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Introduction

The Kuramoto-Sivashinsky equation

We consider the one-dimensional Kuramoto-Sivashinsky equation:

∂ t u + u∂ x u + ∂ 2 x u + ∂ 4 x u = 0. (K-S)
This equation appears in many physical contexts, in particular in the modeling of surface evolutions. Sivashinsky used it to describe flame fronts [START_REF] Sivashinsky | On flame propagation under conditions of stoichiometry[END_REF], wavy flow of viscous liquids on inclined planes [START_REF] Sivashinsky | On irregular wavy flow of a liquid film down a vertical plane[END_REF] and crystal growth [START_REF] Golovin | Convective Cahn-Hilliard models for kinetically controlled crystal growth[END_REF]. Although the solutions of (K-S) are smooth and even analytic [START_REF] Jolly | Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations[END_REF], they display a chaotic behavior for sufficiently large systems size L (see [START_REF] Hyman | Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces[END_REF] and Figure 1.1). The structure of the Kuramoto-Sivashinsky equation has some similarities with the Navier-Stokes equation. Therefore, it is sometimes possible to apply similar techniques to study both equations (see [START_REF] Otto | Universal bounds for the Littlewood-Paley first-order moments of the 3D Navier-Stokes equations[END_REF]).

Figure 1: Chaotic behavior of u For a given system size L > 0, we will consider L-periodic solutions of (K-S). Since the spatial average L 0 u(t , x)d x is constant over time, and since the equation is invariant under the Galilean transformation:

t = t , x = x +U t , u = u +U ,
it is not restrictive to assume that L 0 u(t , x)d x = 0 for all t ≥ 0. We can artificially cut the equation in two parts and consider separately the two mechanisms involved in (K-S):

∂ t u + ∂ 2 x u + ∂ 4 x u = 0, (1) 
∂ t u + u∂ x u = 0. ( 2 
)
The first equation ( 1) is linear and can be seen in Fourier space as:

∂ t F u = (ξ 2 -ξ 4 )F u. ( 3 
)
The fourth partial derivative term ∂ 4

x u decreases the short wavelength part of the energy spectrum whereas the second derivative term ∂ 2

x u amplifies the long wavelength part. The second equation (2) corresponds to Burgers equation. It is nonlinear and develops shocks in finite time for non-trivial initial data. Nevertheless, as we will see later, this term has some mild regularizing effect. It is worth mentioning that for (2), the energy L 0 u 2 d x, is conserved. Therefore, one can intuitively say that in (K-S) the linear terms transport the energy from long wavelengths to short ones. Numerical simulations suggest (see the article of Wittenberg and Holmes [START_REF] Wittenberg | Scale and space localization in the Kuramoto-Sivashinsky equation[END_REF]) that the time-averaged power spectrum lim

T →∞ (LT ) -1 T 0 |F (u)(t , ξ)| 2 d t is independent of L for L 1.
Moreover, this quantity is independent of |ξ| and L 1 in the long wavelength regime L -1 | ξ | 1 and decays exponentially in the short wavelength regime |ξ| 1. In line with this, numerical simulation suggests that for all α ≥ 0:

lim sup T →∞ (LT ) -1 T 0 L 0 |∂ x | α u 2 d xd t = O(1).
This conjecture is supported by a universal bound on all stationary periodic solutions of (K-S) with mean 0, due to Michelson [START_REF] Michelson | Steady solutions of the Kuramoto-Sivashinsky equation[END_REF].

Known bounds

A first energy bound was obtained in the 80's by Nicolaenko, Scheurer and Temam [START_REF] Nicolaenko | Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors[END_REF], who established by the "background flow method" that for every odd (in space) solution u of (K-S):

lim sup t →∞ 1 L L 0 u 2 d x 1/2 = O(L p ),
with p = 2. This has been later generalized by Goodman [START_REF] Goodman | Stability of the Kuramoto-Sivashinsky and related systems[END_REF], and Bronski and Gambill [START_REF] Bronski | Uncertainty estimates and L 2 bounds for the Kuramoto-Sivashinsky equation[END_REF] and improved to p = 1. Using an entropy method, Giacomelli and the third author [START_REF] Giacomelli | New bounds for the Kuramoto-Sivashinsky equation[END_REF] improved this result by showing that:

lim sup t →∞ 1 L L 0 u 2 d x 1/2 = o(L).
The proof is based on the fact that the dispersion relation ξ 2 -ξ 4 in (3) vanishes for ξ → 0 and it implies that for every α ∈ [0, 2], we have:

lim sup T →∞ 1 T L T 0 L 0 |∂ x | α u 2 d xd t 1/2
= o(L), by using the energy identity,

∂ t L 0 (u(t , x)) 2 d x = L 0 (∂ x u(t , x)) 2 d x - L 0 ∂ 2 x u(t , x) d x.
In a more recent paper [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF], the third author proved that, for all α ∈ (1/3, 2), lim sup

T →∞ 1 T L T 0 L 0 |∂ x | α u 2 d xd t 1/2 = O ln 5/3+ (L) , 1 (4) 
by using two ingredients: an a priori estimate for the capillary Burgers equation

∂ t u + u∂ x u + ∂ 4 x u = |∂
x |g and an a priori estimate for the inhomogeneous Burgers equation, that is ∂ t u + u∂ x u = |∂ x |g . More precisely, the result of [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF] states that, for every solution u of (K-S),

u B 1/3 3,3 = O ln 5/3+ (L) , (5) 
where • B s p,r denotes a Besov norm (see the appendix).

Main result

In this paper, we improve and simplify the result of the third author by showing that:

Theorem 1.1. Let L > 2.
For u a smooth L-periodic solution with zero average of the equation

∂ t u + u∂ x u + ∂ 2 x u + ∂ 4 x u = 0, there holds lim sup T →∞ sup h>0 1 LT T 0 L 0 |u(t , x + h) -u(t , x)| 3 h d xd t 1/3 = O(ln 1/2+ (L)). ( 6 
)
This result is indeed slightly stronger than the previous one, since by [START_REF] Wittenberg | Scale and space localization in the Kuramoto-Sivashinsky equation[END_REF], it implies an improvement of the exponent in (5) from 5/3+ to 5/6+. However, this is not the main contribution of this paper. It is rather a simplified proof of the a priori estimate for inhomogeneous Burgers equation, which was one of the main tool for proving [START_REF] Giacomelli | New bounds for the Kuramoto-Sivashinsky equation[END_REF]. For this purpose, we derive a modified Kármán-Howarth-Monin formula (see [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF]). We also show how the proof of Golse and Perthame [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] (based on the kinetic formulation of Burgers equation) of a similar estimate for the homogeneous Burgers equation can be reinterpreted in this light. Since we work with slightly different Besov norms compared to [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF], we need also to adapt most of the other steps to get [START_REF] Golovin | Convective Cahn-Hilliard models for kinetically controlled crystal growth[END_REF]. Besides Proposition 2.5, which we borrow directly from [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF], we give here self-contained proofs.

The structure of the paper is the following: In Section 2, we enunciate the main theorem and give the structure of the proof. It has several ingredients: a Besov estimate for the inhomogeneous inviscid equation (Proposition 2.3), a regularity estimate for the capillary Burgers equation (Proposition 2.5) and an inverse estimate for Besov norms on solutions of (K-S) (Proposition 2.7). The following sections (i.e. Section 3, 4 and 5) are devoted to the proofs. In the appendix, we recall definitions and a few classical results regarding Besov spaces.

General notations

We denote by D h the finite-difference operator

D h : u → u(x + h) -u(x), by L p the space L p ([0, T ] × [0, L]) and for k ∈ N, L > 0, by C k L = f ∈ C k (R), f is L -periodic .
For an L-periodic function u, the spatial Fourier transform is defined by:

F (u)(ξ) = L -1 L 0 exp(-i ξ x)u(x)d x
and for a Schwartz function φ:

F (φ)(ξ) = R exp(-i ξ x)φ(x)d x.
For v ∈ R, we let v + = max(v, 0) (and similarly, v -= max(-v, 0)).

Main theorem and structure of the proof

In this section, we state the main theorem and the results on which it is based (see the appendix for the definition and main properties of Besov spaces).

Main theorem

Theorem 2.1. Let L > 2. For a smooth L-periodic solution u with zero average of (K-S), there holds u

B 1/3 3,∞ + u B 2 2,2 = O(ln 1/2+ (L)). ( 7 
)
From this theorem, we derive by interpolation (57) the following corollary:

Corollary 2.2. Let L > 2.
For a smooth L-periodic solution u with zero average of (K-S) and for indices p, s and r related by

p ∈ [1/3, 2], s = 10/p -3, 1/r = 3(1/p -1/3),
we have u B s p,r = O(ln 1/2+ (L)).

Structure of the proof

The proof of Theorem 2.1 uses four important ingredients: a regularity result for Burgers equation (Proposition 2.3), a higher regularity estimate for the capillary Burgers equation (Proposition 2.5), an energy estimate (Lemma 2.6), and a result which allows us to "increase" the r index of Besov spaces (Proposition 2.7). Let us now sketch the proof, discarding lower-order terms (in particular all the terms contain-

ing g = -|∂ x | -1 ∂ 2 x u
) and taking borderline exponents in the estimates 2 . The strategy is graphically represented in Figure 2. The starting point is Proposition 2.3, which for s = 1, p = 5/2, r = 5/2 and ξ = -|∂ x | -1 ∂ 4

x u (recall also (59)), roughly says that . It is at this last stage that we lose a logarithm since [START_REF] Wittenberg | Scale and space localization in the Kuramoto-Sivashinsky equation[END_REF] gives

u 3 B 1/3 3,∞ u B 1 5/2,
• • 2/5 • 1/2 • 3/5 • 4/5 1/2 • • • • • Legend: • Interpolation • Energy estimate • Higher regularity • Increase of the index r • Estimate of the inhomogeneous Burgers equation • • • • • • 1/3 • • 2/5 • 1/2 • 3/5 • 4/5 1/
u B 1/3 3,3 ln 1/3 (L) u B 1/3 3,∞ .
Putting all these estimates together, we find

u B 1/3 3,∞ ln 1/2 (L),
which is [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF].

As mentioned, the first ingredient is an estimate for the inhomogeneous Burgers equation. A similar estimate was obtained in [START_REF] Otto | Optimal bounds on the Kuramoto-Sivashinsky equation[END_REF]Prop. 1]. A related inequality for the homogeneous Burgers equation has been recently derived in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF].

Let us consider the following inhomogeneous Burgers equation:

∂ t u + u∂ x u = |∂ x | g + |∂ x | ξ . ( 10 
)
Proposition 2.3 (Besov estimate for the inhomogeneous Burgers equation). Let ξ, g be smooth L-periodic functions. Then, for any smooth L-periodic solution u of [START_REF] Jolly | Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations[END_REF], there holds: For s ∈]0, 1[, r, r , p, p ∈ [1, +∞] verifying 1 r + 1 r = 1 and 1 p + 1 p = 1, there exists a constant c > 0 just depending on s, r, p such that:

u 3 B 1/3 3,∞ ≤c u B 1/3 3,∞ g B 2/3 3/2,1 + u B s p,r ξ B 1-s p ,r + u(0, •) 2 L 2 [0,L] . ( 11 
)
Therefore, taking the time-space average, it holds:

u 3 B 1/3 3,∞ ≤c u B 1/3 3,∞ g B 2/3 3/2,1 + u B s p,r ξ B 1-s p ,r . ( 12 
)
The proof of ( 11) is based on a modified Kármán-Howarth-Monin identity:

Lemma 2.4. Let η be a smooth L-periodic function and let u be a smooth L-periodic solution with zero average of

∂ t u + u∂ x u = η, ( 13 
)
then for h ∈ R, ∂ t 1 2 L 0 |D h u|D h ud x + ∂ h 1 6 L 0 |D h u| 3 d x = L 0 D h η|D h u|d x. ( 14 
)
The usual Kármán-Howarth-Monin identity [START_REF] Frisch | The legacy of A. N. Kolmogorov[END_REF] states that

∂ t 1 2 L 0 D h u 2 d x + ∂ h 1 6 L 0 D h u 3 d x = L 0 D h ηD h ud x. ( 15 
)
This formula can be easily checked by using equation ( 13) and the periodicity. The main difference between ( 15) and ( 14) is that in the latter, the coercive term

L 0 |D h u| 3 d x replaces the non-coercive term L 0 D h u 3 d x.
We will give two proofs of ( 14). The first is by a direct computation and the second uses the kinetic formulation of Burgers equation following ideas of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Therefore, this second proof gives a new, and hopefully interesting, interpretation of the arguments of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. The second ingredient is a higher regularity result for the capillary Burgers equation (see [14, Prop. 2, p. 14]).

Proposition 2.5 (Higher regularity). Let p, q

∈ [1, +∞[, α ∈ R satisfying: p + 1 ≤ q ≤ 2p, and α = (6 + α)p/q -3 ∈]0, 1[.
Then, there exists c > 0 such that, if u, g are smooth, L-periodic in x and satisfy

∂ t u + u∂ x u + ∂ 4 x u = |∂ x | g , the following estimate holds: u B 3+α p,p ≤ c u q/p B α q,q + g B α p,p . (16) 
Proposition 2.5 allows to jump from higher derivatives to smaller ones in Besov spaces. The proof, which we will not provide, is based on a narrow-band Littlewood-Paley decomposition.

The third ingredient is an elementary energy estimate, which directly bounds the

L 2 [0, T ], H 2 ([0, L]) ∼ = B 2
2,2 norm of a solution u of the inhomogeneous capillary Burgers equation.

Lemma 2.6 (Energy estimate). Let u be a smooth solution of:

∂ t u + u∂ x u + ∂ 4 x u = |∂ x | g . ( 17 
)
Then, the following estimate holds:

u B 2 2,2 ≤ c u 1/2 B 1/3 3,∞ g 1/2 B 2/3 3/2,1 . ( 18 
)
Proof. Since the proof is straightforward, we give it now. Integrating over the equation ( 17) over [0, T ] × [0, L], we get:

L 0 u(T, x) 2 d x - L 0 u(0, x) 2 d x = T 0 L 0 u |∂ x | g d xd t - T 0 L 0 (∂ 2 x u) 2 d xd t .
Therefore by (58)

T 0 L 0 ∂ 2 x u 2 d xd t ≤ L 0 u(0, x) 2 d x + u B 1/3 3,∞ g B 2/3 3/2,1
, taking then the time-space average yields the result.

As already mentioned, these three estimates will not be sufficient to conclude. We will also need an estimate relating Besov norms with different exponents r . One can easily see that if

r 1 > r 2 , then • B s p,r 1 ≤ • B s p,r 2
(it is a consequence of convexity inequality). In fact, it is possible to reverse the inequality for solutions of (K-S), but this comes with a price: a logarithm of the spatial period L appears. Proposition 2.7 (Increasing the index r ). There exists c > 0 such that, for all L ≥ 2, u solution of (K-S), the following estimate holds:

u B 1/3 3,3 ≤ c ln 1/3 (L) u B 1/3 3,∞ . ( 19 
)
3 Proof of Theorem 2.1

In this section, we derive the main theorem from the above propositions. We now consider the rescaled Besov norm B s p,r as a point (s, 1/p, 1/r ) in the space R3 . All the norms involved in our problem lie in the rectangle P of R 3 defined by 3 :

     s = 10/p -3, 1 p ∈ [0, 1], 1 r ∈ [0, 1].
Proof of Theorem 2.1. Let u be a solution of (K-S). It is convenient to introduce the abbreviation:

D(α) = u B 10α-3 α -1 ,α -1 D * (1/3) = u B 1/3 3,∞ . Notice that D (1/2) = u B 1/2 2,2
and

D (1/3) = u B 1/3 3,3
. With this notation, interpolation inequality (57) takes the form

D(α) ≤ D θ (α 1 )D 1-θ (α 2 ) (20) for α = θα 1 + (1 -θ)α 2 and θ ∈ [0, 1].
Letting s = 10α -3, p = α -1 and r = α -1 in (12) and using (59

) for ξ = -|∂ x | -1 ∂ 4 x u, ( 12 
) can be rewritten as

D 3 * (1/3) ≤ c D(α)D(1 -α) + D * (1/3) g B 2/3 3/2,1 , (21) 
for α ∈]3/10, 2/5[. In turn, ( 16) with p -1 = β, q -1 = γ and α = 10β -6 (which implies α = 10γ -3) gives

D(β) ≤ c D β/γ (γ) + g B 10β-6 β -1 ,β -1 , (22) 
for γ ∈]3/10, 2/5[ and γ 1-γ ≤ β ≤ 2γ. Finally, ( 18) is equivalent to

D (1/2) ≤ cD 1/2 * (1/3) g 1/2 B 2/3 3/2,1 , (23) 
and [START_REF] Wittenberg | Scale and space localization in the Kuramoto-Sivashinsky equation[END_REF] to

D (1/3) ≤ c ln 1/3 (L)D * (1/3) . ( 24 
)
Our first goal is to argue that for g = -|∂ x | -1 ∂ 2 x u, we can replace in the above estimates all the Besov norms involving g by D * (1/3). By ( 59) and (57),

g B 10β-6 β -1 ,β -1 ≤ c u B 10β-5 β -1 ,β -1 ≤ c u 1/2 B 10β-3 β -1 ,β -1 u 1/2 B 10β-7 β -1 ,β -1 = cD 1/2 (β) u 1/2 B 10β-7 β -1 ,β -1 .
Hence, in view of (23), Young's inequality and since by (59), g

B 2/3 3/2,1 ≤ c u B 5/3 3/2,1
, it will be enough to prove that

u B 10β-7 β -1 ,β -1 + u B 5/3 3/2,1 ≤ c(D * (1/3) + D (1/2)) (25) 
for β ∈]11/15, 4/5[ (which reduces the use of ( 22) to γ ∈]1/3, 2/5[). We can indeed prove more generally that for 1/3 < s < 2, p ≤ 2 and any q ≥ 1, there holds

u B s p,q ≤ c u B 2 2,2 + u B 1/3 3,∞ . (26) 
Thanks to Jensen's inequality, we have u

B s p,q ≤ u B s 2,q and u B 1/3 3,∞ ≥ u B 1/3 2,∞
. By monotonicity of the Besov norms with respect to the last index, there also holds

u B s 2,q ≤ u B s 2,1 and u B 2 2,2 ≥ u B 2 2,∞
. Therefore, we are left with proving that

u B s 2,1 ≤ c u B 1/3 2,∞ + u B 2 2,∞
.

By definition of the Besov norms, for 1/3 < s < 2,

u B s 2,1 = k≥0 2 k u k L 2 + k<0 2 k u k L 2 ≤ sup k 2 2k u k L 2 k≥0 2 -k + sup k 2 1 3 k u k L 2 k≤0 2 2 3 k ≤ c u B 1/3 2,∞ + u B 2 2,∞
, which after taking the average over time and space, finishes the proof of (26).

To sum up, we now have that (21), ( 22) and (23) together with (25) imply

D 3 * (1/3) ≤ c D(α)D(1 -α) + D 2 * (1/3) (27) for α ∈]3/10, 2/5[, D(β) ≤ c D β/γ (γ) + D * (1/3) (28) for γ ∈]1/3, 2/5[ and γ 1-γ ≤ β ≤ 2γ and D (1/2) ≤ cD * (1/3) . ( 29 
)
We now gather the above estimates in order to bound D * (1/3). Passing to the logarithm in the above inequalities, we see that optimizing the parameters to get the best power of ln(L) is equivalent to a linear programming problem. Its solution thus lie at the boundaries of the admissible domain. It is not hard to see that in particular, we want to take

β 2 = γ = α with α as close as possible to 2/5. Let θ, η ∈]0, 1[ be such that (1 -α) = θβ + (1 -θ) 1 2 and α = η 1 2 + (1 -η) 1 3 ,
so that θ is close to 1/3 and η is close to 2/5. Thanks to (20),

D(1 -α) ≤ D θ (β)D 1-θ (1/2) and D(α) ≤ D η (1/2)D 1-η (1/3). ( 30 
)
Since we can assume that D * (1/3) ≥ 1, we get from ( 27), ( 30) and (28),

D 3 * (1/3) ≤ cD(α) D 2θ (α) + D θ * (1/3) D 1-θ (1/2) ≤ c D 1+2θ (α)D 1-θ * (1/3) + D(α)D * (1/3) ,
where in the last inequality, we used (29). From (30), ( 29) and (24), we deduce

D 3 * (1/3) ≤ c D 2+θ * (1/3) ln 1 3 (1+2θ)(1-η) (L) + D 2 * (1/3) ln 1-η 3 (L) .
Dividing by D 2 * (1/3) this inequality and noticing that for η close to 2/5,

1-η 3 is close to 1/5, we obtain that if D * (1/3) ≥ ln 1-η 3 (L), then D * (1/3) ≤ cD θ * (1/3) ln 1 3 (1+2θ)(1-η) (L),
which gives finally

D * (1/3) ≤ c ln 1 3 (1+2θ)(1-η) 1-θ (L)
and thus the result since lim θ↑1/3,η↑2/5

1 3 (1+2θ)(1-η) 1-θ = 1/2.

Proof of Proposition 2.3

For the reader's convenience, let us recall the statement of Proposition 2.3. Let u be a smooth solution of the following inhomogeneous Burgers equation:

∂ t u + u∂ x u = |∂ x | g + |∂ x | ξ . ( 31 
)
Proposition. Let ξ, g be smooth L-periodic functions. Then, for any smooth L-periodic solution u of (31), there holds: For s ∈]0, 1[, r, r , p, p ∈ [1, +∞] verifying 1 r + 1 r = 1 and

1 p + 1 p = 1
, there exists a constant c ∈ R * + just depending on s, r, p such that:

u 3 B 1/3 3,∞ ≤c u B 1/3 3,∞ g B 2/3 3/2,1 + u B s p,r ξ B 1-s p ,r + u(0, •) 2 L 2 [0,L] .
Before proceeding further, let us remark that, by approximation, this applies to any (possibly non smooth) entropy solution of Burgers equation (31). Indeed, if we consider a solution u of ∂ t u -u∂ x u -ε∂ 2 x u = 0, then it is a smooth solution of (31) with g = 0 and ξ = ε |∂ x | u. A careful inspection of the proof of Proposition 2.3 shows that for p = r = 2 it extends to s = 1, yielding

u 3 B 1/3 3,∞ ≤ c u B 1 2,2 ξ B 0 2,2 + u(0, •) 2 L 2 [0,L] ,
that is u 3

B 1/3 3,∞ ≤ c ε ∂ x u 2 L 2 + u(0, •) 2 L 2 [0,L] .
Combining this with the energy inequality:

ε ∂ x u 2 L 2 ≤ c u(0, •) 2 L 2 [0,L] ,
gives

u 3 B 1/3 3,∞ ≤ c u(0, •) 2 L 2 [0,L] ,
which passes to the limit as ε → 0. The indices are optimal in the light of the result of De Lellis and Westdickenberg [START_REF] Lellis | On the optimality of velocity averaging lemmas[END_REF] which states that we cannot hope to have more regularity, in the sense that the Besov index s cannot be better than 1/3.

As already pointed out, the proof of the aimed estimate is based on a modified Kármán-Howarth-Monin identity: Lemma 4.1. Let η be a smooth L-periodic function and let u be a smooth L-periodic solution with zero average of

∂ t u + u∂ x u = η (32) then for h ∈ R, ∂ t 1 2 L 0 |D h u|D h ud x + ∂ h 1 6 L 0 D h u 3 d x = L 0 D h η D h u d x. ( 33 
)
Proof. By periodicity, (33) will be a direct consequence of the following pointwise identity:

1 2 ∂ t |D h u|D h u + 1 6 ∂ h D h u 3 + 1 2 ∂ x u|D h u|D h u + 1 3 |D h u| 3 = D h η D h u . ( 34 
)
For simplicity, let us introduce the notation

u h (x) = u(x + h) (so that D h u = u h -u).
Using (32) we get:

1 2 ∂ t |D h u|D h u + 1 6 ∂ h D h u 3 = |D h u|∂ t (D h u) + 1 2 D h u D h u∂ x u h = D h u D h η -u∂ x u + 1 2 D h u u h ∂ x u h -u∂ x u h = D h η D h u + 1 2 D h u 2u∂ x u -u∂ x u h -u h ∂ x u h .
It remains to prove that

|D h u| 2u∂ x u -u∂ x u h -u h ∂ x u h = -∂ x u|D h u|D h u + 1 3 |D h u| 3 . ( 35 
)
We start with

|D h u|2u∂ x u = -u 2 ∂ x |D h u| + ∂ x |D h u|u 2
and

|D h u|u∂ x u h = -∂ x |D h u|u u h + ∂ x |D h u|uu h = -uu h ∂ x |D h u| -u h |D h u|∂ x u + ∂ x |D h u|uu h , to get |D h u| 2u∂ x u -u∂ x u h -u h ∂ x u h = -u 2 ∂ x |D h u| + ∂ x |D h u|u 2 + uu h ∂ x |D h u| + u h |D h u|∂ x u -∂ x |D h u|uu h -|D h u|u h ∂ x u h = -∂ x u|D h u|D h u + uD h u∂ x |D h u| -u h |D h u|∂ x D h u. But since D h u∂ x |D h u| = |D h u|∂ x D h u, then |D h u| 2u∂ x u -u∂ x u h -u h ∂ x u h = -∂ x u|D h u|D h u -|D h u|D h u∂ x D h u = -∂ x u|D h u|D h u + 1 3 |D h u| 3 ,
which concludes the proof of (35).

Remark. Arguing along the same lines, one can prove that more generally, if a is nonnegative and if u is a smooth solution with zero average of

∂ t u + ∂ x [a(u)] = η (36) then ∂ t 1 2 L 0 |D h u|D h ud x + ∂ h L 0 |D h u|(a(u) + a(u h )) -2|A(u h ) -A(u)|d x = L 0 D h η D h u d x,
where A = a. Notice that Burgers equation corresponds to (36) with a(u) = 1 2 u 2 . If a is C 1 and monotone in the sense that there exist β ≥ 1 and C > 0, such that for v ≥ w,

a (v) -a (w) ≥ C (v -w) β ,
then one can obtain a similar estimate to (11) by using that for ū ≥ u

( ū -u)(a( ū) + a(u)) -2(A( ū) -A(u)) = ū u ū w (a (v) -a (w))d vd w ≥ C | ū -u| β+2 .
In this way, one can fully recover the results from [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF].

We now give an alternative proof of (the integrated form of ) (33) following ideas from [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. This proof uses the kinetic formulation of the inhomogeneous Burgers equation together with the use of an interaction identity (see (43)).

Lemma 4.2. Let η be a smooth L-periodic function and let u be a smooth L-periodic solution with zero average of

∂ t u + u∂ x u = η, ( 37 
)
then for h ∈ R,

1 2 h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0 + 1 6 T 0 L 0 D h u 3 d xd t = T 0 L 0 h 0 D ∆ η D ∆ u d ∆d xd t . ( 38 
)
Proof. Before starting the proof, let us point out that since we have a direct proof of (33), we will not take care of regularity issues. Nevertheless, all passages can be rigorously justified by a suitable approximation argument.

Step 1. Without loss of generality, we can assume that h > 0. Letting:

f (t , x, v) = 1 if v ≤ u(t , x), 0 if v > u(t , x),
equation ( 37) is equivalent to the following kinetic formulation (see [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]):

∂ t f (t , x, v) + v∂ x f (t , x, v) = -∂ v f (t , x, v)η(t , x). ( 39 
)
Notice that since u is bounded, D h f is integrable even though f is not. We are going to compute only integrals depending on D h f and will therefore not have to deal with integrability issues. As in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]Lem. 4.3], we define:

M u (v) = 1 if v ≤ u, 0 if v > u.
We first claim that for all u, ū ∈ R the following equality holds:

1 6 |u -ū| 3 = R R 1 R + (v -w) (v -w) (M u (v) -M ū (v)) (M u (w) -M ū (w)) d vd w. ( 40 
)
Without loss of generality, we can suppose that u ≥ ū. Then:

M u (v) -M ū (v) = 1 ] ū,u[ (v).
Thus (40) follows from:

R R 1 R+ (v -w) (v -w) (M u (v) -M ū (v)) (M u (w) -M ū (w)) d vd w = R R 1 R+ (v -w)1 ] ū,u[ (v)1 ] ū,u[ (w) (v -w)d vd w = u ū u w (v -w)d vd w = 1 6 |u -ū| 3 .
Letting

Q(h) = T 0 L 0 R × R 1 R+ (v -w) (v -w)D h f (t , x, v)D h f (t , x, w)d vd wd xd t ,
we see that proving (38) is equivalent to

Q(h) = T 0 L 0 h 0 D ∆ η D ∆ u d ∆d xd t - 1 2 h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0 . ( 41 
)
Step 2. To cope with the quantity Q, the main tool is the following interaction identity (see [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]), which have been introduced first by Varadhan ([18, Lem. 22.1]): Let A, B , C , D, E , F : [0, T ] × [0, L] → R be functions satisfying the following system

∂ t A + ∂ x B = C , ∂ t D + ∂ x E = F, ( 42 
)
and having zero spatial average. Then the following identity holds:

T 0 L 0 (AE -B D) = T 0 L 0 A(t , x) x 0 F (t , y)d y d xd t + T 0 L 0 C (t , x) x 0 D(t , y)d y d xd t (43) - L 0 x 0 A(t , x)D(t , y)d yd x t =T t =0
. Indeed, by Taylor expansion:

T 0 L 0 A(t , x)E (t , x)d xd t = T 0 L 0 x 0 A(t , x)∂ x E (t , y)d yd xd t - T 0 L 0 A(t , x)E (t , 0)d xd t .
Since A has zero spatial average, the second term vanishes. Using equation (42) to compute the first term and integrating by parts, we get:

T 0 L 0 x 0 A(t , x)∂ x E (t , y)d yd xd t = T 0 L 0 x 0 A(t , x)F (t , y)d yd xd t - T 0 L 0 x 0 A(t , x)∂ t D(t , y)d yd xd t = T 0 L 0 x 0 A(t , x)F (t , y)d yd xd t + T 0 L 0 x 0 ∂ t A(t , x)D(t , y)d yd xd t - L 0 x 0 A(t , x)D(t , y)d yd x t =T t =0
.

Let us now compute more precisely the second term, using (42):

T 0 L 0 x 0 ∂ t A(t , x)D(t , y)d yd xd t = T 0 L 0 x 0 C (t , x)D(t , y)d yd xd t - T 0 L 0 ∂ x B (t , x) x 0 D(t , y)d yd xd t = T 0 L 0 x 0 C (t , x)D(t , y)d yd xd t + T 0 L 0 B (t , x)D(t , x)d xd t ,
which concludes the proof of (43).

Step 3. We apply the interaction identity to:

   A(t , x, v) = D h f (t , x, v), D(t , x, w) = A(t , x, w), B (t , x, v) = vD h f (t , x, v), E (t , x, w) = B (t , x, w), C (t , x, v) = -∂ v D h ( f (t , x, v)η(t , x)), F (t , x, w) = C (t , x,

w).

Note that A,B ,C ,D,E ,F implicitly depend on h. Multiplying each side of the identity by 1 R+ (vw) and integrating it, we get:

Q(h) = - R × R 1 R+ (v -w) T 0 L 0 (A(t , x, v)E (t , x, w) -B (t , x, v)D(t , x, w)) d xd t d vd w = - R × R 1 R+ (v -w) T 0 L 0 A(t , x, v) x 0 F (t , y, w)d y d xd t d vd w - R × R 1 R+ (v -w) T 0 L 0 C (t , x, v) x 0

D(t , y, w)d y d xd t d vd w

+ R × R 1 R+ (v -w) L 0 x 0 A(t , x, v)D(t , y, w)d yd x t =T t =0 d vd w. = - R × R 1 R+ (v -w) T 0 L 0 A(t , x, v) x 0 F (t , y, w)d y d xd t d vd w - R × R 1 R+ (w -v) T 0 L 0 F (t , y, w) y 0 A(t , x, v)d x d yd t d vd w + R × R 1 R+ (v -w) L 0 x 0 A(t , x, v)D(t , y, w)d yd x t =T t =0 d vd w. =Q 1 +Q 2 +Q 3 .
But, by periodicity,

y 0 A(t , x, w)d x = - L y A(t , x, w)d x, and thus L 0 F (t , y, v) y 0 A(t , x, w)d x d y = - L 0 A(t , x, w) x 0 F (t , y)d y d x.
Therefore,

Q 2 = R × R 1 R+ (w -v) T 0 L 0 A(t , x, v) x 0 F (t ,

y, w)d y d xd t d vd w.

Step 4. In the next two steps, the time variable plays no role. We will therefore consider

Q 1 = - R × R 1 R+ (v -w) L 0 A(x, v) x 0 C (y, w)d y d xd vd w and Q 2 = R × R 1 R+ (w -v) L 0 A(x, v) x 0 C (y, w)d y d xd vd w.
By definition of A and C , we have

Q 1 -Q 2 = - R × R L 0 D h f (x, v) x 0 ∂ v D h ( f (y, w)η(y))d y d xd vd w = L 0 D h u(x) x 0 D h η(y)d y d x.
The y-integral then telescopes to:

Q 1 -Q 2 = L 0 D h u(x) x+h x - h 0 η(y)d yd x.
Since by periodicity we have,

L 0 D h u(x)d x = 0, this reduces to Q 1 -Q 2 = L 0 D h u(x) x+h x η(y)d yd x = L 0 η(y) y y-h D h u(x)d xd y = L 0 h 0 η(y)(u(y + ∆) -u(y -∆))d yd ∆. ( 44 
)
Step 5. Here we argue that

Q 1 +Q 2 = L 0 h 0 D ∆ η D ∆ u d ∆d x. ( 45 
)
For this we prove first that

Q 1 = 1 2 h 0 L 0 D ∆ η D ∆ u + η(u(x -∆) -u(x + ∆))d xd ∆. (46) 
Indeed, combined with (44), this would give,

Q 1 +Q 2 = 2Q 1 -(Q 1 -Q 2 ) = L 0 h 0 D ∆ η D ∆ u d ∆d x.
which is (45). By definition of A and C :

Q 1 = R × R 1 R+ (v -w) L 0 D h f (x, v) x 0 ∂ v D h f (y, w)η(y) d y d xd vd w = +∞ -∞ L 0 D h f (x, v) v -∞ x 0 ∂ v D h f (y, w)η(y) d yd wd xd v = +∞ -∞ L 0 D h f (x, v) x 0 D h f (y, v)η(y) -D h η(y)d yd xd v.

Arguing as in

Step 4, we find

Q 1 = L 0 η(y) h 0 +∞ -∞ D h f (y -x, v) f (y, v) -1 d xd v d y.
After changing the names of the variables to y = x and x = ∆ we obtain

Q 1 = L 0 η( x) h 0 +∞ -∞ D h f ( x -∆, v) f ( x, v) -1 d ∆d v d x
Dropping the tildas, we can rewrite the inner term using the definition of f as:

h 0 +∞ -∞ D h f (x -∆, v)( f (x, v) -1)d ∆d v = h 0 +∞ -∞ ( f (x + ∆, v) -f (x -∆, v))( f (x, v) -1)d vd ∆ = - h 0 u(x)∨u(x+∆)∨u(x-∆) u(x) f (x + ∆, v) -f (x -∆, v)d vd ∆ = - h 0 D ∆ u + -D -∆ u + d ∆.
We thus find

Q 1 = - L 0 h 0 η D ∆ u + -D -∆ u + d ∆d x. 20 Using that L 0 η D ∆ u + d x = L 0 η(x -∆) D -∆ u -d x,
and similarly

L 0 η D -∆ u + d x = L 0 η(x -∆) D ∆ u -d x,
we obtain

Q 1 = 1 2 h 0 L 0 D ∆ η D ∆ u + -D -∆ η D -∆ u + + η -∆ D -∆ u -η ∆ D ∆ ud xd ∆ = 1 2 h 0 L 0 D ∆ η D ∆ u + -D -∆ η D -∆ u + + η(u(x -∆) -u(x + ∆))d xd ∆ = 1 2 h 0 L 0 D ∆ η D ∆ u + η (u(x -∆) -u(x + ∆)) d xd ∆,
which is (46). If we now integrate (45) over time, we find

Q 1 +Q 2 = T 0 L 0 h 0 D ∆ η|D ∆ u|d ∆d xd t . ( 47 
)
Step 6. We finally argue that

Q 3 = - 1 2 h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0 . ( 48 
)
Let us recall that by definition of A:

Q 3 = R × R 1 R+ (v -w) L 0 x 0 D h f (t , x, v)D h f (t , y, w)d yd xd vd w t =T t =0
.

As above:

Q 3 = - L 0 h 0 +∞ -∞ v -∞ f (t , x, v)( f (t , x + ∆, w) -f (t , x -∆, w)d wd vd ∆d x t =T t =0 and, v -∞ ( f (t , x + ∆, w) -f (t , x -∆, w)d w = (u(t , x + ∆) -v ∧ 0) -(u(t , x -∆) -v ∧ 0). Therefore +∞ -∞ v -∞ f (t , x, v)( f (t , x + ∆, w) -f (t , x -∆, w)d wd v = u(t ,x) -∞ v -∞ ( f (t , x + ∆, w) -f (t , x -∆, w)d wd v = u(t ,x) -∞ (u(t , x + ∆) -v ∧ 0) -(u(t , x -∆) -v ∧ 0)d v = u(t ,x) (u(t ,x+∆)∧u(t ,x)) u(t , x + ∆) -vd v - u(t ,x) (u(t ,x-∆)∧u(t ,x)) u(t , x -∆) -vd v which, using that for a, b ∈ R, b (a∧b) (a -v)d v = - 1 2 ((a -b ∧ 0)) 2
gives

Q 3 = 1 2 L 0 h 0 (u(t , x + ∆) -u(t , x) ∧ 0) 2 -(u(t , x -∆) -u(t , x) ∧ 0) 2 d ∆d x t =T t =0 = 1 2 L 0 h 0 D ∆ u 2 --D -∆ u 2 -d ∆d x t =T t =0 = 1 2 L 0 h 0 D ∆ u 2 --D ∆ u 2 + d ∆d x t =T t =0 = - 1 2 L 0 h 0 |D ∆ u|D ∆ ud ∆d x t =T t =0
which proves (48). Combined with (47), this yields (41).

We can now prove Proposition 2.3

Proof of Proposition 2.3. By linearity, it is enough proving the estimate for g = 0. Thanks to (38) applied to η = |∂ x | ξ, we have

T 0 L 0 D h u 3 d xd t = 6 T 0 L 0 h 0 D ∆ η D ∆ u d ∆d xd t -3 h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0
Thanks to Theorem A.1, for s < 1 and every function v, |v| B s p,r ≤ c v B s p,r (notice that it also holds for s = 1 if p = r = 2). Using the triangle inequality and the invariance of the Besov norms with respect to translations, we obtain that for s ∈ (0, 1),

|D ∆ u| B s p,r
≤ c u B s p,r . Applying (58) we get

T 0 L 0 h 0 D ∆ η D ∆ u d ∆d xd t = T 0 L 0 h 0 |∂ x | D ∆ ξ D ∆ u d ∆d xd t ≤ 1 π h 0 D ∆ ξ B 1-s p ,r D ∆ u B s p,r ≤ ch ξ B 1-s p ,r u B s p,r .
On the other hand, since

h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0 ≤ ch L 0 u(0, x) 2 + u(T, x) 2 d x,
and since multiplying the equation ( 31) by u and integrating gives,

L 0 1 2 u(T, x) 2 d x - L 0 1 2 u(0, x) 2 d x = T 0 L 0 ∂ t 1 2 u 2 d xd t = T 0 L 0 u |∂ x | ξ d xd t ≤c ξ B 1-s p ,r u B s p,r ,
we have

h 0 L 0 |D ∆ u|D ∆ ud xd ∆ T 0 ≤ ch ξ B 1-s p ,r u B s p,r + u(0, •) 2 L 2 .
Putting this together, we find

1 h T 0 L 0 D h u 3 d xd t ≤ c ξ B 1-s p ,r u B s p,r + u(0, •) 2 L 2
which concludes the proof.

Remark. Starting from (33), one can obtain a larger family of estimates for the inhomogeneous Burgers equation. Unfortunately, the estimate

u 3 B 1/3 3,3 ≤c u B 1/3 3,3 g B 2/3 3/2,3/2 + u B s p,r ξ B 1-s p ,r + u(0, •) 2 L 2 ,
which would allow to avoid the logarithmic correction in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF], is borderline.

Proof of Proposition 2.7

Let us remind the reader the statement we want to prove:

Proposition (Comparison between Besov norms of different index r ). There exists c > 0 such that, for all L > 2, for every u solution of (K-S) with average zero, the following estimate holds:

u B 1/3 3,3 ≤ c ln 1/3 (L) u B 1/3 3,∞ . ( 49 
)
Proof. The proof is elementary and resembles [14, Prop. 4 II), Step 2 &3]. Let us first cut the term that we want to bound in three parts:

+∞ 0 D h u 3 L 3 h d h h = 0 D h u 3 L 3 h d h h + L D h u 3 L 3 h d h h + +∞ L D h u 3 L 3 h d h h =A( ) + B ( ) +C .
The large scale term C is in fact controlled by A( ) and B ( ) by periodicity. Indeed:

C = +∞ L D h u 3 L 3 h d h h = +∞ n=1 (n+1)L nL D h u 3 L 3 h d h h ≤ +∞ n=1 1 n 2 L 0 D h u 3 L 3 h d h h ≤c (A( ) + B ( )) .
The intermediate scale term B ( ) is directly handled with thanks to u B 1/3 3,∞ :

B ( ) = L D h u 3 L 3 h d h h ≤ sup h∈R * + D h u 3 L 3 h L d h h ≤ ln(L/ ) u 3 B 1/3 3,∞ .
The small scale term A( ) is the most difficult to bound. We shall prove that:

A( ) ≤ c L 0 u(0, x) 2 d x 3/2 + L 3/2 u 3 B 1/3 3,∞ . ( 50 
)
Before proceeding with the proof of (50), let us show that it is sufficient to conclude. Indeed, fix now = L -3/2 . Then, we obtain:

+∞ 0 D h u 3 L 3 h d h h ≤ c ln(L) u 3 B 1/3 3,∞ + c 1 L L 0 u(0, x) 2 d x 3/2
.

Taking now the time-space average yields (49). It remains to prove (50).

First, we prove that:

T 0 L 0 D h u 3 d xd t ≤ ch 2 L 0 u(0, x) 2 d x 3/2 + T 0 L 0 u 2 d x 3/2 d t . ( 51 
)
We start by noting that:

L 0 D h u(t , x) 3 d x ≤2 sup x∈[0,L] |u(t , x)| L 0 x+h x ∂ x u(t , y)d y 2 d x ≤2 sup x∈[0,L] |u(t , x)| 2 L 0 (∂ x u) 2 d x.
For the convenience of the reader, we recall the argument for

sup x∈[0,L] |u| ≤ c L 0 u 2 d x 1/4 L 0 (∂ x u) 2 d x 1/4 . (52) 
In fact, starting from:

u 2 (t , x) = u 2 (t , y) + x y 1 2 u(t , z)∂ x u(t , z)d z ∀y ∈ [0, L],
and using that u has zero average and thus vanishes somewhere, Cauchy-Schwarz inequality immediately gives (52). Therefore,

L 0 D h u 3 d x ≤ch 2 L 0 u 2 d x 1/4 L 0 (∂ x u) 2 d x 5/4
, and using the following Sobolev inequality (which can easily be proved by using Fourier methods):

L 0 (∂ x u) 2 d x ≤ L 0 u 2 d x 1/2 L 0 ∂ 2 x u 2 d x 1/2
, we get:

L 0 D h u 3 d x ≤ch 2 L 0 u 2 d x 7/8 L 0 ∂ 2 x u 2 d x 5/8 . ( 53 
)
Now, we have to work a bit to extract information from the energy identity. Multiplying (K-S) by u and integrating over x, we obtain:

d d t L 0 u 2 d x =2 L 0 (∂ x u) 2 d x -2 L 0 ∂ 2 x u 2 d x ≤2 L 0 u 2 d x 1/2 L 0 ∂ 2 x u 2 d x 1/2 -2 L 0 ∂ 2 x u 2 d x ≤ L 0 u 2 d x - L 0 ∂ 2 x u 2 d x.
In a first step, we get from this differential inequality that there exists c > 0 such that:

L 0 u 2 (t + s, x)d x ≤ c L 0 u 2 (t , x)d x ∀s ∈ [0, 1]. (54) 
In a second step, we get:

L 0 u 2 (t + 1, x)d x - L 0 u 2 (t , x)d x ≤ t +1 t L 0 u 2 d xd s - t +1 t L 0 ∂ 2 x u 2 d xd s.
The combination of both implies:

t +1 t L 0 ∂ 2 x u 2 d xd s + sup s∈[t ,t +1] L 0 u 2 (s, x)d x ≤ c L 0 u 2 (t , x)d x. (55) 
Hence, together with (53) in the form of 

D h u 3 d xd s ≤ C h 2 L 0 u 2 (t , x)d x 3/2 .
Using this inequality for t = 0 and in its integrated form between zero and T , we obtain (51).

We now claim that

T 0 L 0 u 2 d x 3/2 d t ≤ L 3/2 u 3 B 1/3 3,∞ . (56) 
Indeed, using Hölder's inequality, the fact that u has zero average and Jensen's inequality we obtain:

T 0 L 0 u 2 (t , x)d x 3/2 d t ≤L 1/2 T 0 L 0 u(t , x) - 1 L L 0 u(t , h)d h 3 d xd t ≤L -1/2 T 0 L 0 L 0 |u(t , x) -u(t , x + h)| 3 d hd xd t ≤L 1/2 L 0 T 0 L 0 |u(t , x + h) -u(t , x)| 3 h d xd t d h ≤L 3/2 sup h∈R + T 0 L 0 D h u(t , x) 3 h d xd t .
Conclusion Putting together (51) and (56), we get as desired 

A( ) = 0 T 0 L 0 D h u 3 d xd t d h h 2 ≤c 0 d h L 0 u(0, x) 2 d x 3/2 + L 3/2 u 3 B 1/3 3,∞ ≤c L 0 u(0, x) 2 d x 3/2 + L 3/2 u 3 B 1/3

A Besov spaces

A.1 Definition of time-space Besov spaces

We recall here some basics of the theory of Besov spaces. We refer to [1, Chapter 2, p. 51-121], for the construction of a dyadic Littlewood-Paley decomposition, and most of the proofs. Definition A.1 (Dyadic Littlewood-Paley decomposition). Let φ k k∈Z be a family of Schwartz functions such that their Fourier transforms F φ k k∈Z satisfy:

F (φ 0 )(ξ) = 0 ∀ |ξ| ∉ 2 -1 , 2 , F (φ k )(ξ) = F (φ 0 ) 2 -k ξ ∀k ∈ Z, ∀ ξ ∈ R, k∈Z F (φ k )(ξ) = 1 ∀ ξ ∈ R .
Then, for a L-periodic function u, we define its Littlewood-Paley decomposition as:

u k (t , •) = φ k * u(t , •)
where * denotes the periodic convolution. This allows us to define time-space Besov space B s p,r for s ∈

[0, +∞], p ∈ [1, ∞], r ∈ [1, ∞]
by the set of functions such that:

u B s p,r = k∈Z 2 r sk u k r L p 1/r < ∞ if r < ∞, u B s p,r = sup k∈Z 2 sk u L p < ∞ if r = ∞.
We are actually interested in a rescaled homogeneous Besov norm, defined by: We derive from this identity the following Besov estimate (see also [14, Step. 

u B s p,r = lim sup T →+∞ 1 (LT )
Proof. The proof is analogous to [14, Step 1 p. 17]. By definition, we have:

h k = φ k * h.
Therefore, using the properties of convolution and of the quasi-orthogonality of the dyadic partition of unity we get:

h k = φ k * k ∈[k-1;k+1] φ k * h = |∂ x | -1 ∂ m x φ k * k ∈[k-1,k+1] u k .
Then, using Young's inequality, we obtain:

h k L p ≤ R |∂ x | -1 ∂ m x φ k d x k ∈[k-1,k+1] u k L p ≤2 k(m-1) R |∂ x | -1 ∂ m x φ 0 d x k ∈[k-1,k+1] u k L p ≤c2 k(m-1) k ∈[k-1,k+1] u k L p .

1 p 1 θ r 1 + 1 -θ r 2 , 0 φL 0 D h φD h g d x d h h 2 . 0 φ

 111120020 particularly well adapted for interpolation as seen from the following theorem:Theorem A.2 (Interpolation between Besov spaces). Let (s, p, r ), (s 1 , p 1 , r 1 ), (s 2 , p 2 , r 2 ) ∈ R + ×[1, +∞] 2 , and u ∈ B s with θ ∈]0, 1[, then u ∈ B sp,r and: follows from the definition of the Besov norms and an application of Hölder's inequality. In some lemmas that we will enunciate later, we will use the partial derivative |∂ x | which is slightly different from the classical ∂ x . It is defined via Fourier series:|∂ x | : underlines a link between Besov spaces and the operator |∂ x |:Lemma A.3. For all φ, g ∈ C 1 L (R): L |∂ x | g d x = 1 π +∞ 0Proof. Let us expand φ and g in Fourier series as can explicitly compute on the one hand:L |∂ x | g d x = n∈Z 2π |n| φ n g -n ,and on the other hand: hn -1 φ n e -2i π L hn -1 g -n

4 . 1 p = 1 and 1 r + 1 r = 1 , 0 D h φD h g d xd t d h h 2 .Lemma A. 5 .

 41111025 Let φ, g ∈ C 1 L (R). Then, for all p, p , r, ∈ [1, +∞], with1 p + for all s ∈]0, 1[ the following estimate holds:Then, Hölder's inequality leads us to the result: a useful lemma relating Besov norms of derivatives.Let s > 0, p, r ∈ [1, ∞], m ∈ N and u ∈ B s+m-1 p,r . Suppose h = |∂ x | -1 ∂ m x u.Then there exists a positive constant c depending only on (s, p, r ) such that the following estimate holds: h B s p,r ≤ c u B s+m-1 p,r .

  

  However, since we have a relatively simple and self-contained argument for it, we preferred to include it.

3,∞ . Remark. As in [14, Prop. 4 II), Step 2 &3], we could have used an L ∞ (in time) bound on L 0 u 2 d x (proven for instance in [5, Prop. 4]) to get (50) directly.

we use the notation O(ln 5/3+ (L)) to indicate that for every κ > 5/3, there exists c > 0 such that the left-hand side is bounded by c ln κ (L).

Let us stress that we cannot reach these exponents since some of the constants (in particular the one in (8)) explode.

See Figure 2 in Section 3.2 which represents the strategy in P .
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Hence:

which implies the aimed inequality.