publ. Res. Inst. Math. Sci., 42 (2006), 987-1089; Adv. Stud. Pure Math., 45 (2006), 387-432.
[4] Loray, F. and Saito, M.-H., Lagrangian fibration in duality on moduli space of rank two logarithmic connections over the projective line, hal-00789255, (2013).
[5] Oblezin, S., Isomonodromic deformations of $\mathfrak{s l}(2)$ Fuchsian systems on the Riemann sphere, Mosc. Math. J., 5 (2005), 415-441.
[6] Okamoto, K., Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan J. Math., 5 (1979), 1-79.
[7] Saito, M.-H., Takebe, T. and Terajima, H., Deformation of Okamoto-Painlevé pairs and Painlevé equations, J. Algebraic Geom., 11 (2002), 311-362.

IRMAR - UMR 6625 du CNRS, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France.

E-mail address: frank.loray@univ-rennes1.fr

[^0]: 1991 Mathematics Subject Classification. 34M55, 34M56, 34M03.
 Key words and phrases. Ordinary differential equations, Moduli spaces, Connections.

