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New bounds for the inhomogenous Burgers and
the Kuramoto-Sivashinsky equations

Michael Goldman∗, Marc Josien†and Felix Otto‡

March 19, 2015

Abstract

We give a substantially simplified proof of the near-optimal estimate on the
Kuramoto-Sivashinsky equation from [14], at the same time slightly improving
the result. The result in [14] relied on two ingredients: a regularity estimate for
capillary Burgers and an a novel priori estimate for the inhomogeneous inviscid
Burgers equation, which works out that in many ways the conservative transport
nonlinearity acts as a coercive term. It is the proof of the second ingredient that
we substantially simplify by proving a modified Kármán-Howarth-Monin iden-
tity for solutions of the inhomogeneous inviscid Burgers equation. We show that
this provides a new interpretation of the results obtained in [7].

1 Introduction

1.1 The Kuramoto-Sivashinsky equation

We consider the one-dimensional Kuramoto-Sivashinsky equation:

∂t u +u∂xu +∂2
xu +∂4

xu = 0. (K-S)

This equation appears in many physical contexts, in particular in the modeling of
surface evolutions. Sivashinsky used it to describe flame fronts [16], wavy flow of vis-
cous liquids on inclined planes [17] and crystal growth [6]. Although the solutions
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of (K-S) are smooth and even analytic [10], they display a chaotic behavior for suffi-
ciently large systems size L (see [9] and Figure 1.1). The structure of the Kuramoto-
Sivashinsky equation has some similarities with the Navier-Stokes equation. There-
fore, it is sometimes possible to apply similar techniques to study both equations (see
[15]).

Figure 1: Chaotic behavior of u

For a given system size L > 0, we will consider L-periodic solutions of (K-S). Since
the spatial average

∫ L
0 u(t , x)d x is constant over time, and since the equation is in-

variant under the Galilean transformation:

t = t ′, x = x ′+U t , u = u′+U ,

it is not restrictive to assume that
∫ L

0 u(t , x)d x = 0 for all t ≥ 0.
We can artificially cut the equation in two parts and consider separately the two
mechanisms involved in (K-S):

∂t u +∂2
xu +∂4

xu = 0, (1)

∂t u +u∂xu = 0. (2)

The first equation (1) is linear and can be seen in Fourier space as:

∂tFu = (ξ2−ξ4)Fu. (3)
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The fourth partial derivative term ∂4
xu decreases the short wavelength part of the en-

ergy spectrum whereas the second derivative term ∂2
xu amplifies the long wavelength

part. The second equation (2) corresponds to Burgers equation. It is nonlinear and
develops shocks in finite time for non-trivial initial data. Nevertheless, as we will see
later, this term has some mild regularizing effect. It is worth mentioning that for (2),
the energy ∫ L

0
u2d x,

is conserved. Therefore, one can intuitively say that in (K-S) the linear terms trans-
port the energy from long wavelengths to short ones. Numerical simulations suggest
(see the article of Wittenberg and Holmes [19]) that the time-averaged power spec-
trum

lim
T→∞

(LT )−1
∫ T

0
|F (u)(t ,ξ)|2 d t

is independent of L for L À 1. Moreover, this quantity is independent of |ξ| and L À 1
in the long wavelength regime L−1 ¿ |ξ | ¿ 1 and decays exponentially in the short
wavelength regime |ξ| À 1. In line with this, numerical simulation suggests that for
all α≥ 0:

limsup
T→∞

(LT )−1
∫ T

0

∫ L

0

(|∂x |αu
)2 d xd t =O(1).

This conjecture is supported by a universal bound on all stationary periodic solutions
of (K-S) with mean 0, due to Michelson [12].

1.2 Known bounds

A first energy bound was obtained in the 80’s by Nicolaenko, Scheurer and Temam
[13], who established by the “background flow method” that for every odd (in space)
solution u of (K-S):

limsup
t→∞

(
1

L

∫ L

0
u2d x

)1/2

=O(Lp ),

with p = 2. This has been later generalized by Goodman [8], and Bronski and Gambill
[2] and improved to p = 1. Using an entropy method, Giacomelli and the third author
[5] improved this result by showing that:

limsup
t→∞

(
1

L

∫ L

0
u2d x

)1/2

= o(L).

The proof is based on the fact that the dispersion relation ξ2−ξ4 in (3) vanishes for
ξ→ 0 and it implies that for every α ∈ [0,2], we have:

limsup
T→∞

(
1

T L

∫ T

0

∫ L

0

(|∂x |αu
)2 d xd t

)1/2

= o(L),
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by using the energy identity,

∂t

∫ L

0
(u(t , x))2 d x =

∫ L

0
(∂xu(t , x))2 d x −

∫ L

0

(
∂2

xu(t , x)
)

d x.

In a more recent paper [14], the third author proved that, for all α ∈ (1/3,2),

limsup
T→∞

(
1

T L

∫ T

0

∫ L

0

(|∂x |αu
)2 d xd t

)1/2

=O
(
ln5/3+(L)

)
, 1 (4)

by using two ingredients: an a priori estimate for the capillary Burgers equation
∂t u +u∂xu + ∂4

xu = |∂x |g and an a priori estimate for the inhomogeneous Burgers
equation, that is ∂t u +u∂xu = |∂x |g . More precisely, the result of [14] states that, for
every solution u of (K-S),

‖u‖
B1/3

3,3
=O

(
ln5/3+(L)

)
, (5)

where ‖·‖Bs
p,r

denotes a Besov norm (see the appendix).

1.3 Main result

In this paper, we improve and simplify the result of the third author by showing that:

Theorem 1.1. Let L > 2. For u a smooth L-periodic solution with zero average of the
equation

∂t u +u∂xu +∂2
xu +∂4

xu = 0,

there holds

limsup
T→∞

(
sup
h>0

1

LT

∫ T

0

∫ L

0

|u(t , x +h)−u(t , x)|3
h

d xd t

)1/3

=O(ln1/2+(L)). (6)

This result is indeed slightly stronger than the previous one, since by (19), it im-
plies an improvement of the exponent in (5) from 5/3+ to 5/6+. However, this is
not the main contribution of this paper. It is rather a simplified proof of the a pri-
ori estimate for inhomogeneous Burgers equation, which was one of the main tool
for proving (5). For this purpose, we derive a modified Kármán-Howarth-Monin for-
mula (see (14)). We also show how the proof of Golse and Perthame [7] (based on the
kinetic formulation of Burgers equation) of a similar estimate for the homogeneous
Burgers equation can be reinterpreted in this light. Since we work with slightly dif-
ferent Besov norms compared to [14], we need also to adapt most of the other steps
to get (6). Besides Proposition 2.5, which we borrow directly from [14], we give here

1we use the notation O(ln5/3+(L)) to indicate that for every κ> 5/3, there exists c > 0 such that the
left-hand side is bounded by c lnκ(L).
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self-contained proofs.

The structure of the paper is the following: In Section 2, we enunciate the main
theorem and give the structure of the proof. It has several ingredients: a Besov es-
timate for the inhomogeneous inviscid equation (Proposition 2.3), a regularity esti-
mate for the capillary Burgers equation (Proposition 2.5) and an inverse estimate for
Besov norms on solutions of (K-S) (Proposition 2.7). The following sections (i.e. Sec-
tion 3, 4 and 5) are devoted to the proofs. In the appendix, we recall definitions and a
few classical results regarding Besov spaces.

General notations

We denote by Dh the finite-difference operator Dh : u 7→ u(x +h)−u(x), by Lp the
space Lp ([0,T ]× [0,L]) and for k ∈N,L > 0, by C k

L = {
f ∈C k (R), f is L−periodic

}
.

For an L-periodic function u, the spatial Fourier transform is defined by:

F (u)(ξ) = L−1
∫ L

0
exp(−i ξx)u(x)d x

and for a Schwartz function φ:

F (φ)(ξ) =
∫
R

exp(−i ξx)φ(x)d x.

For v ∈R, we let v+ = max(v,0) (and similarly, v− = max(−v,0)).

2 Main theorem and structure of the proof

In this section, we state the main theorem and the results on which it is based (see
the appendix for the definition and main properties of Besov spaces).

2.1 Main theorem

Theorem 2.1. Let L > 2. For a smooth L-periodic solution u with zero average of (K-S),
there holds

‖u‖
B1/3

3,∞
+‖u‖B2

2,2
=O(ln1/2+(L)). (7)

From this theorem, we derive by interpolation (57) the following corollary:

Corollary 2.2. Let L > 2. For a smooth L-periodic solution u with zero average of (K-S)
and for indices p, s and r related by

p ∈ [1/3,2], s = 10/p −3, 1/r = 3(1/p −1/3),
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we have
‖u‖Bs

p,r
=O(ln1/2+(L)).

2.2 Structure of the proof

The proof of Theorem 2.1 uses four important ingredients: a regularity result for
Burgers equation (Proposition 2.3), a higher regularity estimate for the capillary Burg-
ers equation (Proposition 2.5), an energy estimate (Lemma 2.6), and a result which
allows us to “increase” the r index of Besov spaces (Proposition 2.7). Let us now
sketch the proof, discarding lower-order terms (in particular all the terms contain-
ing g =−|∂x |−1∂2

xu) and taking borderline exponents in the estimates2. The strategy
is graphically represented in Figure 2. The starting point is Proposition 2.3, which for
s = 1, p = 5/2, r = 5/2 and ξ=−|∂x |−1∂4

xu (recall also (59)), roughly says that

‖u‖3
B1/3

3,∞
. ‖u‖B1

5/2,5/2
‖u‖B3

5/3,5/3
.

Using then the interpolation inequality (57), we get

‖u‖B3
5/3,5/3

. ‖u‖1/3
B5

5/4,5/4
‖u‖2/3

B2
2,2

.

Proposition 2.5 for α= 2, p = 5/4, q = 5/2 and therefore α′ = 1, indicates that

‖u‖B5
5/4,5/4

. ‖u‖2
B1

5/2,5/2
. (8)

Using the interpolation inequality (57) once again, we find

‖u‖B1
5/2,5/2

. ‖u‖3/5
B1/3

3,3
‖u‖2/5

B2
2,2

. (9)

From Lemma 2.6, we obtain
‖u‖B2

2,2
. ‖u‖

B1/3
3,∞

.

2Let us stress that we cannot reach these exponents since some of the constants (in particular the
one in (8)) explode.
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Figure 2: Strategy of the proof
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At this point, we see that we could have buckled the estimates if in (9), the Besov
norm ‖u‖

B1/3
3,3

was replaced by the stronger norm ‖u‖
B1/3

3,∞
. Unfortunately, this seems
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not doable with our method of proof. Therefore, we need Proposition 2.7 in order to
control ‖u‖

B1/3
3,3

by ‖u‖
B1/3

3,∞
. It is at this last stage that we lose a logarithm since (19)

gives
‖u‖

B1/3
3,3

. ln1/3(L)‖u‖
B1/3

3,∞
.

Putting all these estimates together, we find

‖u‖
B1/3

3,∞
. ln1/2(L),

which is (7).

As mentioned, the first ingredient is an estimate for the inhomogeneous Burgers
equation. A similar estimate was obtained in [14, Prop. 1]. A related inequality for
the homogeneous Burgers equation has been recently derived in [7].

Let us consider the following inhomogeneous Burgers equation:

∂t u +u∂xu = |∂x |g +|∂x |ξ . (10)

Proposition 2.3 (Besov estimate for the inhomogeneous Burgers equation). Let ξ, g
be smooth L-periodic functions. Then, for any smooth L-periodic solution u of (10),
there holds: For s ∈]0,1[, r,r ′, p, p ′ ∈ [1,+∞] verifying 1

r + 1
r ′ = 1 and 1

p + 1
p ′ = 1, there

exists a constant c > 0 just depending on s,r, p such that:

‖u‖3
B 1/3

3,∞
≤c

(
‖u‖B 1/3

3,∞

∥∥g
∥∥

B 2/3
3/2,1

+‖u‖B s
p,r

‖ξ‖B 1−s
p′,r ′

+‖u(0, ·)‖2
L2[0,L]

)
. (11)

Therefore, taking the time-space average, it holds:

‖u‖3
B1/3

3,∞
≤c

(
‖u‖

B1/3
3,∞

∥∥g
∥∥
B2/3

3/2,1
+‖u‖Bs

p,r
‖ξ‖B1−s

p′,r ′

)
. (12)

The proof of (11) is based on a modified Kármán-Howarth-Monin identity:

Lemma 2.4. Let η be a smooth L-periodic function and let u be a smooth L−periodic
solution with zero average of

∂t u +u∂xu = η, (13)

then for h ∈R,

∂t

(
1

2

∫ L

0
|Dhu|Dhud x

)
+∂h

1

6

∫ L

0
|Dhu|3d x =

∫ L

0
Dhη|Dhu|d x. (14)

The usual Kármán-Howarth-Monin identity [4] states that

∂t

(
1

2

∫ L

0

(
Dhu

)2
d x

)
+∂h

1

6

∫ L

0

(
Dhu

)3
d x =

∫ L

0
DhηDhud x. (15)
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This formula can be easily checked by using equation (13) and the periodicity. The
main difference between (15) and (14) is that in the latter, the coercive term

∫ L
0 |Dhu|3d x

replaces the non-coercive term
∫ L

0

(
Dhu

)3
d x.

We will give two proofs of (14). The first is by a direct computation and the second
uses the kinetic formulation of Burgers equation following ideas of [7]. Therefore, this
second proof gives a new, and hopefully interesting, interpretation of the arguments
of [7].

The second ingredient is a higher regularity result for the capillary Burgers equa-
tion (see [14, Prop. 2, p. 14]).

Proposition 2.5 (Higher regularity). Let p, q ∈ [1,+∞[, α ∈R satisfying:

p +1 ≤ q ≤ 2p, and α′ = (6+α)p/q −3 ∈]0,1[.

Then, there exists c > 0 such that, if u, g are smooth, L-periodic in x and satisfy

∂t u +u∂xu +∂4
xu = |∂x |g ,

the following estimate holds:

‖u‖B3+α
p,p

≤ c

(
‖u‖q/p

Bα
′

q,q

+∥∥g
∥∥
Bαp,p

)
. (16)

Proposition 2.5 allows to jump from higher derivatives to smaller ones in Besov
spaces. The proof, which we will not provide, is based on a narrow-band Littlewood-
Paley decomposition.

The third ingredient is an elementary energy estimate, which directly bounds
the L2

(
[0,T ], H 2([0,L])

) ∼= B 2
2,2 norm of a solution u of the inhomogeneous capillary

Burgers equation.

Lemma 2.6 (Energy estimate). Let u be a smooth solution of:

∂t u +u∂xu +∂4
xu = |∂x |g . (17)

Then, the following estimate holds:

‖u‖B2
2,2

≤ c ‖u‖1/2
B1/3

3,∞

∥∥g
∥∥1/2
B2/3

3/2,1
. (18)

Proof. Since the proof is straightforward, we give it now. Integrating over the equa-
tion (17) over [0,T ]× [0,L], we get:∫ L

0
u(T, x)2d x −

∫ L

0
u(0, x)2d x =

∫ T

0

∫ L

0
u |∂x |g d xd t −

∫ T

0

∫ L

0
(∂2

xu)2d xd t .

Therefore by (58)∫ T

0

∫ L

0

(
∂2

xu
)2

d xd t ≤
∫ L

0
u(0, x)2d x +‖u‖B 1/3

3,∞

∥∥g
∥∥

B 2/3
3/2,1

,

taking then the time-space average yields the result.
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As already mentioned, these three estimates will not be sufficient to conclude.
We will also need an estimate relating Besov norms with different exponents r . One
can easily see that if r1 > r2, then ‖·‖Bs

p,r1
≤ ‖·‖Bs

p,r2
(it is a consequence of convexity

inequality). In fact, it is possible to reverse the inequality for solutions of (K-S), but
this comes with a price: a logarithm of the spatial period L appears.

Proposition 2.7 (Increasing the index r ). There exists c > 0 such that, for all L ≥ 2, u
solution of (K-S), the following estimate holds:

‖u‖
B1/3

3,3
≤ c ln1/3(L)‖u‖

B1/3
3,∞

. (19)

3 Proof of Theorem 2.1

In this section, we derive the main theorem from the above propositions. We now
consider the rescaled Besov norm Bs

p,r as a point (s,1/p,1/r ) in the space R3. All the

norms involved in our problem lie in the rectangle P of R3 defined by3:
s = 10/p −3,
1
p ∈ [0,1],
1
r ∈ [0,1].

Proof of Theorem 2.1. Let u be a solution of (K-S). It is convenient to introduce the
abbreviation:

D(α) = ‖u‖B10α−3
α−1,α−1

D∗ (1/3) = ‖u‖
B1/3

3,∞
.

Notice that D (1/2) = ‖u‖
B1/2

2,2
and D (1/3) = ‖u‖

B1/3
3,3

. With this notation, interpolation

inequality (57) takes the form

D(α) ≤ Dθ(α1)D1−θ(α2) (20)

for α= θα1 + (1−θ)α2 and θ ∈ [0,1].
Letting s = 10α−3, p =α−1 and r =α−1 in (12) and using (59) for ξ=−|∂x |−1∂4

xu,
(12) can be rewritten as

D3
∗ (1/3) ≤ c

(
D(α)D(1−α)+D∗ (1/3)‖g‖

B2/3
3/2,1

)
, (21)

for α ∈]3/10,2/5[. In turn, (16) with p−1 = β, q−1 = γ and α= 10β−6 (which implies
α′ = 10γ−3) gives

D(β) ≤ c

(
Dβ/γ(γ)+‖g‖

B
10β−6

β−1,β−1

)
, (22)

3See Figure 2 in Section 3.2 which represents the strategy in P .
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for γ ∈]3/10,2/5[ and γ
1−γ ≤β≤ 2γ. Finally, (18) is equivalent to

D (1/2) ≤ cD1/2
∗ (1/3)‖g‖1/2

B2/3
3/2,1

, (23)

and (19) to
D (1/3) ≤ c ln1/3(L)D∗ (1/3) . (24)

Our first goal is to argue that for g = −|∂x |−1∂2
xu, we can replace in the above

estimates all the Besov norms involving g by D∗ (1/3). By (59) and (57),

‖g‖
B

10β−6

β−1,β−1
≤ c‖u‖

B
10β−5

β−1,β−1
≤ c‖u‖1/2

B
10β−3

β−1,β−1

‖u‖1/2

B
10β−7

β−1,β−1

= cD1/2(β)‖u‖1/2

B
10β−7

β−1,β−1

.

Hence, in view of (23), Young’s inequality and since by (59), ‖g‖
B2/3

3/2,1
≤ c‖u‖

B5/3
3/2,1

, it

will be enough to prove that

‖u‖
B

10β−7

β−1,β−1
+‖u‖

B5/3
3/2,1

≤ c(D∗ (1/3)+D (1/2)) (25)

for β ∈]11/15,4/5[ (which reduces the use of (22) to γ ∈]1/3,2/5[). We can indeed
prove more generally that for 1/3 < s < 2, p ≤ 2 and any q ≥ 1, there holds

‖u‖Bs
p,q

≤ c
(
‖u‖B2

2,2
+‖u‖

B1/3
3,∞

)
. (26)

Thanks to Jensen’s inequality, we have ‖u‖Bs
p,q

≤ ‖u‖Bs
2,q

and ‖u‖
B1/3

3,∞
≥ ‖u‖

B1/3
2,∞

. By

monotonicity of the Besov norms with respect to the last index, there also holds
‖u‖Bs

2,q
≤ ‖u‖Bs

2,1
and ‖u‖B2

2,2
≥ ‖u‖B2

2,∞
. Therefore, we are left with proving that

‖u‖Bs
2,1

≤ c
(
‖u‖

B1/3
2,∞

+‖u‖B2
2,∞

)
.

By definition of the Besov norms, for 1/3 < s < 2,

‖u‖B s
2,1

= ∑
k≥0

2k‖uk‖L2 +
∑
k<0

2k‖uk‖L2

≤ sup
k

22k‖uk‖L2

∑
k≥0

2−k + sup
k

2
1
3 k‖uk‖L2

∑
k≤0

2
2
3 k

≤ c
(
‖u‖B 1/3

2,∞
+‖u‖B 2

2,∞

)
,

which after taking the average over time and space, finishes the proof of (26).

To sum up, we now have that (21), (22) and (23) together with (25) imply

D3
∗ (1/3) ≤ c

(
D(α)D(1−α)+D2

∗ (1/3)
)

(27)
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for α ∈]3/10,2/5[,
D(β) ≤ c

(
Dβ/γ(γ)+D∗ (1/3)

)
(28)

for γ ∈]1/3,2/5[ and γ
1−γ ≤β≤ 2γ and

D (1/2) ≤ cD∗ (1/3) . (29)

We now gather the above estimates in order to bound D∗ (1/3). Passing to the
logarithm in the above inequalities, we see that optimizing the parameters to get the
best power of ln(L) is equivalent to a linear programming problem. Its solution thus
lie at the boundaries of the admissible domain. It is not hard to see that in particular,

we want to take β
2 = γ = α with α as close as possible to 2/5. Let θ,η ∈]0,1[ be such

that

(1−α) = θβ+ (1−θ)
1

2
and α= η1

2
+ (1−η)

1

3
,

so that θ is close to 1/3 and η is close to 2/5. Thanks to (20),

D(1−α) ≤ Dθ(β)D1−θ(1/2) and D(α) ≤ Dη(1/2)D1−η(1/3). (30)

Since we can assume that D∗ (1/3) ≥ 1, we get from (27), (30) and (28),

D3
∗ (1/3) ≤ cD(α)

(
D2θ(α)+Dθ

∗ (1/3)
)

D1−θ(1/2)

≤ c
(
D1+2θ(α)D1−θ

∗ (1/3)+D(α)D∗ (1/3)
)

,

where in the last inequality, we used (29). From (30), (29) and (24), we deduce

D3
∗ (1/3) ≤ c

(
D2+θ

∗ (1/3) ln
1
3 (1+2θ)(1−η)(L)+D2

∗ (1/3) ln
1−η

3 (L)
)

.

Dividing by D2∗ (1/3) this inequality and noticing that for η close to 2/5, 1−η
3 is close to

1/5, we obtain that if D∗ (1/3) ≥ ln
1−η

3 (L), then

D∗ (1/3) ≤ cDθ
∗ (1/3) ln

1
3 (1+2θ)(1−η)(L),

which gives finally

D∗ (1/3) ≤ c ln
1
3

(1+2θ)(1−η)
1−θ (L)

and thus the result since limθ↑1/3,η↑2/5
1
3

(1+2θ)(1−η)
1−θ = 1/2.
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4 Proof of Proposition 2.3

For the reader’s convenience, let us recall the statement of Proposition 2.3. Let u be a
smooth solution of the following inhomogeneous Burgers equation:

∂t u +u∂xu = |∂x |g +|∂x |ξ . (31)

Proposition. Let ξ, g be smooth L-periodic functions. Then, for any smooth L-periodic
solution u of (31), there holds: For s ∈]0,1[, r,r ′, p, p ′ ∈ [1,+∞] verifying 1

r + 1
r ′ = 1 and

1
p + 1

p ′ = 1, there exists a constant c ∈R∗+ just depending on s,r, p such that:

‖u‖3
B 1/3

3,∞
≤c

(
‖u‖B 1/3

3,∞

∥∥g
∥∥

B 2/3
3/2,1

+‖u‖B s
p,r

‖ξ‖B 1−s
p′,r ′

+‖u(0, ·)‖2
L2[0,L]

)
.

Before proceeding further, let us remark that, by approximation, this applies to
any (possibly non smooth) entropy solution of Burgers equation (31). Indeed, if we
consider a solution u of

∂t u −u∂xu −ε∂2
xu = 0,

then it is a smooth solution of (31) with g = 0 and ξ= ε |∂x |u. A careful inspection of
the proof of Proposition 2.3 shows that for p = r = 2 it extends to s = 1, yielding

‖u‖3
B 1/3

3,∞
≤ c

(
‖u‖B 1

2,2
‖ξ‖B 0

2,2
+‖u(0, ·)‖2

L2[0,L]

)
,

that is
‖u‖3

B 1/3
3,∞

≤ c
(
ε‖∂xu‖2

L2 +‖u(0, ·)‖2
L2[0,L]

)
.

Combining this with the energy inequality: ε‖∂xu‖2
L2 ≤ c ‖u(0, ·)‖2

L2[0,L]
, gives

‖u‖3
B 1/3

3,∞
≤ c ‖u(0, ·)‖2

L2[0,L] ,

which passes to the limit as ε→ 0. The indices are optimal in the light of the result
of De Lellis and Westdickenberg [3] which states that we cannot hope to have more
regularity, in the sense that the Besov index s cannot be better than 1/3.

As already pointed out, the proof of the aimed estimate is based on a modified
Kármán-Howarth-Monin identity:

Lemma 4.1. Let η be a smooth L-periodic function and let u be a smooth L−periodic
solution with zero average of

∂t u +u∂xu = η (32)

then for h ∈R,

∂t

(
1

2

∫ L

0
|Dhu|Dhud x

)
+∂h

1

6

∫ L

0

∣∣∣Dhu
∣∣∣3

d x =
∫ L

0
Dhη

∣∣∣Dhu
∣∣∣d x. (33)
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Proof. By periodicity, (33) will be a direct consequence of the following pointwise
identity:

1

2
∂t

(
|Dhu|Dhu

)
+ 1

6
∂h

∣∣∣Dhu
∣∣∣3 + 1

2
∂x

(
u|Dhu|Dhu + 1

3
|Dhu|3

)
= Dhη

∣∣∣Dhu
∣∣∣ . (34)

For simplicity, let us introduce the notation uh(x) = u(x +h) (so that Dhu = uh −u).
Using (32) we get:

1

2
∂t

(
|Dhu|Dhu

)
+ 1

6
∂h

∣∣∣Dhu
∣∣∣3 = |Dhu|∂t (Dhu)+ 1

2

∣∣∣Dhu
∣∣∣Dhu∂xuh

=
∣∣∣Dhu

∣∣∣Dh (
η−u∂xu

)+ 1

2

∣∣∣Dhu
∣∣∣(uh∂xuh −u∂xuh

)
= Dhη

∣∣∣Dhu
∣∣∣+ 1

2

∣∣∣Dhu
∣∣∣(2u∂xu −u∂xuh −uh∂xuh

)
.

It remains to prove that

|Dhu|
(
2u∂xu −u∂xuh −uh∂xuh

)
=−∂x

(
u|Dhu|Dhu + 1

3
|Dhu|3

)
. (35)

We start with
|Dhu|2u∂xu =−u2∂x |Dhu|+∂x

(
|Dhu|u2

)
and

|Dhu|u∂xuh =−∂x

(
|Dhu|u

)
uh +∂x

(
|Dhu|uuh

)
=−uuh∂x |Dhu|−uh |Dhu|∂xu +∂x

(
|Dhu|uuh

)
,

to get

|Dhu|
(
2u∂xu −u∂xuh −uh∂xuh

)
=−u2∂x |Dhu|+∂x

(
|Dhu|u2

)
+uuh∂x |Dhu|

+uh |Dhu|∂xu −∂x

(
|Dhu|uuh

)
−|Dhu|uh∂xuh

=−∂x

(
u|Dhu|Dhu

)
+uDhu∂x |Dhu|−uh |Dhu|∂xDhu.

But since
Dhu∂x |Dhu| = |Dhu|∂xDhu,

then

|Dhu|
(
2u∂xu −u∂xuh −uh∂xuh

)
=−∂x

(
u|Dhu|Dhu

)
−|Dhu|Dhu∂xDhu

=−∂x

(
u|Dhu|Dhu + 1

3
|Dhu|3

)
,

which concludes the proof of (35).
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Remark. Arguing along the same lines, one can prove that more generally, if a is non-
negative and if u is a smooth solution with zero average of

∂t u +∂x[a(u)] = η (36)

then

∂t

(
1

2

∫ L

0
|Dhu|Dhud x

)
+∂h

(∫ L

0
|Dhu|(a(u)+a(uh))−2|A(uh)− A(u)|d x

)
=

∫ L

0
Dhη

∣∣∣Dhu
∣∣∣d x,

where A′ = a. Notice that Burgers equation corresponds to (36) with a(u) = 1
2 u2. If a

is C 1 and monotone in the sense that there exist β≥ 1 and C > 0, such that for v ≥ w ,

a′(v)−a′(w) ≥C (v −w)β,

then one can obtain a similar estimate to (11) by using that for ū ≥ u

(ū −u)(a(ū)+a(u))−2(A(ū)− A(u)) =
∫ ū

u

∫ ū

w
(a′(v)−a′(w))d vd w

≥C |ū −u|β+2.

In this way, one can fully recover the results from [7].

We now give an alternative proof of (the integrated form of) (33) following ideas
from [7]. This proof uses the kinetic formulation of the inhomogeneous Burgers
equation together with the use of an interaction identity (see (43)).

Lemma 4.2. Let η be a smooth L-periodic function and let u be a smooth L−periodic
solution with zero average of

∂t u +u∂xu = η, (37)

then for h ∈R,

[
1

2

∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
+ 1

6

∫ T

0

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd t

=
∫ T

0

∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d xd t . (38)

Proof. Before starting the proof, let us point out that since we have a direct proof
of (33), we will not take care of regularity issues. Nevertheless, all passages can be
rigorously justified by a suitable approximation argument.
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Step 1. Without loss of generality, we can assume that h > 0. Letting:

f (t , x, v) =
{

1 if v ≤ u(t , x),
0 if v > u(t , x),

equation (37) is equivalent to the following kinetic formulation (see [11]):

∂t f (t , x, v)+ v∂x f (t , x, v) =−∂v f (t , x, v)η(t , x). (39)

Notice that since u is bounded, Dh f is integrable even though f is not. We are going
to compute only integrals depending on Dh f and will therefore not have to deal with
integrability issues. As in[7, Lem. 4.3], we define:

Mu(v) =
{

1 if v ≤ u,
0 if v > u.

We first claim that for all u, ū ∈R the following equality holds:

1

6
|u − ū|3 =

∫
R

∫
R

[
1R+(v −w)

]
(v −w) (Mu(v)−Mū(v)) (Mu(w)−Mū(w))d vd w. (40)

Without loss of generality, we can suppose that u ≥ ū. Then:

Mu(v)−Mū(v) = 1]ū,u[(v).

Thus (40) follows from:∫
R

∫
R

[
1R+(v −w)

]
(v −w) (Mu(v)−Mū(v)) (Mu(w)−Mū(w))d vd w

=
∫
R

∫
R

[
1R+(v −w)1]ū,u[(v)1]ū,u[(w)

]
(v −w)d vd w

=
∫ u

ū

∫ u

w
(v −w)d vd w = 1

6
|u − ū|3 .

Letting

Q(h) =
∫ T

0

∫ L

0

∫
R×R

[
1R+(v −w)

]
(v −w)Dh f (t , x, v)Dh f (t , x, w)d vd wd xd t ,

we see that proving (38) is equivalent to

Q(h) =
∫ T

0

∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d xd t −

[
1

2

∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
. (41)
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Step 2. To cope with the quantity Q, the main tool is the following interaction
identity (see [7]), which have been introduced first by Varadhan ([18, Lem. 22.1]): Let
A, B , C , D , E , F : [0,T ]× [0,L] →R be functions satisfying the following system{

∂t A+∂xB =C ,
∂t D +∂xE = F,

(42)

and having zero spatial average. Then the following identity holds:∫ T

0

∫ L

0
(AE −BD) =

∫ T

0

∫ L

0
A(t , x)

(∫ x

0
F (t , y)d y

)
d xd t

+
∫ T

0

∫ L

0
C (t , x)

(∫ x

0
D(t , y)d y

)
d xd t (43)

−
[∫ L

0

∫ x

0
A(t , x)D(t , y)d yd x

]t=T

t=0
.

Indeed, by Taylor expansion:∫ T

0

∫ L

0
A(t , x)E(t , x)d xd t =

∫ T

0

∫ L

0

∫ x

0
A(t , x)∂xE(t , y)d yd xd t

−
∫ T

0

∫ L

0
A(t , x)E(t ,0)d xd t .

Since A has zero spatial average, the second term vanishes. Using equation (42) to
compute the first term and integrating by parts, we get:∫ T

0

∫ L

0

∫ x

0
A(t , x)∂xE(t , y)d yd xd t =

∫ T

0

∫ L

0

∫ x

0
A(t , x)F (t , y)d yd xd t

−
∫ T

0

∫ L

0

∫ x

0
A(t , x)∂t D(t , y)d yd xd t

=
∫ T

0

∫ L

0

∫ x

0
A(t , x)F (t , y)d yd xd t

+
∫ T

0

∫ L

0

∫ x

0
∂t A(t , x)D(t , y)d yd xd t

−
[∫ L

0

∫ x

0
A(t , x)D(t , y)d yd x

]t=T

t=0
.
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Let us now compute more precisely the second term, using (42):∫ T

0

∫ L

0

∫ x

0
∂t A(t , x)D(t , y)d yd xd t =

∫ T

0

∫ L

0

∫ x

0
C (t , x)D(t , y)d yd xd t

−
∫ T

0

∫ L

0
∂xB(t , x)

∫ x

0
D(t , y)d yd xd t

=
∫ T

0

∫ L

0

∫ x

0
C (t , x)D(t , y)d yd xd t

+
∫ T

0

∫ L

0
B(t , x)D(t , x)d xd t ,

which concludes the proof of (43).

Step 3. We apply the interaction identity to:
A(t , x, v) = Dh f (t , x, v), D(t , x, w) = A(t , x, w),
B(t , x, v) = vDh f (t , x, v), E(t , x, w) = B(t , x, w),
C (t , x, v) =−∂v Dh( f (t , x, v)η(t , x)), F (t , x, w) =C (t , x, w).

Note that A,B ,C ,D ,E ,F implicitly depend on h. Multiplying each side of the identity
by 1R+(v −w) and integrating it, we get:

Q(h) =−
∫
R×R

1R+(v −w)
∫ T

0

∫ L

0
(A(t , x, v)E(t , x, w)−B(t , x, v)D(t , x, w))d xd td vd w

=−
∫
R×R

1R+(v −w)
∫ T

0

∫ L

0
A(t , x, v)

(∫ x

0
F (t , y, w)d y

)
d xd td vd w

−
∫
R×R

1R+(v −w)
∫ T

0

∫ L

0
C (t , x, v)

(∫ x

0
D(t , y, w)d y

)
d xd td vd w

+
∫
R×R

1R+(v −w)

[∫ L

0

∫ x

0
A(t , x, v)D(t , y, w)d yd x

]t=T

t=0
d vd w.

=−
∫
R×R

1R+(v −w)
∫ T

0

∫ L

0
A(t , x, v)

(∫ x

0
F (t , y, w)d y

)
d xd td vd w

−
∫
R×R

1R+(w − v)
∫ T

0

∫ L

0
F (t , y, w)

(∫ y

0
A(t , x, v)d x

)
d yd td vd w

+
∫
R×R

1R+(v −w)

[∫ L

0

∫ x

0
A(t , x, v)D(t , y, w)d yd x

]t=T

t=0
d vd w.

=Q1 +Q2 +Q3.

But, by periodicity,
∫ y

0 A(t , x, w)d x =−∫ L
y A(t , x, w)d x, and thus∫ L

0
F (t , y, v)

(∫ y

0
A(t , x, w)d x

)
d y =−

∫ L

0
A(t , x, w)

(∫ x

0
F (t , y)d y

)
d x.
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Therefore,

Q2 =
∫
R×R

1R+(w − v)
∫ T

0

∫ L

0
A(t , x, v)

(∫ x

0
F (t , y, w)d y

)
d xd td vd w.

Step 4. In the next two steps, the time variable plays no role. We will therefore
consider

Q1 =−
∫
R×R

1R+(v −w)
∫ L

0
A(x, v)

(∫ x

0
C (y, w)d y

)
d xd vd w

and

Q2 =
∫
R×R

1R+(w − v)
∫ L

0
A(x, v)

(∫ x

0
C (y, w)d y

)
d xd vd w.

By definition of A and C , we have

Q1 −Q2 =−
∫
R×R

∫ L

0
Dh f (x, v)

(∫ x

0
∂v Dh( f (y, w)η(y))d y

)
d xd vd w

=
∫ L

0
Dhu(x)

(∫ x

0
Dhη(y)d y

)
d x.

The y-integral then telescopes to:

Q1 −Q2 =
∫ L

0
Dhu(x)

(∫ x+h

x
−

∫ h

0

)
η(y)d yd x.

Since by periodicity we have, ∫ L

0
Dhu(x)d x = 0,

this reduces to

Q1 −Q2 =
∫ L

0
Dhu(x)

∫ x+h

x
η(y)d yd x

=
∫ L

0
η(y)

∫ y

y−h
Dhu(x)d xd y

=
∫ L

0

∫ h

0
η(y)(u(y +∆)−u(y −∆))d yd∆. (44)

Step 5. Here we argue that

Q1 +Q2 =
∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d x. (45)
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For this we prove first that

Q1 =
1

2

∫ h

0

∫ L

0
D∆η

∣∣D∆u
∣∣+η(u(x −∆)−u(x +∆))d xd∆. (46)

Indeed, combined with (44), this would give,

Q1 +Q2 = 2Q1 − (Q1 −Q2) =
∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d x.

which is (45). By definition of A and C :

Q1 =
∫
R×R

1R+(v −w)
∫ L

0
Dh f (x, v)

(∫ x

0
∂v Dh (

f (y, w)η(y)
)

d y

)
d xd vd w

=
∫ +∞

−∞

∫ L

0
Dh f (x, v)

∫ v

−∞

∫ x

0
∂v Dh (

f (y, w)η(y)
)

d yd wd xd v

=
∫ +∞

−∞

∫ L

0
Dh f (x, v)

∫ x

0
Dh (

f (y, v)η(y)
)−Dhη(y)d yd xd v.

Arguing as in Step 4, we find

Q1 =
∫ L

0
η(y)

(∫ h

0

∫ +∞

−∞
Dh f (y −x, v)

(
f (y, v)−1

)
d xd v

)
d y.

After changing the names of the variables to y = x̃ and x =∆we obtain

Q1 =
∫ L

0
η(x̃)

(∫ h

0

∫ +∞

−∞
Dh f (x̃ −∆, v)

(
f (x̃, v)−1

)
d∆d v

)
d x̃

Dropping the tildas, we can rewrite the inner term using the definition of f as:∫ h

0

∫ +∞

−∞
Dh f (x −∆, v)( f (x, v)−1)d∆d v

=
∫ h

0

∫ +∞

−∞
( f (x +∆, v)− f (x −∆, v))( f (x, v)−1)d vd∆

=−
∫ h

0

∫ u(x)∨u(x+∆)∨u(x−∆)

u(x)
f (x +∆, v)− f (x −∆, v)d vd∆

=−
∫ h

0

(
D∆u

)
+−

(
D−∆u

)
+ d∆.

We thus find

Q1 =−
∫ L

0

∫ h

0
η

((
D∆u

)
+−

(
D−∆u

)
+
)

d∆d x.
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Using that ∫ L

0
η

(
D∆u

)
+ d x =

∫ L

0
η(x −∆)

(
D−∆u

)
− d x,

and similarly ∫ L

0
η

(
D−∆u

)
+ d x =

∫ L

0
η(x −∆)

(
D∆u

)
− d x,

we obtain

Q1 =
1

2

∫ h

0

∫ L

0
D∆η

(
D∆u

)
+−D−∆η

(
D−∆u

)
++η−∆D−∆u −η∆D∆ud xd∆

=1

2

∫ h

0

∫ L

0
D∆η

(
D∆u

)
+−D−∆η

(
D−∆u

)
++η(u(x −∆)−u(x +∆))d xd∆

=1

2

∫ h

0

∫ L

0
D∆η

∣∣D∆u
∣∣+η (u(x −∆)−u(x +∆))d xd∆,

which is (46). If we now integrate (45) over time, we find

Q1 +Q2 =
∫ T

0

∫ L

0

∫ h

0
D∆η|D∆u|d∆d xd t . (47)

Step 6. We finally argue that

Q3 =−
[

1

2

∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
. (48)

Let us recall that by definition of A:

Q3 =
[∫
R×R

1R+(v −w)
∫ L

0

∫ x

0
Dh f (t , x, v)Dh f (t , y, w)d yd xd vd w

]t=T

t=0
.

As above:

Q3 =
[
−

∫ L

0

∫ h

0

∫ +∞

−∞

∫ v

−∞
f (t , x, v)( f (t , x +∆, w)− f (t , x −∆, w)d wd vd∆d x

]t=T

t=0

and,∫ v

−∞
( f (t , x +∆, w)− f (t , x −∆, w)d w = (u(t , x +∆)− v ∧0)− (u(t , x −∆)− v ∧0).
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Therefore∫ +∞

−∞

∫ v

−∞
f (t , x, v)( f (t , x +∆, w)− f (t , x −∆, w)d wd v

=
∫ u(t ,x)

−∞

∫ v

−∞
( f (t , x +∆, w)− f (t , x −∆, w)d wd v

=
∫ u(t ,x)

−∞
(u(t , x +∆)− v ∧0)− (u(t , x −∆)− v ∧0)d v

=
∫ u(t ,x)

(u(t ,x+∆)∧u(t ,x))
u(t , x +∆)− vd v

−
∫ u(t ,x)

(u(t ,x−∆)∧u(t ,x))
u(t , x −∆)− vd v

which, using that for a,b ∈R,∫ b

(a∧b)
(a − v)d v =−1

2
((a −b ∧0))2

gives

Q3 = 1

2

[∫ L

0

∫ h

0
(u(t , x +∆)−u(t , x)∧0)2 − (u(t , x −∆)−u(t , x)∧0)2d∆d x

]t=T

t=0

= 1

2

[∫ L

0

∫ h

0

(
D∆u

)2
−−

(
D−∆u

)2
− d∆d x

]t=T

t=0

= 1

2

[∫ L

0

∫ h

0

(
D∆u

)2
−−

(
D∆u

)2
+ d∆d x

]t=T

t=0

=−1

2

[∫ L

0

∫ h

0
|D∆u|D∆ud∆d x

]t=T

t=0

which proves (48). Combined with (47), this yields (41).

We can now prove Proposition 2.3

Proof of Proposition 2.3. By linearity, it is enough proving the estimate for g = 0. Thanks
to (38) applied to η= |∂x |ξ, we have

∫ T

0

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd t

= 6
∫ T

0

∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d xd t −

[
3
∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
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Thanks to Theorem A.1, for s < 1 and every function v , ‖|v |‖B s
p,r

≤ c ‖v‖B s
p,r

(notice
that it also holds for s = 1 if p = r = 2). Using the triangle inequality and the invari-
ance of the Besov norms with respect to translations, we obtain that for s ∈ (0,1),∥∥|D∆u|∥∥B s

p,r
≤ c ‖u‖B s

p,r
. Applying (58) we get

∫ T

0

∫ L

0

∫ h

0
D∆η

∣∣D∆u
∣∣d∆d xd t =

∫ T

0

∫ L

0

∫ h

0

(|∂x |D∆ξ
)∣∣D∆u

∣∣d∆d xd t

≤ 1

π

∫ h

0

∥∥D∆ξ
∥∥

B 1−s
p′,r ′

∥∥∣∣D∆u
∣∣∥∥

B s
p,r

≤ ch ‖ξ‖B 1−s
p′,r ′

‖u‖B s
p,r

.

On the other hand, since[∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
≤ ch

∫ L

0
u(0, x)2 +u(T, x)2d x,

and since multiplying the equation (31) by u and integrating gives,∫ L

0

1

2
u(T, x)2d x −

∫ L

0

1

2
u(0, x)2d x =

∫ T

0

∫ L

0
∂t

(
1

2
u2

)
d xd t

=
∫ T

0

∫ L

0
u |∂x |ξd xd t

≤c ‖ξ‖B 1−s
p′,r ′

‖u‖B s
p,r

,

we have [∫ h

0

∫ L

0
|D∆u|D∆ud xd∆

]T

0
≤ ch

(
‖ξ‖B 1−s

p′,r ′
‖u‖B s

p,r
+‖u(0, ·)‖2

L2

)
.

Putting this together, we find

1

h

∫ T

0

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd t ≤ c

(
‖ξ‖B 1−s

p′,r ′
‖u‖B s

p,r
+‖u(0, ·)‖2

L2

)
which concludes the proof.

Remark. Starting from (33), one can obtain a larger family of estimates for the inho-
mogeneous Burgers equation. Unfortunately, the estimate

‖u‖3
B 1/3

3,3
≤c

(
‖u‖B 1/3

3,3

∥∥g
∥∥

B 2/3
3/2,3/2

+‖u‖B s
p,r

‖ξ‖B 1−s
p′,r ′

+‖u(0, ·)‖2
L2

)
,

which would allow to avoid the logarithmic correction in (7), is borderline.
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5 Proof of Proposition 2.7

Let us remind the reader the statement we want to prove:

Proposition (Comparison between Besov norms of different index r ). There exists c >
0 such that, for all L > 2, for every u solution of (K-S) with average zero, the following
estimate holds:

‖u‖
B1/3

3,3
≤ c ln1/3(L)‖u‖

B1/3
3,∞

. (49)

Proof. The proof is elementary and resembles [14, Prop. 4 II), Step 2 &3]. Let us first
cut the term that we want to bound in three parts:

∫ +∞

0

∥∥Dhu
∥∥3

L3

h

dh

h
=

∫ `

0

∥∥Dhu
∥∥3

L3

h

dh

h
+

∫ L

`

∥∥Dhu
∥∥3

L3

h

dh

h
+

∫ +∞

L

∥∥Dhu
∥∥3

L3

h

dh

h
=A(`)+B(`)+C .

The large scale term C is in fact controlled by A(`) and B(`) by periodicity. Indeed:

C =
∫ +∞

L

∥∥Dhu
∥∥3

L3

h

dh

h

=
+∞∑
n=1

∫ (n+1)L

nL

∥∥Dhu
∥∥3

L3

h

dh

h

≤
+∞∑
n=1

1

n2

∫ L

0

∥∥Dhu
∥∥3

L3

h

dh

h

≤c (A(`)+B(`)) .

The intermediate scale term B(`) is directly handled with thanks to ‖u‖B 1/3
3,∞

:

B(`) =
∫ L

`

∥∥Dhu
∥∥3

L3

h

dh

h

≤ sup
h∈R∗+

∥∥Dhu
∥∥3

L3

h

∫ L

`

dh

h

≤ ln(L/`)‖u‖3
B 1/3

3,∞
.

The small scale term A(`) is the most difficult to bound. We shall prove that:

A(`) ≤ c`

((∫ L

0
u(0, x)2d x

)3/2

+L3/2 ‖u‖3
B 1/3

3,∞

)
. (50)
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Before proceeding with the proof of (50), let us show that it is sufficient to conclude.
Indeed, fix now `= L−3/2. Then, we obtain:∫ +∞

0

∥∥Dhu
∥∥3

L3

h

dh

h
≤ c ln(L)‖u‖3

B 1/3
3,∞

+ c

(
1

L

∫ L

0
u(0, x)2d x

)3/2

.

Taking now the time-space average yields (49). It remains to prove (50).

First, we prove that:∫ T

0

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd t ≤ ch2

((∫ L

0
u(0, x)2d x

)3/2

+
∫ T

0

(∫ L

0
u2d x

)3/2

d t

)
. (51)

We start by noting that:∫ L

0

∣∣∣Dhu(t , x)
∣∣∣3

d x ≤2

(
sup

x∈[0,L]
|u(t , x)|

)∫ L

0

∣∣∣∣∫ x+h

x
∂xu(t , y)d y

∣∣∣∣2

d x

≤2

(
sup

x∈[0,L]
|u(t , x)|

)
h2

∫ L

0
(∂xu)2 d x.

For the convenience of the reader, we recall the argument for

sup
x∈[0,L]

|u| ≤ c

(∫ L

0
u2d x

)1/4 (∫ L

0
(∂xu)2 d x

)1/4

. (52)

In fact, starting from:

u2(t , x) = u2(t , y)+
∫ x

y

1

2
u(t , z)∂xu(t , z)d z ∀y ∈ [0,L],

and using that u has zero average and thus vanishes somewhere, Cauchy-Schwarz
inequality immediately gives (52). Therefore,∫ L

0

∣∣∣Dhu
∣∣∣3

d x ≤ch2
(∫ L

0
u2d x

)1/4 (∫ L

0
(∂xu)2 d x

)5/4

,

and using the following Sobolev inequality (which can easily be proved by using Fourier
methods): ∫ L

0
(∂xu)2 d x ≤

(∫ L

0
u2d x

)1/2 (∫ L

0

(
∂2

xu
)2

d x

)1/2

,

we get: ∫ L

0

∣∣∣Dhu
∣∣∣3

d x ≤ch2
(∫ L

0
u2d x

)7/8 (∫ L

0

(
∂2

xu
)2

d x

)5/8

. (53)
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Now, we have to work a bit to extract information from the energy identity. Multiply-
ing (K-S) by u and integrating over x, we obtain:

d

d t

∫ L

0
u2d x =2

∫ L

0
(∂xu)2 d x −2

∫ L

0

(
∂2

xu
)2

d x

≤2

(∫ L

0
u2d x

)1/2 (∫ L

0

(
∂2

xu
)2

d x

)1/2

−2
∫ L

0

(
∂2

xu
)2

d x

≤
∫ L

0
u2d x −

∫ L

0

(
∂2

xu
)2

d x.

In a first step, we get from this differential inequality that there exists c > 0 such that:∫ L

0
u2(t + s, x)d x ≤ c

∫ L

0
u2(t , x)d x ∀s ∈ [0,1]. (54)

In a second step, we get:∫ L

0
u2(t +1, x)d x −

∫ L

0
u2(t , x)d x ≤

∫ t+1

t

∫ L

0
u2d xd s −

∫ t+1

t

∫ L

0

(
∂2

xu
)2

d xd s.

The combination of both implies:∫ t+1

t

∫ L

0

(
∂2

xu
)2

d xd s + sup
s∈[t ,t+1]

∫ L

0
u2(s, x)d x ≤ c

∫ L

0
u2(t , x)d x. (55)

Hence, together with (53) in the form of∫ t+1

t

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd s ≤C h2
(

sup
s∈[t ,t+1]

∫ L

0
u2(s, x)d x

)7/8 (∫ t+1

t

∫ L

0
(∂2

xu)2d xd s

)5/8

,

we deduce ∫ t+1

t

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd s ≤C h2
(∫ L

0
u2(t , x)d x

)3/2

.

Using this inequality for t = 0 and in its integrated form between zero and T , we ob-
tain (51).

We now claim that ∫ T

0

(∫ L

0
u2d x

)3/2

d t ≤ L3/2 ‖u‖3
B 1/3

3,∞
. (56)
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Indeed, using Hölder’s inequality, the fact that u has zero average and Jensen’s in-
equality we obtain:∫ T

0

(∫ L

0
u2(t , x)d x

)3/2

d t ≤L1/2
∫ T

0

∫ L

0

∣∣∣∣u(t , x)− 1

L

∫ L

0
u(t ,h)dh

∣∣∣∣3

d xd t

≤L−1/2
∫ T

0

∫ L

0

∫ L

0
|u(t , x)−u(t , x +h)|3 dhd xd t

≤L1/2
∫ L

0

∫ T

0

∫ L

0

|u(t , x +h)−u(t , x)|3
h

d xd tdh

≤L3/2 sup
h∈R+

∫ T

0

∫ L

0

∣∣Dhu(t , x)
∣∣3

h
d xd t .

Conclusion Putting together (51) and (56), we get as desired

A(`) =
∫ `

0

∫ T

0

∫ L

0

∣∣∣Dhu
∣∣∣3

d xd t
dh

h2
≤c

∫ `

0
dh

((∫ L

0
u(0, x)2d x

)3/2

+L3/2 ‖u‖3
B 1/3

3,∞

)

≤c`

((∫ L

0
u(0, x)2d x

)3/2

+L3/2 ‖u‖3
B 1/3

3,∞

)
.

Remark. As in [14, Prop. 4 II), Step 2 &3], we could have used an L∞ (in time) bound
on

∫ L
0 u2d x (proven for instance in [5, Prop. 4]) to get (50) directly. However, since we

have a relatively simple and self-contained argument for it, we preferred to include
it.

A Besov spaces

A.1 Definition of time-space Besov spaces

We recall here some basics of the theory of Besov spaces. We refer to [1, Chapter 2, p.
51-121], for the construction of a dyadic Littlewood-Paley decomposition, and most
of the proofs.

Definition A.1 (Dyadic Littlewood-Paley decomposition). Let
(
φk

)
k∈Zbe a family of

Schwartz functions such that their Fourier transforms
(
Fφk

)
k∈Z satisfy:

F (φ0)(ξ) = 0 ∀|ξ| ∉ ]
2−1,2

[
,

F (φk )(ξ) =F (φ0)
(
2−k ξ

)
∀k ∈Z,∀ξ ∈R,∑

k∈Z
F (φk )(ξ) = 1 ∀ξ ∈R .
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Then, for a L-periodic function u, we define its Littlewood-Paley decomposition
as:

uk (t , ·) =φk ∗u(t , ·)
where ∗ denotes the periodic convolution. This allows us to define time-space Besov
space B s

p,r for s ∈ [0,+∞], p ∈ [1,∞], r ∈ [1,∞] by the set of functions such that:

‖u‖B s
p,r

=
(∑

k∈Z
2r sk ‖uk‖r

Lp

)1/r

<∞ if r <∞,

‖u‖B s
p,r

= sup
k∈Z

2sk ‖u‖Lp <∞ if r =∞.

We are actually interested in a rescaled homogeneous Besov norm, defined by:

‖u‖Bs
p,r

= limsup
T→+∞

1

(LT )1/p
‖u‖B s

p,r
.

The time-space Besov norm can be replaced by an equivalent one, as stated in the
following theorem (see [1, Th. 2.36]):

Theorem A.1. Let s ∈]0,1[ and (p,r ) ∈ [1,+∞]2. Then there exists c > 0 such that:

c−1

∥∥∥∥∥
∥∥Dhu

∥∥
LP

hs

∥∥∥∥∥
Lr

(
R+, dh

|h|
) ≤ ‖u‖B s

p,r
≤ c

∥∥∥∥∥
∥∥Dhu

∥∥
LP

hs

∥∥∥∥∥
Lr

(
R+, dh

|h|
) .

where for r <∞:∥∥∥∥∥
∥∥Dhu

∥∥
LP

hs

∥∥∥∥∥
Lr

(
R+, dh

|h|
) =

∫ ∞

0

(∫ T

0

∫ L

0

(∣∣Dhu
∣∣

hs

)p

d xd t

)r /p
dh

h

1/r

,

and for r =∞:∥∥∥∥∥
∥∥Dhu

∥∥
LP

hs

∥∥∥∥∥
L∞

(
R+, dh

|h|
) = sup

h>0

(∫ T

0

∫ L

0

(∣∣Dhu
∣∣

hs

)p

d xd t

)1/p

.

Besov spaces are particularly well adapted for interpolation as seen from the fol-
lowing theorem:

Theorem A.2 (Interpolation between Besov spaces). Let (s, p,r ), (s1, p1,r1), (s2, p2,r2) ∈
R+×[1,+∞]2, and u ∈ B s1

p1,r1
∩B s2

p2,r2
. If

s = θs1 + (1−θ)s2,
1
p = θ

p1
+ 1−θ

p2
,

1
r = θ

r1
+ 1−θ

r2
,
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with θ ∈]0,1[, then u ∈ B s
p,r and:

‖u‖B s
p,r

≤ ‖u‖θ
B

s1
p1,r1

‖u‖1−θ
B

s2
p2,r2

. (57)

Theorem A.2 simply follows from the definition of the Besov norms and an appli-
cation of Hölder’s inequality. In some lemmas that we will enunciate later, we will use
the partial derivative |∂x | which is slightly different from the classical ∂x . It is defined
via Fourier series:

|∂x | :
∑

n∈Z
ane

2iπnx
L 7→ ∑

n∈Z
an

2π

L
|n|e 2iπnx

L .

The following theorems underlines a link between Besov spaces and the operator
|∂x |:
Lemma A.3. For all φ, g ∈C 1

L (R):∫ L

0
φ |∂x |g d x = 1

π

∫ +∞

0

∫ L

0
DhφDh g d x

dh

h2
.

Proof. Let us expand φ and g in Fourier series as

φ(x) = ∑
n∈Z

φne
2iπ

L nx and g (x) = ∑
n∈Z

gne
2iπ

L nx .

Therefore, one can explicitly compute on the one hand:∫ L

0
φ |∂x |g d x = ∑

n∈Z
2π |n|φn g−n ,

and on the other hand:∫ +∞

0

∫ L

0
DhφDh g d x

dh

h2
=

∫ +∞

0

∑
n∈Z

L
((

e
2iπ

L hn −1
)
φn

(
e− 2iπ

L hn −1
)

g−n

) dh

h2

=
∫ +∞

0

∑
n∈Z

4L sin2
(
πhn

L

)
φn g−n

dh

h2

=4
∑

n∈Z
φn g−nπ |n|

∫ +∞

0
sin2 (

y
) d y

y2

=2π2
∑

n∈Z
φn g−n |n|,

which implies the result.

We derive from this identity the following Besov estimate (see also [14, Step. 3 p
39]):
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Proposition A.4. Let φ, g ∈C 1
L (R). Then, for all p, p ′,r,′∈ [1,+∞], with 1

p + 1
p ′ = 1 and

1
r + 1

r ′ = 1, for all s ∈]0,1[ the following estimate holds:∫ T

0

∫ L

0
φ |∂x |g d xd t ≤ 1

π

∥∥φ∥∥
B s

p,r

∥∥g
∥∥

B 1−s
p′,r ′

. (58)

Proof. Using Lemma A.3 we get:∫ T

0

∫ L

0
φ |∂x |g d xd t = 1

π

∫ +∞

0

∫ T

0

∫ L

0
DhφDh g d xd t

dh

h2
.

Then, Hölder’s inequality leads us to the result:∫ +∞

0

∫ T

0

∫ L

0
DhφDh g d xd t

dh

h2
≤

∫ +∞

0

∥∥∥Dhφ
∥∥∥

Lp

∥∥∥Dh g
∥∥∥

Lp′
dh

h2

≤
∥∥∥∥∥
∥∥Dhφ

∥∥
Lp

hs

∥∥∥∥∥
Lr

(
R+, dh

h

)
∥∥∥∥∥
∥∥Dh g

∥∥
Lp′

h1−s

∥∥∥∥∥
Lr ′

(
R+, dh

h

) .

We finally state a useful lemma relating Besov norms of derivatives.

Lemma A.5. Let s > 0, p,r ∈ [1,∞], m ∈ N and u ∈ B s+m−1
p,r . Suppose h = |∂x |−1∂m

x u.
Then there exists a positive constant c depending only on (s, p,r ) such that the follow-
ing estimate holds:

‖h‖B s
p,r

≤ c ‖u‖B s+m−1
p,r

. (59)

Proof. The proof is analogous to [14, Step 1 p. 17]. By definition, we have:

hk =φk ∗h.

Therefore, using the properties of convolution and of the quasi-orthogonality of the
dyadic partition of unity we get:

hk =φk ∗
∑

k ′∈[k−1;k+1]

φk ′ ∗h

= |∂x |−1∂m
x φk ∗

∑
k ′∈[k−1,k+1]

uk ′ .

Then, using Young’s inequality, we obtain:

‖hk‖Lp ≤
(∫
R

∣∣|∂x |−1∂m
x φk

∣∣d x

) ∑
k ′∈[k−1,k+1]

‖uk ′‖Lp

≤2k(m−1)
(∫
R

∣∣|∂x |−1∂m
x φ0

∣∣d x

) ∑
k ′∈[k−1,k+1]

‖uk ′‖Lp

≤c2k(m−1)
∑

k ′∈[k−1,k+1]

‖uk ′‖Lp .
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Hence: ∑
k∈Z

2kr s ‖hk‖r
Lp ≤ c

∑
k∈Z

2kr (m−1+s) ‖uk‖r
Lp ,

which implies the aimed inequality.
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