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Unsupervised Nearest Neighbors Clustering with
Application to Hyperspectral Images

Claude Cariou, Kacem Chehdi

Abstract—We address the problem of unsupervised clustering
of multidimensional data when the number of clusters is not
known a priori. The proposed iterative approach is a stochastic
extension of the kNN density-based clustering (KNNCLUST )
method which randomly assigns objects to clusters by sampling
a posterior class label distribution. In our approach, contextual
class-conditional distributions are estimated based on ak nearest
neighbors graph, and are iteratively modified to account for
current cluster labeling. Posterior probabilities are also slightly
reinforced to accelerate convergence to a stationary labeling. A
stopping criterion based on the measure of clustering entropy is
defined thanks to the Kozachenko-Leonenko differential entropy
estimator, computed from current class-conditional entropies.
One major advantage of our approach relies in its ability to
provide an estimate of the number of clusters present in the data
set. The application of our approach to the clustering of real hy-
perspectral image data is considered. Our algorithm is compared
with other unsupervised clustering approaches, namely affinity
propagation (AP), KNNCLUST and Non Parametric Stochastic
Expectation Maximization (NPSEM), and is shown to improve
the correct classification rate in most experiments.

Index Terms—Data clustering, nearest neighbors, Bayes’ de-
cision rule, stochastic algorithm, differential entropy estimation,
pixel classification, hyperspectral images.

I. I NTRODUCTION

Merging automatically objects having similar characteristics
is a very important problem in various research fields such as
computer vision, pattern recognition or information retrieval,
when applied to medicine, genomics, chemistry, forensics,and
more recently Big Data mining to cite a few [1], [2]. Despite
several decades of research in this area, the task is still difficult
because of the continual improvement of sensors technology
and the increase of the size of data sets to analyze, both in the
number of objects to handle (e.g. in very large size images
or videos), and in the number of features that each object
supports (e.g. DNA sequences or hyperspectral data).

Without any prior information about the data under study,
the grouping of similar objects into coherent groups has to
be done in an unsupervised way. This processing is called
unsupervised classification, in contrast to semi-supervised
classificationwhich consists of grouping objects with the help
of a small amount ofa priori information on the data set,
e.g. pairwise constraints (must-link / cannot-link) between
objects, or a few number of class labels [3], and tosupervised
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classificationwhich requires a complete set of labeled data
for training. In the literature, the termclustering generally
refers to the family of unsupervised methods. The different
groups of objects, characterized by features, are called clusters,
which are formed of the closest objects, according to some
specified distance between objects. Clustering methods them-
selves can be categorized into several families, comprising:
centroid clustering (e.g.k-means [4], fuzzyc-means [5]);
hierarchical clustering (e.g. based on minimum-variance [6]
or single-link [7]); density-based clustering (e.g.DBSCAN

[8], OPTICS [9], MeanShift [10]); clustering based on finite
(EM [11], SEM/CEM [12], [13]) or countably infinite mixture
resolving and Dirichlet process mixture models (DPMM) (
[14], [15]); spectral clustering (e.g. normalized cuts [16] or
kernelk-means [17]); and more recently information theoretic
clustering ( [18]–[24]), and clustering by Affinity Propagation
(AP) [25].

Clustering methods can also be distinguished by the degree
of randomness used to achieve the classification objective in
the algorithms. Among the previously cited approaches, many
are purely deterministic approaches to clustering (hierarchical
methods,DBSCAN, OPTICS, MeanShift, AP to cite a few);
on the other side are methods based on random partitioning
or labeling (SEM, DPMM). Mixing cases comprise relaxation
labeling methods, i.e. deterministic algorithms in which la-
bel probabilities are computed and iteratively updated until
convergence to a stationary distribution [26], as well as basic
centroid clustering approaches likek-means which require
some random object labeling at initialization, though the body
of the algorithm is purely deterministic.

In probabilistic methods, a standard approach uses the
Bayesian paradigm, which classically requires a parametric
modeling of class-conditional probability distributions. Each
cluster is modeled by a multivariate distribution governedby
a set of parameters, and the distribution of the objects in the
data set is modeled as a linear combination of those conditional
distributions [27]. A maximization of the likelihood function
with respect to these parameters is then used to find the best
parameters for each cluster. This maximization can be per-
formed by the iterativeEM algorithm [11]. TheSEM algorithm
[27], a stochastic version of theEM algorithm, can avoid the
drawbacks of theEM algorithm such as slow convergence,
convergence to local extrema of the likelihood function, or
sensitivity to initial conditions [12]. Both theEM and SEM

algorithms in their original design require the problem to
be formulated as anidentifiablemixture estimation problem,
where the number of classes is knowna priori, and the class-
conditional distributions follow some parametric model (e.g.
Gaussian distributions). However, a parametric modeling of
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the conditional distributions is often difficult to assume in real
cases because of their complex shapes, therefore justifying the
need for non parametric approaches to data clustering.

Actually, a majority of these clustering methods require
some prior knowledge about the data in the sense that the num-
ber of clusters to be found is explicitly provided by the userat
the input of the algorithm. This is particularly true for centroid
clustering, mixture resolving, and spectral clustering intheir
baseline implementation. In contrast, there is a more limited
number offully unsupervisedclustering approaches which can
automaticallyestimate the number of clusters, without any
posterior selection of the number of clusters based on internal
evaluation (like for instance Davies-Bouldin [28] or Dunn
[29] indices). Among the latter are hierarchical agglomerative
clustering methods, for which a stopping criterion still remains
to be specified, as well as a number of density-based methods,
including BIRCH [30] and DBSCAN [8]. Affinity Propagation
(AP) [25] also has the capability to provide the optimal number
of clusters at termination of the algorithm. There also exist a
few number of elaborate centroid clustering methods which do
not require the number of clusters, e.g. [31]. Another general
framework issued from Bayesian nonparametric statistics and
able to perform unsupervised clustering without knowing the
number of cluster resides in Dirichlet process mixture models
(DPMM) [15] [32] [14]. Stochastic processes like the Chinese
restaurant process [33] and the stick-breaking process [34]
aim to produce random partitions of a data set into clusters
following a Dirichlet process mixture model.

In [35], a density-based clustering method namedKN-
NCLUST was proposed. This method can be considered as an
iterative unsupervised version of thekNNs (k nearest neigh-
bors) algorithm which can automatically estimate the number
of clusters, starting from a distinct cluster label for eachobject.
At each iteration, for a given object, this method reassignsthe
cluster label of an object based on the current state of its
kNNs and on its distance to them using Bayes’ decision rule.
KNNCLUST was successfully applied to multispectral images
and is shown to outperformk-means and to provide results
comparable toEM, with a relative insensitivity to the chosen
number of nearest neighbors.

The present work is inspired from the Stochastic
Expectation-Maximization (SEM) algorithm [27], a precursor
of Markov chain Monte Carlo (MCMC) methods [36].SEM

is a stochastic extension of the Expectation-Maximization
(EM) method [11] which tries to maximize the likelihood of
a parametric model from realizations of the missing class
membership data. AlthoughSEM is primarily dedicated to
parameter estimation, its use in clustering has been suggested
as a stochastic version of the ClassificationEM algorithm
(CEM) [13], which was recognized as a generalization of
the k-means algorithm [37]. Bothk-means and the baseline
CEM share the same drawback of convergence to a local
optimum or a saddle point of the likelihood function due
to the deterministic nature of the class assignment step,
whereasSEM is able to avoid such stationary points. In [38], a
stochastic algorithm namedNPSEM (non parametricSEM) was
introduced, which proposes to replace, inSEM, the parametric
conditional distributions by non-parametric estimates based

on both kernel-based pairwise similarities between objects,
and an estimation of class-conditional entropies, from which
a posterior distribution (of the cluster assignment given an
observation or object) is computed and used to sample the next
labeling state.NPSEMwas compared and found experimentally
to be slightly superior tok-means,FCM [5], FCM-GK [39], EM

with Gaussian conditional distributions [37], andKNNCLUST,
on a limited set of data.

In this paper, we present a new fully unsupervised clustering
technique which we nameKSEM, standing for KernelSEM.
KSEM is in the spirit ofNPSEM since it is intended to perform
unsupervised clustering by iteratively reassigning objects to
clusters, following a stochastic procedure.KSEM also provides
an estimate of the number of clusters which, contrarily to
NPSEM, and as an improvement of it, does not require any
upper bound on the number of clusters, nor any minimum
number of objects in a cluster.KSEM is an iterative procedure
which produces at each step a random partition of the data
set objects using local pseudo-posterior distributions, until a
differential entropy-based criterion is met, revealing a stable
partition.

The paper is organized as follows. Section II provides a pre-
sentation of our algorithm, followed by a discussion focusing
its novelty with respect toNPSEM andKNNCLUST. In Section
III we present experimental results focusing the unsupervised
classification of pixels in hyperspectral images, in which we
compareKSEM with three other clustering methods, namely
AP, KNNCLUST andNPSEM. Finally, a conclusion of this work
is given in Section IV.

II. PROPOSEDCLUSTERING METHOD

In this section, we describe the proposed clustering method,
KSEM, point out several practical issues, and then discuss
its relationships with theKNNCLUST [35] and NPSEM [38]
algorithms.

A. Proposed method

Let X denote the original data set to cluster,X =
{xi} ,xi ∈ R

n, i = 1, . . . , N , wherexi is called an object.
X can be thought as a collection ofN realizations ofn-
dimensional random vectors. Let us denote byCi a discrete
random variable (r.v.) corresponding to the class label held
by objectxi; let ci be an outcome label sampled from some
distribution onCi, i = 1, . . . , N . The objective of the proposed
method is to assign a label to each object according to a
modified maximum likelihood criterion, following a random
sampling scheme similarly asNPSEM [38]. From a general
viewpoint, our method works by iteratively partitioning the
objects into clusters by sampling from local posterior distri-
butionsp(Ci|xi; {xj , cj}j 6=i), i = 1, . . . , N .

This general formulation raises several questions, among
which (i) what is the set of objects and corresponding labels
{xj , cj} to consider for somexi? (ii ) how can be estimated
the posterior probability distribution used to get the current
cluster label of an object? and (iii ) what type of sampling
scheme can be set up in the algorithm?
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The first issue is related to the overall support model
for label assignment. For instance, a model-based approach
through Conditional Random Fields (CRF) [40] can be used to
set up a probabilistic dependency restricted to some prescribed
neighborhood ofxi with respect to a graph. InKSEM, we
propose to assign a label to every pixel, based on the labels
of its k nearest neighbors (kNNs) in the representation space,
hence to use a nearest neighbors graph model. Letk be the
(fixed) number of nearest neighbors ,κ(i) be the set of indices
of thekNNs ofxi, i.e. such thatxj is akNN of xi ∀j ∈ κ(i);
let c = [c1, . . . , cN ]T be the vector of cluster labels, where
ci ∈ Ω ⊂ {1, . . . , N}, Ω being the set of distinct labels taken
by the set of all objects; and letΩ(i) = {cj |j ∈ κ(i)} be
the set of distinct labels taken by thekNNs of xi. Since
duplicate labels can be held by thekNNs of an object, we
have|Ω(i)| ≤ k, and consequently|Ω| ≤ N .

Regarding the second issue, the local posterior label distri-
bution in KSEM can be modelled primarily as:

p̂(Ci = cℓ|xi; {xj , cj}j∈κ(i)) ∝
∑

j∈κ(i)

g(xj ,xi) δcjcℓ (1)

∀cℓ ∈ Ω(i), 1 ≤ i ≤ N , whereg is a (non negative) kernel
function defined onRn, δij is the Kronecker delta. Though
many kernel functions can be used, including rectangular,
triangular or Epanechnikov [35], we have restricted our study
to the following Gaussian kernel:

g(x,xi) =
1

(√
2πdk,κ(xi)

)n exp

(

−1

2

‖x− xi‖22
d2k,κ(xi)

)

, (2)

where x ∈ R
n, and dk,S(xi) represents the distance from

xi to its kth NN within a subsetS of objects. Clearly,
dk,κ(xi) is the distance fromxi to its kth NN in κ(i), and we
havedk,κ(xi) = maxj∈κ(i) ||xj − xi||. Therefore, the kernel
function is adapted in aperture to the local density around each
xi. This modeling is similar to the one described in [35], but
is simpler to implement thanks to rotational symmetry.

Once the above model of the label distribution is available,
we can consider the third question mentioned above about the
labeling procedure itself. InKNNCLUST [35], the labeling of
object xi is based on Bayes’ decision rule, i.e. the labelc⋆ℓ
maximizing Eq. (1) is chosen, and thusci = c⋆ℓ . Though this
rule is very simple to understand and has a strong justification
in decision theory, and despite its attractive deterministic
nature, it is expected to suffer from the same drawback than
the EM algorithm applied to augmented data for mixture
estimation, i.e. of trapping the solution into a local optimum
or a saddle point of the likelihood function.

In order to avoid this problem, we propose to replace the
deterministic label selection procedure by a random sampling
procedure in which the label of each object is drawn from
the local posterior distribution (1). This distribution can be
modified easily in order to get a trade-off between the purely
stochastic (SEM-like) and the purely deterministic (CEM-like)

approaches, as follows [41]:

p̂α(C(i) = cℓ|xi; {xj , cj}j∈κ(i)) =
[

∑

j∈κ(i) g(xj ,xi) δcjcℓ

]α

∑

cm∈Ω(i)

[

∑

j∈κ(i) g(xj ,xi) δcjcm

]α (3)

∀cℓ ∈ Ω(i), 1 ≤ i ≤ N , whereα ∈ [1,+∞[ is a parameter
controlling the degree of determinism in the construction of
the pseudo-sample:α = 1 corresponds to theSEM (stochastic)
scheme, whileα→ +∞ corresponds to theCEM (determinis-
tic) scheme, leading to a labeling scheme which is similar
to the k nearest neighbors decision rule, where distances
between objects in the representation space are replaced by
their mutual influence via kernel functions [41]. It can be
mentioned that theCAEM algorithm [13] is a generalization of
this principle which considers the exponentα as the inverse of
a temperature in an annealing scheme. This parameter is also
to some extent comparable to the fuzziness parameter used in
the semi-supervisedFCM algorithm.

B. Practical issues

Several practical issues must be discussed about the appli-
cability of the proposed method to clustering objects in real
data sets:

1) Stopping criterion: A general framework to deal with
cluster consistency relies in information theory. Recently,
information theoretic (IT) clustering [18]–[24] has become
an attractive approach due to its ability to cope with arbi-
trary shaped clusters. IT clustering is based on information
theoretic measures of the cluster consistency, using cluster-
conditional entropy as the within-cluster validation criterion,
or the mutual information between the given labels and the
clustered data. Several schemes have been proposed to opti-
mize these criteria, including minimum spanning trees [22]
and convex optimization [23]. It can be noticed that these
methods all have the problem of requiring in advance the
knowledge of the number of clusters to discover. This was
also the case of former entropy-based clustering algorithms
used in language modelling [42], [43]. In [44], Kozachenko
and Leonenko have proposed an unbiased estimator of the
differential entropy of a random vector from a set of observa-
tions in R

n, as a function of averaged log-distances between
objects and their 1-NNs. This estimator has been generalized
to the case of log-distances tokNNs in [45], [46] and its
unbiasedness and consistency were proved. More precisely,
letting Scℓ = {xi ∈ X|ci = cℓ}, the Kozachenko-Leonenko
conditional differential entropy estimate writes:

ĥ(X|cℓ) =
n

Nℓ

∑

xi∈Scℓ

ln dk,Scℓ
(xi) + ln(Nℓ − 1)

− ψ(k) + lnVn (4)

∀cℓ ∈ Ω, whereNℓ = |Scℓ |, ψ(k) = Γ′(k)/Γ(k) is the
digamma function,Γ(k) is the gamma function andVn =

πn/2

Γ(n/2+1) is the volume of the unit ball inRn. An overall
clustering entropy measure can be obtained from conditional
entropies (4) as:
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ĥ(X|c) = 1

N

∑

cℓ∈Ω

Nℓ ĥ(X|cℓ) . (5)

This measure can be used as a stopping criterion during the
iterations quite naturally. In fact, under the assumption of
a fixed number of clusters,̂h(X|c) is expected to decrease
until a valid partitioning of the data set is found. However,
the situation is different when the number of clusters is not
given in advance but is decreasing during the course of the
labeling procedure. Clearly, since objects are aggregatedinto
previously formed clusters during the iterations, the individual
class-conditional entropies can only increase, and so does
the conditional entropy (5). However, when convergence is
achieved, this measure reaches an upper limit, and therefore
a stopping criterion can be set up from its relative magni-
tude variation∆h = |ĥ(X|c(t))− ĥ(X|c(t−1))|/ĥ(X|c(t−1)),
wherec(t) is the vector of cluster labels at iterationt. In our
experiments, we have used the stopping criterion∆h < 10−4.
It is interesting to mention that (5) has been used as a basis
of several IT clustering methods under different schemes (see
[20], [21], [23] for some recent works), and was proved in
[23] to overcome the main flaw of the mutual information
clustering criterionI(X ; c) which has tendency to ignore the
data set structure.

2) Choice ofk: The number of NNsk involved in the
computation of the posterior distribution is actually the key
parameter of the proposed method, similarly toKNNCLUST.
The influence of this parameter can be easily anticipated;
indeed, increasingk will tend to promote a few number of
labels propagating on thekNN graph, whereas decreasingk
will tend to produce a high number of clusters since label
sampling remains local. This issue will be further investigated
in Section III.

3) Choice ofα: Recall that settingα = 1 is equivalent to
performing the random label assignment following the original
posterior local distribution derived from Bayes’ decisionrule.
However, it can be observed that this setting generally slows
down the convergence to a final clustering solution. The
probability reinforcement parameterα = 1.2 was found to
be a good trade-off between the randomness of the labeling
scheme and the convergence speed, and was chosen in all our
experiments.

4) Complexity:In NPSEM[41], each object of the data set is
involved in the labeling decision rule of one particular object.
Though such a rule remains tractable for small size data sets(a
few thousands objects), it becomes computationally infeasible
for large data sets (several millions of objects or more). Such a
situation is also encountered in other unsupervised clustering
methods such asAP [25] for which pairwise similarities
between objects are required, making the algorithm quadratic
in the number of objectsN . Therefore performing the labeling
decisions dependent on a reduced set of neighboring objects
(given by the kNN search), is highly desirable. Actually,
the complexity of a single iteration ofKSEM (as well as
KNNCLUST) is majored byO(k2N) at the beginning of the
algorithm (sincek different labels are assigned to thekNNs

of an object), and approximately minored byO(k.NC.N),
whereNC is the number of final clusters.

5) Convergence:Formal convergence properties ofKSEM

are not easy to establish and will not be investigated herein.
Nevertheless, the vector of labels drawn from posterior dis-
tributions can be seen as issued from an aperiodic inho-
mogeneous Markov chain with (local) absorbing states due
to the removal of labels having lowest probabilities during
the iterations. Indeed, labels which are not drawn at all for
the whole set of objects simply disappear fromΩ, therefore
reducing the state space. However, convergence to a stable,non
trivial clustering result (i.e. different from a single final cluster)
has been experimentally observed in all encountered cases.It
is important to notice that the clustering result is independent
of any initial labeling since each object is assigned a single,
unique label at the beginning of the algorithm. We also found
experimentally (see below in Section III) that the number of
iterations is significantly higher than forKNNCLUST (by a
factor around 4), but only slightly higher than forNPSEM.
This fact can be explained by the stochastic nature ofKSEM

and NPSEM versusKNNCLUST.

C. Application to images

Despite the reduction in complexity brought by thekNN
search, the case of image segmentation by unsupervised clus-
tering of pixels withKSEM remains computationally difficult;
indeed, the search for objects’kNNs which must be performed
(and stored) beforehand still remains quadratic inN (the
number of pixels), which can severely lower its usage for
large size images. In the particular domain of multivariate
imagery (multispectral/hyperspectral), the objects of interest
are primarily grouped upon their spectral information charac-
teristics. To help the clustering of image pixels, one makes
often use of the spatial information, and of the fact that two
neighboring pixels are likely to belong to the same cluster
[47]. In order to further reduce this complexity, we propose
to limit the search of a pixel’skNNs to a subset of itsspatial
neighbors, selected via a predefined sampling pattern. The
sampling pattern chosen here is non-uniform on the spatial
image grid, with a higher sampling density in the vicinity of
the query pixel, and a lower density as the spatial distance to
the query pixel increases. Figure 1 shows the spatial sampling
pattern which was used in our experiments. This pattern has
a local sampling density inversely proportional to the distance
from the central (query) point. Obviously many other sampling
schemes may apply, however we have not investigated this
issue in the present work. IfM is the number of candidate
sampled pixels (M = 185 in Figure 1), then thekNN search
procedure has complexityO(MN), which is dramatically
lower than a full search over the entire image, even for small
size images.

The pseudo-code of theKSEM algorithm is given in Algo-
rithm 1. Since only a limited number of pairwise distances
(and not the data values themselves) are required to compute
the posterior distributions, these are first stored into a table
which can be easily accessed during the iterations.
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Fig. 1. Example of spatial sampling pattern used to limit thek-NN search in
images (sliding window size 91× 91, 185 sampling pixels shown in black).
The central point of the window corresponds to the query pixel in the kNN
search, whereas the remaining points correspond to the set of potentialk-NN
pixels.

Algorithm 1 KSEM algorithm
Input:
X = {xi} ,xi ∈ R

n, i = 1, . . . , N ;
The number of NNsk;
The probability reinforcement parameterα;
The stopping constantǫ;

Output: The vector of final cluster labelsc = [c1, . . . , cN ]
T ;

1) Compute theN × k matrix D containing the distances
of each object to its NNs up to thek-th NN;
(in case of image data, use the sampling scheme described
in Section II-C).

2) Initialize labels c
(0) =

[

c
(0)
1 , . . . , c

(0)
N

]T

=

[1, 2, . . . , N ]T ; Let Ω(0) = {1, 2, . . . , N};
3) Iterations:
t = 0;
∆h = 1.0;
while ∆h ≥ ǫ do

Compute the overall class-conditional entropyĥ(X|c)
(Eq. (5)) using the log of distances stored inD;

for i = 1 : N do
for all cℓ ∈ Ω(t)(i) do

Compute the posterior probability:
p̂α(Ci = cℓ|xi; {xj , c

(t)
j }j∈κ(i)); (Eq. (3))

end for
Draw a new label:

c
(t+1)
i ∼ p̂α(Ci|xi; {xj , c

(t)
j }j∈κ(i));

end for
c
(t+1) =

[

c
(t+1)
1 , . . . , c

(t+1)
N

]T

;

UpdateΩ(t+1) by counting the remaining distinct labels;
∆h = |(ĥ(X|c(t+1))−ĥ(X|c(t)))|

ĥ(X|c(t))
;

t← t+ 1;
end while

D. Discussion

KSEM brings some important advantages with respect to
either KNNCLUST and NPSEM which it is inspired from.

First, the key idea ofKSEM is to avoid the limitations of
KNNCLUST due to crisp decisions taken at each iteration at the
object level by allowing the current object label to be chosen
among the set of labels of itskNNs. The random sampling

procedure withinKSEM clearly avoids the solution to be
trapped in a local optimum of the likelihoodp(X; c). As said
above, this is a well known property of theSEM algorithm and
its derivatives [13] in a parametric context. However, it must
be noticed thatKNNCLUST, although this is a deterministic
algorithm in essence, still offers the possibility to produce
different results from a unique initialization label state, by
visiting the objects in random order rather than sequentially
in turn. We have used this feature in the experimental study
presented below, since it allows to compare the clustering
performances on a statistical basis from results obtained by in-
dependent runs of the algorithm. Another difference ofKSEM

with respect toKNNCLUST relies in the specification of the
kernel function (2). Indeed, for the Gaussian kernel proposed
in [35], the volume of the bin around each object is adapted
in scale along each dimension of the representation space to
include itskNNs. Here, the kernel is rotationally symmetric
and only dependent of the Euclidean distancedk,κ(xi). The
motivation for using this particular kernel relies in a reduced
computational load, and also to a lesser sensitivity to very
close objects along a specific dimension, sincedk,κ(xi) is very
unlikely to be close to zero for moderate values ofk (a few
tens).

Second,NPSEM has several remaining problems, among
which the choice of the upper bound of the number of
classes which must be initialized by the user, and the fact
that the distance separating all pairs of objects is required to
compute the posterior label probability distribution. This latter
requirement prohibits its use for large data sets (i.e. witha
large number of objects, the dimension of the representation
space being not an issue here) due to the quadratic complexity
implied by the pairwise distance computation and storage.
Contrarily, KSEM (i) does not need the initialization of an
upper bound on the number of clusters, nor any minimum
number of objects assigned to a cluster, and (ii ) is based on a
kNN graph, therefore requiring much less storage capability.

III. E XPERIMENTS AND RESULTS

A. Synthetic data set

In order to demonstrate the validity of our approach in non-
linear discriminant clustering, we first illustrate its application
to a synthetic data set. In this example, 1000 3-D objects
are generated randomly following two distribution models:the
first one is a multivariate Gaussian distribution centered at the
origin of coordinates, and with covariance matrixΣ = 64I; the
second one is a distribution surrounding the first one, specified
by a radius from the origin following a normal univariate
distributionN (50, 64). 500 objects are assigned to each one
of the two distributions.

Figure 2 shows the data set with true labels, as well as
the correspondingKNNCLUST andKSEM results. UsingKSEM

with k = 30, α = 1.2, two clusters were found, and the
overall classification error rate is 0.8% (8 pixels misclassified).
This result compares well to the theoretical classificationerror
rate of 0.86%. In comparison,KNNCLUST with the same
number of NNs provided 15 classes, thus far from the true
number of classes. To get a more precise idea of the clustering
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stability of these algorithms, we show in Figure 3 compared
box plots of the numbers of final clusters and associated
classification rates obtained withKNNCLUST, NPSEM (with
initial number of clustersNCmax = 100) and KSEM. These
results were obtained from 20 independent runs for each
method. Concerning the number of clusters, one can see that
the true number of cluster is in average better identified by
KSEM in the range10 ≤ k ≤ 40, which is in agreement with
higher corresponding average classification rates in this range.
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Fig. 2. Clustering of synthetic 3-D data. (a): Original dataand corresponding
true labels; (b):KNNCLUST result; (c):KSEM result.
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Fig. 3. Comparison of the evolution of the number of clusters(a) and overall
correct classification rates (b) given byKNNCLUST (light gray), NPSEM(gray)
andKSEM (black). The horizontal dotted line in (a) represents the true number
of classesNC = 2.

B. HSI Clustering: methodology

We provide now an experimental study of the performances
of the proposed approach, focusing the segmentation of hyper-
spectral images (HSIs) by unsupervised clustering for remote
sensing applications. Airborne and spatial hyperspectralimag-
ing has received much attention since two decades both from
the end-users due to the richness of information that HSIs
carry, and by the community of image and signal processing
and analysis experts due to the diversity and the complexityof
the problems that multivariate image analysis poses to achieve
end-user objectives in terms of classification, spectral unmix-
ing, or anomaly detection. In a HSI, the objects{xi}, 1 ≤ i ≤
N, are associated to image pixels, and the entries ofxi are
(positive) radiance or reflectance values collected atn spectral
wavelengths in the visible (VIS) to near-infrared (NIR) or
short-wave infrared (SWIR) range. HSIs allow to accurately
characterize and distinguish natural and man-made materials
through absorption/emission, narrow/wide spectral bands. It
is worth mentioning that our experiments were performed
without prior band selection or feature extraction. Even the
noisy, low average reflectance spectral bands often presentin
the HSI at some absorption bands were preserved in the input
data set.

1) Selected methods for comparison:The experiments were
designed to assess the performances of the proposed method
in comparison with similar fully unsupervised clustering ap-
proaches, i.e. methods which do not require any prior informa-
tion about the data objects to be classified and particularlythe
true number of clusters to be discovered. Among the variety
of approaches in the domain, we have selected Affinity Prop-
agation (AP) [25], kNN density-based clusteringKNNCLUST

[35], and Non parametric SEM (NPSEM) [41]. The choice of
these particular methods was motivated by the fact that they
all share the same initial conditions thanKSEM, since a unique
label is given to each object of the data set at the beginning
of the algorithm. This allows to compare the four methods on
the same basis, and makes initial conditions a non issue in this
comparison. The DPMM approach, which requires a greater
number of prior parameters than the above methods (among
which a concentration parameter and an upper bound on the
number of clusters), was not included in this study.

Each of the selected methods requires a couple of param-
eters that can be tuned to provide more or less accurate
clustering results. These parameters generally influence the
number of clusters at the output of the algorithm. Concerning
AP, it is recognized in the literature that this method is sensitive
to the choice of thepreferenceparameter, which governs the
way an object considers itself a better exemplar for a cluster
than any other object. It has been shown recently in [48] that
the rule of thumb of choosing the median value of pairwise
similarities as the preference parameterp for hyperspectral
data generally leads to over-clustering, and that a better
estimate ofp regarding the final number of clusters is closer
to the minimum of the similaritiess(i, j) = −||xi − xj ||2
than to their median value as often recommended [25]. Thus,
we have chosen the parametrizationp = ξ.mini,j s(i, j),
leaving ξ as the only parameter forAP. RegardingNPSEM,
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one important parameter is the upper bound on the number
of clustersNCmax. In all our experiments, we have fixed
NCmax = 100. ConcerningKNNCLUST and KSEM the only
tunable parameter isk, the number of NNs, the probability
reinforcement parameterα being fixed to 1.2 throughout the
experiments.

Another point relates to the complexity of the chosen
methods when tackling data sets comprising a high number
of objects, which is the case for the chosen hyperspectral
images (see below). SinceAP is complex inO(N2) which is
intractable for highN , we randomly selected throughout the
HSI a subset ofN ′ objects (or pixels), having the maximal size
allowed by the computer environment, andAP was run on this
subset. The centroids of the resulting clusters were computed
and used to cluster the remainingN − N ′ objects based on
a minimum distance rule. The cardinality of the subset was
fixed toN ′ = 12962 whatever the HSI processed. Concerning
KNNCLUST andKSEM, the spatial sampling scheme described
in Section II-C was used instead, allowing their comparison
under identical conditions.NPSEM, which originally was pro-
posed in an exhaustive pairwise distance setting, was also
adapted to thekNN graph setting by removing the most distant
pairs of objects in the computation of posterior distributions.
Note that a transposition of this principle has been tried
for AP but could not yield satisfactory results, providing a
much higher number of clusters than expected. This result is
probably due to thekNN graph structure for which message
passing remains local and is barely influenced by messages
passed outside the scope of each object’skNNs.

2) Clustering assessment:In order to assess the clustering
results, we have chosen HSIs with available ground truth data.
To obtain clustering performance indices when the number of
clusters found is greater than the number of known ground
truth classes, it is necessary to find the best match between
the cluster labels and the ground truth labels. For this we first
construct the confusion matrix (CM) of sizeNCgt × NCclus,
whereNCgt is the number of ground truth classes, andNCclus

is the number of output clusters. This CM is then augmented
with NCclus− NCgt zeroed rows, and the best class-cluster
assignment is sought thanks to the Hungarian algorithm [49],
and applied to permute the columns of the augmented CM,
providing a new CM with maximal trace. Therefore, classical
CM-based clustering performance indices can be accessed
such as the overall correct classification rate (OCCR), i.e.the
trace of the new CM divided by the total number of pixels, as
well as the class-specific correct classification rate (CSCCR),
i.e. for each ground truth class the number of pixels correctly
predicted divided by the number of pixels belonging to that
ground truth class, and the average correct classification rate
(ACCR), i.e. the average of the CSCCRs over the number
of ground truth classes. The Cluster Purity and Normalized
Mutual Information (NMI) indices [50] have also been used
for comparison. These indices both have maximal unity value
for an error-free clustering result.

Since the number of ground truth pixels is often small with
respect to the spatial size of the images to analyze, it can be
interesting to assess the quality of each method by counting
the number of clusters found within the known ground truth

pixels only; this one is expected to be close to the number
of known classes for a good clustering result. This is why
we have also added for each method the number of clusters
found within the ground truth pixels in the Tables providing
the classification results.

Finally, in order to statistically assess the performance
indices, their averages and standard deviations were computed
from 10 or 20 independent runs for each method, depending
on the HSI under study.

C. HSI Clustering: results

1) AVIRIS - Salinas:This HSI was acquired by the AVIRIS
sensor over agricultural crops in Salinas Valley, California, on
October 8, 1998. Its size is 512 lines by 217 samples, and 220
spectral bands are available. The ground resolution is around
4 meters. The ground truth map reports 16 vegetation classes,
some of them representing several stages of growth (lettuce) or
different agricultural practices (vineyard) [51]. Figure4 shows
a color composite of theSalinasscene, and the corresponding
ground truth map.

We first studied the influence of the number of neighborsk
on the classification accuracy provided byKNNCLUST, NPSEM

andKSEM. For this, we performed 20 independent runs of the
three methods for values ofk in the range from 10 to 80.
Figure 5 displays the box plots of the ACCR versusk for
the three methods. One can observe dissimilarities between
the three methods in terms of accuracy ask evolves. Firstly,
ACCR maxima are obtained for different values ofk, and
the optimum is found fork ≈ 50 with KNNCLUST, whereas
k ≈ 20 is the optimum forNPSEM and k ≈ 40 for KSEM.
Secondly, this study provides a comparison of the efficiency
of the three clustering methods in terms of ACCR, and shows
that KSEM can outperform the two other methods for some
adequate range ofk, herek ≤ 40. Contrarily, for k > 40,
KNNCLUST provides the best results among the three methods,
though with significantly decreasing accuracy ask increases.
Thirdly, one can observe the lower dispersion of ACCR around
their average values withKSEM for k ≤ 40 compared to
the other methods, which denotes a higher stability of our
approach. This is particularly true fork around 30-40, i.e. in
its optimal range. Therefore a careful choice ofk must be
made before using each method.

Table I reports a detailed comparison of clustering results
using the optimal values ofk issued from this analysis, i.e.k =
50 for KNNCLUST, k = 20 for NPSEM (NCmax = 100), k =
40 for KSEM. Results provided by AP are also included. Yet,
11 out of the 16 classes were better identified byKSEM, giving
82.44% average ACCR, and 79.17% average OCCR over the
20 runs. Also, the median number of clusters found within
the labeled data, 18, is close to the actual number of classes.
Though its computational complexity is lower and the fact that
it does not require random sampling,KNNCLUST provides less
accurate results thanKSEM, but better thanAP and NPSEM.
It should be noticed thatKSEM could not discriminate the
classesGrapes untrainedand Vineyard untrained, hence the
0% CSCCR obtained for the latter. This can be explained by
the high similarity of these two classes in terms of spectral
signatures due to close vegetation species.
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Figure 6 shows instances of clustering maps provided by the
four methods using the values ofk specified as above. Visually,
the clustering map obtained withKSEM is closer to the ground
truth map than those of the other methods, as confirmed by the
corresponding accuracy indices. Also note that two subclasses
of Celerywere identified byKSEM, though not clearly visible
on Figure 6-(a). However, as said above, none of the methods
was able to clearly discriminate theGrapes untrainedand
Vineyard untrainedclasses, exceptKNNCLUST, though quite
marginally.

TABLE I
MEAN AND STANDARD DEVIATION (20 RUNS) OF CLASS SPECIFIC,

AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND

NORMALIZED MUTUAL INFORMATION , NUMBER OF ITERATIONS AND
EXECUTION TIME OF CLUSTERING METHODS FOR THEAVIRIS Salinas
HYPERSPECTRAL DATA SET(AP: ξ = 2.0; KNNCLUST: k = 50; NPSEM:

k = 20, Cmax = 100; KSEM: k = 40).

Unsupervised classifier
AP KNNCLUST NPSEM KSEM

Total # clusters - min 35 27 14 20
Total # clusters - med 39 32 18 22
Total # clusters - max 43 37 23 26
min. # clusters in GT 32 20 14 16
med. # clusters in GT 36 25 18 18
max. # clusters in GT 41 30 23 20

C
la

ss
es

Brocc. gr. wds 1 96.78±1.97 98.53±0.21 68.06±45.73 93.34±21.97
Brocc. gr. wds 2 49.01±9.68 98.07±7.12 83.34±21.68 99.67±0.01
Fallow 46.07±3.13 51.92±11.50 36.56±23.39 75.64±22.71
Fallow rgh pl. 67.32±13.88 63.69±28.97 74.43±39.87 99.19±0.05
Fallow smooth 82.61±4.81 65.94±23.87 67.64±21.60 91.37±5.66
Stubble 47.20±3.65 92.61±14.62 94.32±13.75 99.73±0.02
Celery 55.00±3.67 74.50±19.52 57.24±21.17 77.51±18.76
Grapes untrained 27.81±4.56 88.68±19.65 36.62±11.25 99.57±0.02
Soil vin. devel. 56.52±8.60 99.14±0.99 60.52±16.79 95.65±9.32
Corn sen. g. wds 55.80±0.79 54.78±13.23 60.31±16.30 63.26±1.14
Lett. rom. 4 wks 60.73±6.00 60.15±28.61 59.00±39.18 47.07±39.31
Lett. rom. 5 wks 53.77±5.04 87.18±23.31 55.34±32.12 100
Lett. rom. 6 wks 91.71±13.34 74.26±43.99 55.58±49.00 88.92±30.41
Lett. rom. 7 wks 75.71±13.69 78.65±19.68 76.18±32.92 88.94±3.54
Vineyard untrained 33.27±6.77 41.77±47.51 46.51±12.49 0
Vineyard ver. tr. 40.25±1.77 96.35±12.39 60.89±38.27 99.22±0.05
ACCR 58.72±2.99 76.64±4.43 62.03±5.17 82.44±3.08
OCCR 49.18±3.52 77.98±5.50 57.62±4.44 79.17±2.11
Cluster purity 0.49±0.04 0.87±0.04 0.63±0.05 0.94±0.02
NMI 0.69±0.01 0.88±0.01 0.70±0.03 0.89±0.01
Iterations 251±56 23±5 74±23 107±15
Exec. time (s) 1722±403 615±106 255±52 1363±176
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Fig. 4. Salinashyperspectral data set.(a): Color composite image (bands 30,
20, 10); (b): Ground truth.

2) ROSIS - Pavia University:The Pavia UniversityHSI
belongs to a set of hyperspectral images acquired by the
ROSIS instrument operated by the German Aerospace Agency
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Fig. 5. Box plots of Average Correct Classification rate (ACCR) for the
SalinasHSI as a function of the number of nearest neighborsk. Light gray:
KNNCLUST; Gray: NPSEM; Black: KSEM.

(DLR) on July 8, 2002 in the framework of the European
HySens Project. ROSIS provides 103 spectral bands ranging
from 430 to 850 nm, at 1.3 m ground resolution. ThePavia
University scene has a spatial size of610 × 340 pixels.
Nine classes are reported in the ground truth map visible
in Figure 7 jointly with a color composite image. Table II
shows the clustering maps and performance indices of the four
compared methods.KNNCLUST, NPSEM and KSEM were run
usingk = 60, k = 17 andk = 30, respectively. These values
were selected since because they provide the best average
accuracies for each method. A median number of 19 clusters
were found byKSEM, with a median number of 16 clusters
within the nine ground truth classes, giving an average ACCR
of 63.20% over 10 runs, again better than the other compared
methods.NPSEM, which is faster than the other methods,
does not provide satisfactory results in this experiment, though
slightly superior toAP. Here again, Cluster Purity and NMI
indices are in accordance with ACCR and OCCR.

Figure 8 displays typical clustering maps issued from this
experiment, and gives the corresponding correct classification
rates.

3) AVIRIS - Hekla:In the last experiment, we used a HSI
collected on 17 June 1991 by AVIRIS over the Hekla volcano
in Iceland. The image has560× 600 pixels, with 157 spectral
bands only due to a sensor malfunctioning. The ground
resolution is 20 m. Figure 9 shows a color composite image
as well as the ground truth patches used for the clustering
assessment, which comprises twelve land-cover classes.

Table III displays as above the performance indices of
the four methods averaged over 10 runs, usingk = 10 for
KSEM, k = 30 for KNNCLUST andk = 7 for NPSEM, which
were chosen as optimal regarding the average ACCR. In this
experiment,AP and NPSEM still provide poor results, whilst
KNNCLUST and KSEM provide similar results, with a slightly
higher (but non significant) ACCR forKNNCLUST. Despite
the higher computational burden ofKSEM, one can see from
this experiment that a random sampling approach can perform
as better as a deterministic approach, by using a reducedkNN
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(a) (b)
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Fig. 6. Unsupervised classification results for the AVIRISSalinashyper-
spectral data set. (a):AP (OCCR: 54.34%, ACCR: 62.51%); (b):KNNCLUST

(OCCR: 72.81%, ACCR: 70.23%); (c):NPSEM (OCCR: 45.43%, ACCR:
52.05%); (d):KSEM (OCCR: 78.44%, ACCR: 83.06%).

graph. It is also noticeable that the median number of clusters
found by KSEM within the ground truth pixels (25) is closer
to the true number of known classes than any of the other
methods.

Examples of clustering maps provided by the four clustering
methods are shown in Figure 10, with associated OCCR and
ACCR values. From these examples, a comparison of the
behavior ofKNNCLUST andKSEM results for the specific class
Andesite lava 1991 I(large region at top right, in yellow on
Figure 10-(d)) highlights the limitation of the deterministic
probability update rule ofKNNCLUST, which tends to relax
the labeling from seed pixels or regions located far apart,
without possibility to merge these labels into a single one,
hence providing over clustering. Yet, performing random label
assignments according to conditional local distributionsallows
to gain in clustering robustness thanks to the fact that label
propagation from a seed region to another is made possible.

TABLE II
MEAN AND STANDARD DEVIATION (10 RUNS) OF CLASS SPECIFIC,

AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND
NORMALIZED MUTUAL INFORMATION , NUMBER OF ITERATIONS AND

EXECUTION TIME OF CLUSTERING METHODS FOR THEROSISPavia
universityHYPERSPECTRAL DATA SET(AP: ξ = 3.0; KNNCLUST: k = 60;

NPSEM: k = 17, Cmax = 100; KSEM: k = 30).

Unsupervised classifier
AP KNNCLUST NPSEM KSEM

Total # clusters - min 29 21 19 17
Total # clusters - med 33 25 23 19
Total # clusters - max 36 29 27 24
min. # clusters in GT 29 15 19 14
med. # clusters in GT 33 20 23 16
max. # clusters in GT 36 23 27 20

C
la

ss
es

Asphalt 33.57±3.87 28.10±8.09 29.11±4.58 33.20±10.51
Meadows 17.36±4.19 47.84±16.68 23.35±6.43 55.74±4.65
Gravel 41.97±10.84 54.15±25.01 41.97±17.00 50.84±32.37
Trees 28.86±3.62 21.69±10.67 34.84±9.63 52.95±15.56
(Painted) metal sheets 46.46±8.15 89.10±31.31 84.46±20.75 98.79±0.58
Bare soil 16.22±2.34 91.25±13.81 37.51±2.74 80.90±15.34
Bitumen 75.15±18.22 99.83±0.06 84.31±18.93 79.86±42.05
Self-blocking bricks 50.65±10.31 49.87±6.75 42.77±5.78 48.07±5.62
Shadow 97.18±1.33 37.64±18.62 73.58±27.58 68.48±25.11
ACCR 45.27±2.48 57.72±4.88 50.21±3.97 63.20±4.92
OCCR 29.39±2.37 50.92±7.37 34.41±2.72 56.40±3.33
Cluster purity 0.30±0.02 0.54±0.08 0.35±0.03 0.59±0.04
NMI 0.48±0.00 0.61±0.04 0.52±0.03 0.63±0.02
Iterations 251±61 31±4 84±18 93±7
Exec. time (s) 1764±512 1733±208 546±63 2323±185
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Fig. 7. Pavia universityhyperspectral data set.(a): Color composite image
(bands 60, 33, 9); (b): Ground truth.

IV. CONCLUSION

In this paper, we proposed a new unsupervised clustering
method, namedKSEM, which is based on iteratively sampling
label states via pseudo-posterior label distributions estimated at
the objects’ local level. Contrarily to many clustering methods,
KSEM is fully unsupervised since it has the ability to provide
an estimate of the number of clusters in the data, starting
from one distinct cluster label by object. The local posterior
distributions account for the number of similar labels among
the kNNs of each object, and class-conditional differential
entropies computed thanks to the Kozachenko-Leonenko esti-
mator are used to elaborate a stopping criterion. A probability
reinforcement rule is set up to accelerate the convergence to a
stable partitioning of the objects. The method is compared
with three other fully unsupervised clustering methods for
purposes of pixel clustering in hyperspectral images. A specific
processing is set up inKSEM (and also adapted toKNNCLUST

andNPSEM) to make the priorkNN search procedure tractable
for (possibly large) image data sets. The results show the
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Fig. 8. Unsupervised classification results for the ROSISPavia University
hyperspectral data set. (a):AP (OCCR: 28.98%, ACCR: 41.91%); (b):KN-
NCLUST (OCCR: 55.97%, ACCR: 62.82%); (c):NPSEM (OCCR: 39.89%,
ACCR: 54.12%); (d):KSEM (OCCR: 58.04%, ACCR: 64.68%).

efficiency of the proposed approach in retrieving coherent
clusters with respect to available ground truth data.
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