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The effect of spanwise clearance on the critical velocity for fluttering of a cantilevered plate in a

channel flow is addressed experimentally. It is found that the critical velocity is influenced by the

presence of the walls when the ratio between the clearance and the length of the plate C/L is less than

0.1 and slowly converges to the critical velocity predicted by models considering infinite span plates.

These results are in good agreement with the predictions of a potential flow model taking into

account spanwise confinement. VC 2011 American Institute of Physics. [doi:10.1063/1.3662127]

The rest position of a cantilevered plate interacting with

an axial flow becomes unstable at a critical value of the ve-

locity. Oscillations of large amplitude are then observed.

This phenomenon, referred to as flutter, is considered as a

model for oscillatory instabilities encountered in many prac-

tical situations, such as snoring,1,2 fluid-elastic instabilities

in nuclear engineering,3 panel flutter in aeronautics,4 or

vibrations in the paper industry.5 Plate’s fluttering has also

recently been revisited in the context of energy harvesting of

flows using induction6 or piezoelectricity.7,8

The 2D problem of a beam of finite length and infinite

span in a potential flow has been first solved by Kornecki

et al.4 Many other 2D models and numerical simulations fol-

lowed.9 As these 2D works always underestimated the criti-

cal velocity when compared to experimental data, a 3D

model for the flow was proposed by Eloy et al.10 Involving

matching slender-body theory to 2D theory, this model evi-

denced the influence of the plate’s aspect ratio on the critical

velocity and was found to improve the flutter limit predic-

tions.11 It was, however, admitted that it is possible to

approach the limit predicted by 2D models by adding hori-

zontal walls near both edges of the plate.1 A few experimen-

tal studies,1,2,12 although not focused on this particular

effect, investigated such geometries. A reduction of the criti-

cal velocity was found but not important enough to reach the

2D limit, raising the question of the validity of the above

mentioned assumption. This motivated the development of a

3D model taking into account the effect of spanwise bounda-

ries, as proposed by Doaré et al.13 This model involves a

matching between extended versions of the slender-body and

2D theories that take into account the spanwise confinement.

The main result of the latter work is that the 2D limit is

indeed reached when the gap tends to zero but with such a

slow convergence that it should be almost impossible to

attain this limit experimentally. Hence, it is now necessary to

assess the validity of this improved 3D model with new ex-

perimental data. Even if the 2D limit is indeed impossible to

reach, asymptotic behavior could be verified. This is the

objective of the experimental work presented here. In the fol-

lowing, the 3D model of Eloy et al.10 will be referred to as

the 3D1 model, as it considers a 3D unbounded flow. The

3D model of Doaré et al.13 will be referred to as the 3Dc

model, as it considers a 3D flow with a clearance c between

the plate and the wall.

The organisation of the letter is as follows: First, the

experimental setup is described. Second, experimental results

of critical velocities as functions of various parameters are

presented. Finally, a discussion of the results is given.

The experimental setup is sketched on Fig. 1. It consists

of a plexiglass rectangular wind tunnel of 10 cm width and

4 cm height connected upstream and downstream to a circular

section of 9 cm internal radius through a smooth convergent

and divergent. At the downstream end, a centrifugal fan regu-

lated by a frequency inverter drives the flow, and the upstream

circular section is connected to a convergent with a honey-

comb screen. The height of the wind tunnel can be decreased

by adding two additional plexiglass plates (see Fig. 1(c)).

When smaller and more precise variations are desired, succes-

sive layers of adhesive tapes are added on both walls.

A mast is fixed in the wind tunnel and two steel plates are

clamped in the mast. Mylar sheets are tightened between the

steel plates so that the effective position of the clamped end of

the flag under test is the downstream end of the steel plates.

The Mylar sheets have a surface density of 0.21 kg m�2. The

value of their flexural rigidity D has been evaluated by meas-

uring the first mode oscillation frequency of the flags in still

air and has been found to be D¼ 8� 10�4 m2 kg s�2. It

should be noted that although the Mylar sheets under study

are formally plates, they will be often be referred to as “flags”

due to their fluttering nature.

The flow velocity data of the present paper come from

two sensors: a static-pitot tube and a hot-wire, placed at the

exact inlet of the rectangular test section, as shown in Fig. 1.

At this position, the channel is always of 4 cm height. Hence,

when the flag is in a smaller channel (as in Fig. 1(c)), the

velocity is estimated by assuming that the flow profile is con-

stant and by invoking conservation of the flow rate. The

unsteady deflection of the flag is measured with a laser dis-

placement sensor (Keyence LK-G37) at an arbitrary position.

Time series of the displacement is analysed in real time

using LABVIEW software to compute the rms value of the

plate’s deflection.

The boundary layer thickness on the upper and lower

walls of the channel has been quantified by performing flowa)Electronic mail: olivier.doare@ensta.fr.
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profile measurements at different values of the inlet flow

velocity. At the pitot tube’s location, the boundary layer is so

small that it is not perceptible. The constant flow profile

assumption is hence fully satisfied here. At a location near

the flag’s clamp, for the range of flow velocities of interest in

the following, a boundary layer can be clearly evidenced. Its

displacement length14 is found to be comprised between

d¼ 0.7 mm and d¼ 1.2 mm and it scales as U�1=2
1 , indicating

a Blasius-type boundary layer.14 Consequently, for the

smallest channel heights considered in the present paper

(� 2 cm), considering a constant velocity profile may induce

an underestimation of approximately 10% on the velocity in

the middle of the channel.

Let R be the rms value of the unsteady deflection of the

flag measured by the laser sensor. It is plotted as function of

the flow velocity for two different sets of the geometrical pa-

rameters H, L, and C on Fig. 2. These figures illustrate two

typical behaviors of the flag when the flow velocity is varied.

In both cases, at a value of the velocity below the critical

velocity, random vibrations induced by unsteadiness of the

flow around the plate are observed resulting in a value of R
around 4 mm. In case (a), R starts to increase at U� 15 m/s

and slowly saturates to an approximate value of 6 mm when U
is further increased. The value of R follows the same path

when U is decreased, suggesting a supercritical-type bifurca-

tion. Conversely, case (b) displays a different behaviour—R
jumps abruplty at U� 11 m/s and saturates around 11 mm.

The path followed for decreasing velocities is different and

restabilization occurs around 10.5 m/s. This hysteretic behav-

iour suggests a subcritical-type bifurcation. This discrepancy

between different sets of parameters has already been

observed by various authors, both numerically15–17 and exper-

imentally.11 However, it was observed in the literature that

even in the hysteretic case, the amplitude as function of the

flow velocity is well fitted by a square root law, suggesting

that the transition is supercritical.11 In the experiments

reported here, the hysteresis was rarely perceptible and was at

most of 10%. It was, thus, decided to retain the increasing

value of the critical velocity and plot the results with error

bars of 10% in the following to take into account this hystere-

sis effect as well as uncertainities in the measurements and the

underestimation of the velocity due to the boundary layer.

Before addressing further experiments, let us introduce

the non-dimensional parameters that will be used. When

dealing with an infinite span flag, only two parameters are

necessary to fully characterize the problem, namely the

mass-ratio and the non-dimensional flow velocity,

M� ¼
qf L

M
; U� ¼

ffiffiffiffiffi
M

D

r
LU; (1)

where qf is the fluid’s density and M is the plate’s surface

density. Finite width and spanwise confinement are taken

into account through the aspect ratio10 h and the channel

clearance13 c, respectively. Their expressions are

h ¼ H

L
; c ¼ C

L
: (2)

A first set of experiments has been performed with flags of

8.2 cm length (M*¼ 0.48) and different widths. In a channel

of 2.2 cm height, for each of these flags, the critical velocity

for apparition of flutter instability is measured. The resulting

value of the non-dimensional critical velocity U* is plotted

as function of h on Fig. 3 and compared with the theoretical

FIG. 1. (Color online) Sketch view of

the experimental setup: (a) top view, (b)

side view, (c) side view with additionnal

plexiglass plates and adhesive tapes to

decrease the channel width.

FIG. 2. (Color online) Typical evolution of the rms level of the displace-

ment, measured at an arbitrary point near the clamped end of the plate; (*)

increasing velocity, (h) decreasing velocity, L¼ 86 mm (a), H¼ 15 mm,

C¼ 12 mm; (b) H¼ 8 mm, C¼ 16 mm.
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value predicted by the three models (2D, 3D1, and 3Dc). For

reference, the value of c is plotted above as function of h. As

emphasized in a previous article, the 3Dc model tends to the

3D1 model when c is large, while it reaches the 2D-model

when c ! 0. The experimental data follows the 3D-models

when h is increased up to � 0.15. Above this value, the two

3D-models depart from each other, and the experimental

data seem to lie in between the two. This scarcity of results

does not permit to confirm the validity of the 3Dc model

over the 3D1 model.

A second set of experiments is now presented. Here, only

the gap c is varied as opposed to the previous experiments. It

is achieved by varying the channel height, while the flag

geometry is kept constant. Three flags have been studied (Flag

1: H¼ 1.35 cm, L¼ 8.2 cm; Flag 2: H¼ 1.65 cm, L¼ 8.2 cm;

Flag 3: H¼ 3.9 cm, L¼ 9.1 cm). The resulting evolution of U*

as function of c is plotted in Fig. 4 and again compared with

the three models. The behavior of the critical velocity as func-

tion of c measured experimentally is correctly reproduced by

the 3Dc model. A slight discrepancy is visible for h¼ 0.16

and h¼ 0.2: the model seems to underestimate the critical

velocity by 10%-15%. In the inset of Fig. 4, the difference

between the critical velocity and that predicted by the 2D

model is plotted as function of c. A power law c0.15 is clearly

evidenced for the 3Dc model, and the experimental data fol-

low this asymptotic behavior.

In the experiments described above, c¼ 10�2 corre-

sponds to C� 1 mm, which is the typical size of the displace-

ment length of the boundary layer. Our experimental data

exhibit a decrease of the critical velocity in the range

c 2 10�3; 10�1½ �. This would suggest that the decreasing of

the critical flow velocity, observed on Fig. 4 when c is

decreased, occurs when the flag’s edges enter the boundary

layer. One may then wonder if it is a coincidence or if

the boundary layer can have such influence on the critical

velocity. Three effects of the boundary layer may be distin-

guished. The first two are viscous effects. In this region of the

flow, the fluid’s viscosity plays an important role and this

may have two opposite consequences. First, viscous friction

may stabilize the plate and thus increase the critical velocity.

Note that viscous induced damping may also have a destabi-

lizing effect but at high values of the mass ratio not explored

in the present analysis.8,18 Second, due to the viscosity, the

effective clearance gap may be smaller than its actual value,

thus giving something closer to the 2D case and consequently

a lower critical velocity. However, these two opposite effects

of the viscosity may be small in practice, because they are

effective in the flow direction but not that important in the

direction perpendicular to the flow. The 2D-flag case can be

seen as a situation where fluid circulation around the flag in a

plane perpendicular to the main flow is not possible. This cir-

culation is not precluded by the presence of a boundary layer,

hence, its influence should be small in practice. The last effect

is a consequence of the reduction of the axial flow velocity in

the boundary layer. Indeed, one may consider that locally, the

linearization of the pressure perturbation associated to a small

perturbation of the flag’s deflection can be separated into three

contributions, an added mass term scaling as q, a Coriolis

term scaling as qu, and a rigidity term, scaling as qu2, u being

the local axial mean flow velocity.19 When u locally decreases

in the boundary layer, the aerodynamic reaction due to the

Coriolis and rigidity terms decreases as well and their destabi-

lizing effect should be lowered. Consequently, the presence of

the boundary layer should be stabilizing. This might explain

the slight discrepancy between the experimental data and the

FIG. 3. (Color online) Evolution of the non-dimensional critical flow veloc-

ity for flutter instability U* as function of the aspect ratio h of the plate; (o)

experimental data; (—) 3Dc model; (– –) 3D1 model; (…) 2D model (infi-

nite span). The experimental value of c is plotted as reference above. FIG. 4. (Color online) Evolution of the non-dimensional critical flow veloc-

ity for flutter instability U* as function of the non-dimensional gap c for

three different plates. Plate 1: M*¼ 0.48, h¼ 0.16, (o), experiment; (– –)

3Dc model. Plate 2: M*¼ 0.48, h¼ 0.2, (h) experiment; (– �–�) 3Dc model.

Plate 3: M*¼ 0.53, h¼ 0.43, (D) experiment; (—) 3Dc model. Thin lines

indicate the values given by the 3D1 model, while the dotted line indicates

the value given by the 2D model for M*¼ 0.5. Inset: U*�U2D plotted as

function of cc in a log-log scale, showing that it is governed by a power law

of the form c0.15.
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model at h¼ 0.16 and h¼ 0.2. At h¼ 0.43, the influence of

the boundary layer may be smaller, because it is relatively

smaller than the flag’s height in this case.

In conclusion, we have presented experimental results

on the effect of the spanwise clearance on the flutter critical

velocity of a cantilevered plate in an axial flow. The experi-

mental results show a good agreement with a model derived

in a previous paper.13 Velocity profiles and boundary layer

thickness have been measured, showing that in the experi-

ments, the gap sizes of interest, i.e., sizes small enough for

the critical flow velocity to be significantly affected by the

presence of the wall are of comparable magnitude as

the boundary layer. It was shown that the dominant effect of

the boundary layer should be stabilization so that the destabi-

lization observed when c decreases can only be explained by

a blockage effect in a purely potential flow model. Natural

extensions of this work include the study of the influence of

the other walls of the channel and a more detailed study of

the boundary layer. For instance, a new set of experiments,

consisting in varying the boundary layer thickness while the

other parameters are kept constant, could be performed to

properly assess the hypothesis of negligible viscous effects.
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