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We address the problem of unsupervised clustering of multidimensional data when the number of clusters is not known a priori. The proposed iterative approach is a stochastic extension of the kNN density-based clustering (KNNCLUST) method which randomly assigns objects to clusters by sampling a posterior class label distribution. In our approach, contextual class-conditional distributions are estimated based on a k nearest neighbors graph, and are iteratively modified to account for current cluster labeling. Posterior probabilities are also slightly reinforced to accelerate convergence to a stationary labeling. A stopping criterion based on the measure of clustering entropy is defined thanks to the Kozachenko-Leonenko differential entropy estimator, computed from current class-conditional entropies. One major advantage of our approach relies in its ability to provide an estimate of the number of clusters present in the data set. The application of our approach to the clustering of real hyperspectral image data is considered. Our algorithm is compared with other unsupervised clustering approaches, namely affinity propagation (AP), KNNCLUST and Non Parametric Stochastic Expectation Maximization (NPSEM), and is shown to improve the correct classification rate in most experiments.

I. INTRODUCTION

Merging automatically objects having similar characteristics is a very important problem in various research fields such as computer vision, pattern recognition or information retrieval, when applied to medicine, genomics, chemistry, forensics, and more recently Big Data mining to cite a few [START_REF] Jain | Data clustering: a review[END_REF], [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Despite several decades of research in this area, the task is still difficult because of the continual improvement of sensors technology and the increase of the size of data sets to analyze, both in the number of objects to handle (e.g. in very large size images or videos), and in the number of features that each object supports (e.g. DNA sequences or hyperspectral data).

Without any prior information about the data under study, the grouping of similar objects into coherent groups has to be done in an unsupervised way. This processing is called unsupervised classification, in contrast to semi-supervised classification which consists of grouping objects with the help of a small amount of a priori information on the data set, e.g. pairwise constraints (must-link / cannot-link) between objects, or a few number of class labels [START_REF] Basu | Semi-supervised clustering by seeding[END_REF], and to supervised classification which requires a complete set of labeled data for training. In the literature, the term clustering generally refers to the family of unsupervised methods. The different groups of objects, characterized by features, are called clusters, which are formed of the closest objects, according to some specified distance between objects. Clustering methods themselves can be categorized into several families, comprising: centroid clustering (e.g. k-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], fuzzy c-means [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF]); hierarchical clustering (e.g. based on minimum-variance [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF] or single-link [START_REF] Sneath | Numerical Taxonomy. The Principles and Practice of Numerical Classification[END_REF]); density-based clustering (e.g. DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], OPTICS [START_REF] Ankerst | Optics: Ordering points to identify the clustering structure[END_REF], MeanShift [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF]); clustering based on finite (EM [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], SEM/CEM [START_REF] Celeux | A probabilistic teacher algorithm for iterative maximum likelihood estimation[END_REF], [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]) or countably infinite mixture resolving and Dirichlet process mixture models (DPMM) ( [START_REF] Rasmussen | The infinite Gaussian mixture model[END_REF], [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF]); spectral clustering (e.g. normalized cuts [START_REF] Shi | Normalized cuts and image segmentation[END_REF] or kernel k-means [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]); and more recently information theoretic clustering ( [START_REF] Dhillon | A divisive information theoretic feature clustering algorithm for text classification[END_REF]- [START_REF] Sugiyama | Information-maximization clustering based on squared-loss mutual information[END_REF]), and clustering by Affinity Propagation (AP) [START_REF] Frey | Clustering by passing messages between data points[END_REF].

Clustering methods can also be distinguished by the degree of randomness used to achieve the classification objective in the algorithms. Among the previously cited approaches, many are purely deterministic approaches to clustering (hierarchical methods, DBSCAN, OPTICS, MeanShift, AP to cite a few); on the other side are methods based on random partitioning or labeling (SEM, DPMM). Mixing cases comprise relaxation labeling methods, i.e. deterministic algorithms in which label probabilities are computed and iteratively updated until convergence to a stationary distribution [START_REF] Kittler | Relaxation labelling algorithms -a review[END_REF], as well as basic centroid clustering approaches like k-means which require some random object labeling at initialization, though the body of the algorithm is purely deterministic.

In probabilistic methods, a standard approach uses the Bayesian paradigm, which classically requires a parametric modeling of class-conditional probability distributions. Each cluster is modeled by a multivariate distribution governed by a set of parameters, and the distribution of the objects in the data set is modeled as a linear combination of those conditional distributions [START_REF] Celeux | The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF]. A maximization of the likelihood function with respect to these parameters is then used to find the best parameters for each cluster. This maximization can be performed by the iterative EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. The SEM algorithm [START_REF] Celeux | The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF], a stochastic version of the EM algorithm, can avoid the drawbacks of the EM algorithm such as slow convergence, convergence to local extrema of the likelihood function, or sensitivity to initial conditions [START_REF] Celeux | A probabilistic teacher algorithm for iterative maximum likelihood estimation[END_REF]. Both the EM and SEM algorithms in their original design require the problem to be formulated as an identifiable mixture estimation problem, where the number of classes is known a priori, and the classconditional distributions follow some parametric model (e.g. Gaussian distributions). However, a parametric modeling of the conditional distributions is often difficult to assume in real cases because of their complex shapes, therefore justifying the need for non parametric approaches to data clustering.

Actually, a majority of these clustering methods require some prior knowledge about the data in the sense that the number of clusters to be found is explicitly provided by the user at the input of the algorithm. This is particularly true for centroid clustering, mixture resolving, and spectral clustering in their baseline implementation. In contrast, there is a more limited number of fully unsupervised clustering approaches which can automatically estimate the number of clusters, without any posterior selection of the number of clusters based on internal evaluation (like for instance Davies-Bouldin [START_REF] Davies | A cluster separation measure[END_REF] or Dunn [START_REF] Dunn | A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[END_REF] indices). Among the latter are hierarchical agglomerative clustering methods, for which a stopping criterion still remains to be specified, as well as a number of density-based methods, including BIRCH [START_REF] Zhang | BIRCH: an efficient data clustering method for very large databases[END_REF] and DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]. Affinity Propagation (AP) [START_REF] Frey | Clustering by passing messages between data points[END_REF] also has the capability to provide the optimal number of clusters at termination of the algorithm. There also exist a few number of elaborate centroid clustering methods which do not require the number of clusters, e.g. [START_REF] Lorette | Fully unsupervised fuzzy clustering with entropy criterion[END_REF]. Another general framework issued from Bayesian nonparametric statistics and able to perform unsupervised clustering without knowing the number of cluster resides in Dirichlet process mixture models (DPMM) [START_REF] Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF] [32] [START_REF] Rasmussen | The infinite Gaussian mixture model[END_REF]. Stochastic processes like the Chinese restaurant process [START_REF] Aldous | Exchangeability and related topics[END_REF] and the stick-breaking process [START_REF] Sethuraman | A constructive definition of Dirichlet priors[END_REF] aim to produce random partitions of a data set into clusters following a Dirichlet process mixture model.

In [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], a density-based clustering method named KN-NCLUST was proposed. This method can be considered as an iterative unsupervised version of the kNNs (k nearest neighbors) algorithm which can automatically estimate the number of clusters, starting from a distinct cluster label for each object. At each iteration, for a given object, this method reassigns the cluster label of an object based on the current state of its kNNs and on its distance to them using Bayes' decision rule. KNNCLUST was successfully applied to multispectral images and is shown to outperform k-means and to provide results comparable to EM, with a relative insensitivity to the chosen number of nearest neighbors.

The present work is inspired from the Stochastic Expectation-Maximization (SEM) algorithm [START_REF] Celeux | The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF], a precursor of Markov chain Monte Carlo (MCMC) methods [START_REF] Robert | A short history of Markov Chain Monte Carlo: Subjective recollections from incomplete data[END_REF]. SEM is a stochastic extension of the Expectation-Maximization (EM) method [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] which tries to maximize the likelihood of a parametric model from realizations of the missing class membership data. Although SEM is primarily dedicated to parameter estimation, its use in clustering has been suggested as a stochastic version of the Classification EM algorithm (CEM) [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF], which was recognized as a generalization of the k-means algorithm [START_REF] Samé | A mixture model-based on-line CEM algorithm[END_REF]. Both k-means and the baseline CEM share the same drawback of convergence to a local optimum or a saddle point of the likelihood function due to the deterministic nature of the class assignment step, whereas SEM is able to avoid such stationary points. In [START_REF] Bougenière | Unsupervised non parametric data clustering by means of Bayesian inference and information theory[END_REF], a stochastic algorithm named NPSEM (non parametric SEM) was introduced, which proposes to replace, in SEM, the parametric conditional distributions by non-parametric estimates based on both kernel-based pairwise similarities between objects, and an estimation of class-conditional entropies, from which a posterior distribution (of the cluster assignment given an observation or object) is computed and used to sample the next labeling state. NPSEM was compared and found experimentally to be slightly superior to k-means, FCM [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF], FCM-GK [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF], EM with Gaussian conditional distributions [START_REF] Samé | A mixture model-based on-line CEM algorithm[END_REF], and KNNCLUST, on a limited set of data.

In this paper, we present a new fully unsupervised clustering technique which we name KSEM, standing for Kernel SEM. KSEM is in the spirit of NPSEM since it is intended to perform unsupervised clustering by iteratively reassigning objects to clusters, following a stochastic procedure. KSEM also provides an estimate of the number of clusters which, contrarily to NPSEM, and as an improvement of it, does not require any upper bound on the number of clusters, nor any minimum number of objects in a cluster. KSEM is an iterative procedure which produces at each step a random partition of the data set objects using local pseudo-posterior distributions, until a differential entropy-based criterion is met, revealing a stable partition.

The paper is organized as follows. Section II provides a presentation of our algorithm, followed by a discussion focusing its novelty with respect to NPSEM and KNNCLUST. In Section III we present experimental results focusing the unsupervised classification of pixels in hyperspectral images, in which we compare KSEM with three other clustering methods, namely AP, KNNCLUST and NPSEM. Finally, a conclusion of this work is given in Section IV.

II. PROPOSED CLUSTERING METHOD

In this section, we describe the proposed clustering method, KSEM, point out several practical issues, and then discuss its relationships with the KNNCLUST [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF] and NPSEM [START_REF] Bougenière | Unsupervised non parametric data clustering by means of Bayesian inference and information theory[END_REF] algorithms.

A. Proposed method

Let X denote the original data set to cluster, X = {x i } , x i ∈ R n , i = 1, . . . , N , where x i is called an object. X can be thought as a collection of N realizations of ndimensional random vectors. Let us denote by C i a discrete random variable (r.v.) corresponding to the class label held by object x i ; let c i be an outcome label sampled from some distribution on C i , i = 1, . . . , N . The objective of the proposed method is to assign a label to each object according to a modified maximum likelihood criterion, following a random sampling scheme similarly as NPSEM [START_REF] Bougenière | Unsupervised non parametric data clustering by means of Bayesian inference and information theory[END_REF]. From a general viewpoint, our method works by iteratively partitioning the objects into clusters by sampling from local posterior distributions p(C i |x i ; {x j , c j } j =i ), i = 1, . . . , N .

This general formulation raises several questions, among which (i) what is the set of objects and corresponding labels {x j , c j } to consider for some x i ? (ii) how can be estimated the posterior probability distribution used to get the current cluster label of an object? and (iii) what type of sampling scheme can be set up in the algorithm?

The first issue is related to the overall support model for label assignment. For instance, a model-based approach through Conditional Random Fields (CRF) [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] can be used to set up a probabilistic dependency restricted to some prescribed neighborhood of x i with respect to a graph. In KSEM, we propose to assign a label to every pixel, based on the labels of its k nearest neighbors (kNNs) in the representation space, hence to use a nearest neighbors graph model. Let k be the (fixed) number of nearest neighbors , κ(i) be the set of indices of the kNNs of x i , i.e. such that x j is a kNN of x i ∀j ∈ κ(i); let c = [c 1 , . . . , c N ] T be the vector of cluster labels, where c i ∈ Ω ⊂ {1, . . . , N }, Ω being the set of distinct labels taken by the set of all objects; and let Ω(i) = {c j |j ∈ κ(i)} be the set of distinct labels taken by the kNNs of x i . Since duplicate labels can be held by the kNNs of an object, we have |Ω(i)| ≤ k, and consequently |Ω| ≤ N .

Regarding the second issue, the local posterior label distribution in KSEM can be modelled primarily as:

p(C i = c ℓ |x i ; {x j , c j } j∈κ(i) ) ∝ j∈κ(i) g(x j , x i ) δ cj c ℓ ( 1 
)
∀c ℓ ∈ Ω(i), 1 ≤ i ≤ N
, where g is a (non negative) kernel function defined on R n , δ ij is the Kronecker delta. Though many kernel functions can be used, including rectangular, triangular or Epanechnikov [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], we have restricted our study to the following Gaussian kernel:

g(x, x i ) = 1 √ 2πd k,κ (x i ) n exp - 1 2 x -x i 2 2 d 2 k,κ (x i ) , (2) 
where x ∈ R n , and d k,S (x i ) represents the distance from x i to its kth NN within a subset S of objects. Clearly, d k,κ (x i ) is the distance from x i to its kth NN in κ(i), and we have d k,κ (x i ) = max j∈κ(i) ||x jx i ||. Therefore, the kernel function is adapted in aperture to the local density around each x i . This modeling is similar to the one described in [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], but is simpler to implement thanks to rotational symmetry.

Once the above model of the label distribution is available, we can consider the third question mentioned above about the labeling procedure itself. In KNNCLUST [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], the labeling of object x i is based on Bayes' decision rule, i.e. the label c ⋆ ℓ maximizing Eq. ( 1) is chosen, and thus c i = c ⋆ ℓ . Though this rule is very simple to understand and has a strong justification in decision theory, and despite its attractive deterministic nature, it is expected to suffer from the same drawback than the EM algorithm applied to augmented data for mixture estimation, i.e. of trapping the solution into a local optimum or a saddle point of the likelihood function.

In order to avoid this problem, we propose to replace the deterministic label selection procedure by a random sampling procedure in which the label of each object is drawn from the local posterior distribution [START_REF] Jain | Data clustering: a review[END_REF]. This distribution can be modified easily in order to get a trade-off between the purely stochastic (SEM-like) and the purely deterministic (CEM-like) approaches, as follows [START_REF] Bougenière | Non parametric stochastic expectation maximization for data clustering[END_REF]:

pα (C(i) = c ℓ |x i ; {x j , c j } j∈κ(i) ) = j∈κ(i) g(x j , x i ) δ cj c ℓ α cm∈Ω(i) j∈κ(i) g(x j , x i ) δ cj cm α (3) ∀c ℓ ∈ Ω(i), 1 ≤ i ≤ N , where α ∈ [1, +∞[
is a parameter controlling the degree of determinism in the construction of the pseudo-sample: α = 1 corresponds to the SEM (stochastic) scheme, while α → +∞ corresponds to the CEM (deterministic) scheme, leading to a labeling scheme which is similar to the k nearest neighbors decision rule, where distances between objects in the representation space are replaced by their mutual influence via kernel functions [START_REF] Bougenière | Non parametric stochastic expectation maximization for data clustering[END_REF]. It can be mentioned that the CAEM algorithm [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF] is a generalization of this principle which considers the exponent α as the inverse of a temperature in an annealing scheme. This parameter is also to some extent comparable to the fuzziness parameter used in the semi-supervised FCM algorithm.

B. Practical issues

Several practical issues must be discussed about the applicability of the proposed method to clustering objects in real data sets:

1) Stopping criterion: A general framework to deal with cluster consistency relies in information theory. Recently, information theoretic (IT) clustering [START_REF] Dhillon | A divisive information theoretic feature clustering algorithm for text classification[END_REF]- [START_REF] Sugiyama | Information-maximization clustering based on squared-loss mutual information[END_REF] has become an attractive approach due to its ability to cope with arbitrary shaped clusters. IT clustering is based on information theoretic measures of the cluster consistency, using clusterconditional entropy as the within-cluster validation criterion, or the mutual information between the given labels and the clustered data. Several schemes have been proposed to optimize these criteria, including minimum spanning trees [START_REF] Müller | Information theoretic clustering using minimum spanning trees[END_REF] and convex optimization [START_REF] Ver Steeg | Demystifying information-theoretic clustering[END_REF]. It can be noticed that these methods all have the problem of requiring in advance the knowledge of the number of clusters to discover. This was also the case of former entropy-based clustering algorithms used in language modelling [START_REF] Jardino | Unsupervised non-hierarchical entropy-based clustering[END_REF], [START_REF] Kneser | Improved clustering techniques for class-based statistical language modelling[END_REF]. In [START_REF] Kozachenko | Sample estimate of the entropy of a random vector[END_REF], Kozachenko and Leonenko have proposed an unbiased estimator of the differential entropy of a random vector from a set of observations in R n , as a function of averaged log-distances between objects and their 1-NNs. This estimator has been generalized to the case of log-distances to kNNs in [START_REF] Goria | A new class of random vector entropy estimators and its applications in testing statistical hypotheses[END_REF], [START_REF] Leonenko | Estimation of entropies and divergences via nearest neighbors[END_REF] and its unbiasedness and consistency were proved. More precisely, letting S c ℓ = {x i ∈ X|c i = c ℓ }, the Kozachenko-Leonenko conditional differential entropy estimate writes:

ĥ(X|c ℓ ) = n N ℓ xi∈Sc ℓ ln d k,Sc ℓ (x i ) + ln(N ℓ -1) -ψ(k) + ln V n (4) ∀c ℓ ∈ Ω, where N ℓ = |S c ℓ |, ψ(k) = Γ ′ (k)/Γ(k) is the digamma function, Γ(k) is the gamma function and V n = π n/2 Γ(n/2+1
) is the volume of the unit ball in R n . An overall clustering entropy measure can be obtained from conditional entropies (4) as:

ĥ(X|c) = 1 N c ℓ ∈Ω N ℓ ĥ(X|c ℓ ) . (5) 
This measure can be used as a stopping criterion during the iterations quite naturally. In fact, under the assumption of a fixed number of clusters, ĥ(X|c) is expected to decrease until a valid partitioning of the data set is found. However, the situation is different when the number of clusters is not given in advance but is decreasing during the course of the labeling procedure. Clearly, since objects are aggregated into previously formed clusters during the iterations, the individual class-conditional entropies can only increase, and so does the conditional entropy [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF]. However, when convergence is achieved, this measure reaches an upper limit, and therefore a stopping criterion can be set up from its relative magnitude variation ∆ h = | ĥ(X|c (t) ) -ĥ(X|c (t-1) )|/ ĥ(X|c (t-1) ), where c (t) is the vector of cluster labels at iteration t. In our experiments, we have used the stopping criterion ∆ h < 10 -4 . It is interesting to mention that (5) has been used as a basis of several IT clustering methods under different schemes (see [START_REF] Faivishevsky | A Nonparametric Information Theoretic Clustering Algorithm[END_REF], [START_REF] Wang | Information theoretical clustering via semidefinite programming[END_REF], [START_REF] Ver Steeg | Demystifying information-theoretic clustering[END_REF] for some recent works), and was proved in [START_REF] Ver Steeg | Demystifying information-theoretic clustering[END_REF] to overcome the main flaw of the mutual information clustering criterion I(X ; c) which has tendency to ignore the data set structure.

2) Choice of k: The number of NNs k involved in the computation of the posterior distribution is actually the key parameter of the proposed method, similarly to KNNCLUST. The influence of this parameter can be easily anticipated; indeed, increasing k will tend to promote a few number of labels propagating on the kNN graph, whereas decreasing k will tend to produce a high number of clusters since label sampling remains local. This issue will be further investigated in Section III.

3) Choice of α: Recall that setting α = 1 is equivalent to performing the random label assignment following the original posterior local distribution derived from Bayes' decision rule. However, it can be observed that this setting generally slows down the convergence to a final clustering solution. The probability reinforcement parameter α = 1.2 was found to be a good trade-off between the randomness of the labeling scheme and the convergence speed, and was chosen in all our experiments.

4) Complexity:

In NPSEM [START_REF] Bougenière | Non parametric stochastic expectation maximization for data clustering[END_REF], each object of the data set is involved in the labeling decision rule of one particular object. Though such a rule remains tractable for small size data sets (a few thousands objects), it becomes computationally infeasible for large data sets (several millions of objects or more). Such a situation is also encountered in other unsupervised clustering methods such as AP [START_REF] Frey | Clustering by passing messages between data points[END_REF] for which pairwise similarities between objects are required, making the algorithm quadratic in the number of objects N . Therefore performing the labeling decisions dependent on a reduced set of neighboring objects (given by the kNN search), is highly desirable. Actually, the complexity of a single iteration of KSEM (as well as KNNCLUST) is majored by O(k 2 N ) at the beginning of the algorithm (since k different labels are assigned to the kNNs of an object), and approximately minored by O(k.N C.N ), where N C is the number of final clusters.

5) Convergence: Formal convergence properties of KSEM are not easy to establish and will not be investigated herein. Nevertheless, the vector of labels drawn from posterior distributions can be seen as issued from an aperiodic inhomogeneous Markov chain with (local) absorbing states due to the removal of labels having lowest probabilities during the iterations. Indeed, labels which are not drawn at all for the whole set of objects simply disappear from Ω, therefore reducing the state space. However, convergence to a stable, non trivial clustering result (i.e. different from a single final cluster) has been experimentally observed in all encountered cases. It is important to notice that the clustering result is independent of any initial labeling since each object is assigned a single, unique label at the beginning of the algorithm. We also found experimentally (see below in Section III) that the number of iterations is significantly higher than for KNNCLUST (by a factor around 4), but only slightly higher than for NPSEM. This fact can be explained by the stochastic nature of KSEM and NPSEM versus KNNCLUST.

C. Application to images

Despite the reduction in complexity brought by the kNN search, the case of image segmentation by unsupervised clustering of pixels with KSEM remains computationally difficult; indeed, the search for objects' kNNs which must be performed (and stored) beforehand still remains quadratic in N (the number of pixels), which can severely lower its usage for large size images. In the particular domain of multivariate imagery (multispectral/hyperspectral), the objects of interest are primarily grouped upon their spectral information characteristics. To help the clustering of image pixels, one makes often use of the spatial information, and of the fact that two neighboring pixels are likely to belong to the same cluster [START_REF] Tarabalka | Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques[END_REF]. In order to further reduce this complexity, we propose to limit the search of a pixel's kNNs to a subset of its spatial neighbors, selected via a predefined sampling pattern. The sampling pattern chosen here is non-uniform on the spatial image grid, with a higher sampling density in the vicinity of the query pixel, and a lower density as the spatial distance to the query pixel increases. Figure 1 shows the spatial sampling pattern which was used in our experiments. This pattern has a local sampling density inversely proportional to the distance from the central (query) point. Obviously many other sampling schemes may apply, however we have not investigated this issue in the present work. If M is the number of candidate sampled pixels (M = 185 in Figure 1), then the kNN search procedure has complexity O(M N ), which is dramatically lower than a full search over the entire image, even for small size images.

The pseudo-code of the KSEM algorithm is given in Algorithm 1. Since only a limited number of pairwise distances (and not the data values themselves) are required to compute the posterior distributions, these are first stored into a table which can be easily accessed during the iterations. (in case of image data, use the sampling scheme described in Section II-C).

2) Initialize labels 3) Iterations: t = 0; ∆ h = 1.0; while ∆ h ≥ ǫ do Compute the overall class-conditional entropy ĥ(X|c) (Eq. ( 5)) using the log of distances stored in D;

c (0) = c (0) 1 , . . . , c (0) 
for i = 1 : N do for all c ℓ ∈ Ω (t) (i) do Compute the posterior probability:

pα (C i = c ℓ |x i ; {x j , c (t) 
j } j∈κ(i) ); (Eq. ( 3)) end for Draw a new label:

c (t+1) i ∼ pα (C i |x i ; {x j , c (t) 
j } j∈κ(i) ); end for c (t+1) = c (t+1) 1 , . . . , c (t+1) N T ;
Update Ω (t+1) by counting the remaining distinct labels; ∆ h = |( ĥ(X|c (t+1) )-ĥ(X|c (t) ))| ĥ(X|c (t) ) ; t ← t + 1; end while

D. Discussion

KSEM brings some important advantages with respect to either KNNCLUST and NPSEM which it is inspired from.

First, the key idea of KSEM is to avoid the limitations of KNNCLUST due to crisp decisions taken at each iteration at the object level by allowing the current object label to be chosen among the set of labels of its kNNs. The random sampling procedure within KSEM clearly avoids the solution to be trapped in a local optimum of the likelihood p(X; c). As said above, this is a well known property of the SEM algorithm and its derivatives [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF] in a parametric context. However, it must be noticed that KNNCLUST, although this is a deterministic algorithm in essence, still offers the possibility to produce different results from a unique initialization label state, by visiting the objects in random order rather than sequentially in turn. We have used this feature in the experimental study presented below, since it allows to compare the clustering performances on a statistical basis from results obtained by independent runs of the algorithm. Another difference of KSEM with respect to KNNCLUST relies in the specification of the kernel function [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Indeed, for the Gaussian kernel proposed in [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], the volume of the bin around each object is adapted in scale along each dimension of the representation space to include its kNNs. Here, the kernel is rotationally symmetric and only dependent of the Euclidean distance d k,κ (x i ). The motivation for using this particular kernel relies in a reduced computational load, and also to a lesser sensitivity to very close objects along a specific dimension, since d k,κ (x i ) is very unlikely to be close to zero for moderate values of k (a few tens).

Second, NPSEM has several remaining problems, among which the choice of the upper bound of the number of classes which must be initialized by the user, and the fact that the distance separating all pairs of objects is required to compute the posterior label probability distribution. This latter requirement prohibits its use for large data sets (i.e. with a large number of objects, the dimension of the representation space being not an issue here) due to the quadratic complexity implied by the pairwise distance computation and storage. Contrarily, KSEM (i) does not need the initialization of an upper bound on the number of clusters, nor any minimum number of objects assigned to a cluster, and (ii) is based on a kNN graph, therefore requiring much less storage capability.

III. EXPERIMENTS AND RESULTS

A. Synthetic data set

In order to demonstrate the validity of our approach in nonlinear discriminant clustering, we first illustrate its application to a synthetic data set. In this example, 1000 3-D objects are generated randomly following two distribution models: the first one is a multivariate Gaussian distribution centered at the origin of coordinates, and with covariance matrix Σ = 64I; the second one is a distribution surrounding the first one, specified by a radius from the origin following a normal univariate distribution N (50, 64). 500 objects are assigned to each one of the two distributions.

Figure 2 shows the data set with true labels, as well as the corresponding KNNCLUST and KSEM results. Using KSEM with k = 30, α = 1.2, two clusters were found, and the overall classification error rate is 0.8% (8 pixels misclassified). This result compares well to the theoretical classification error rate of 0.86%. In comparison, KNNCLUST with the same number of NNs provided 15 classes, thus far from the true number of classes. To get a more precise idea of the clustering stability of these algorithms, we show in Figure 3 compared box plots of the numbers of final clusters and associated classification rates obtained with KNNCLUST, NPSEM (with initial number of clusters N C max = 100) and KSEM. These results were obtained from 20 independent runs for each method. Concerning the number of clusters, one can see that the true number of cluster is in average better identified by KSEM in the range 10 ≤ k ≤ 40, which is in agreement with higher corresponding average classification rates in this range. 

B. HSI Clustering: methodology

We provide now an experimental study of the performances of the proposed approach, focusing the segmentation of hyperspectral images (HSIs) by unsupervised clustering for remote sensing applications. Airborne and spatial hyperspectral imaging has received much attention since two decades both from the end-users due to the richness of information that HSIs carry, and by the community of image and signal processing and analysis experts due to the diversity and the complexity of the problems that multivariate image analysis poses to achieve end-user objectives in terms of classification, spectral unmixing, or anomaly detection. In a HSI, the objects {x i }, 1 ≤ i ≤ N, are associated to image pixels, and the entries of x i are (positive) radiance or reflectance values collected at n spectral wavelengths in the visible (VIS) to near-infrared (NIR) or short-wave infrared (SWIR) range. HSIs allow to accurately characterize and distinguish natural and man-made materials through absorption/emission, narrow/wide spectral bands. It is worth mentioning that our experiments were performed without prior band selection or feature extraction. Even the noisy, low average reflectance spectral bands often present in the HSI at some absorption bands were preserved in the input data set.

1) Selected methods for comparison:

The experiments were designed to assess the performances of the proposed method in comparison with similar fully unsupervised clustering approaches, i.e. methods which do not require any prior information about the data objects to be classified and particularly the true number of clusters to be discovered. Among the variety of approaches in the domain, we have selected Affinity Propagation (AP) [START_REF] Frey | Clustering by passing messages between data points[END_REF], kNN density-based clustering KNNCLUST [START_REF] Tran | Knn-kernel densitybased clustering for high-dimensional multivariate data[END_REF], and Non parametric SEM (NPSEM) [START_REF] Bougenière | Non parametric stochastic expectation maximization for data clustering[END_REF]. The choice of these particular methods was motivated by the fact that they all share the same initial conditions than KSEM, since a unique label is given to each object of the data set at the beginning of the algorithm. This allows to compare the four methods on the same basis, and makes initial conditions a non issue in this comparison. The DPMM approach, which requires a greater number of prior parameters than the above methods (among which a concentration parameter and an upper bound on the number of clusters), was not included in this study.

Each of the selected methods requires a couple of parameters that can be tuned to provide more or less accurate clustering results. These parameters generally influence the number of clusters at the output of the algorithm. Concerning AP, it is recognized in the literature that this method is sensitive to the choice of the preference parameter, which governs the way an object considers itself a better exemplar for a cluster than any other object. It has been shown recently in [START_REF] Chehdi | Pixel classification of large size hyperspectral images by affinity propagation[END_REF] that the rule of thumb of choosing the median value of pairwise similarities as the preference parameter p for hyperspectral data generally leads to over-clustering, and that a better estimate of p regarding the final number of clusters is closer to the minimum of the similarities s(i, j) = -||x ix j || 2 than to their median value as often recommended [START_REF] Frey | Clustering by passing messages between data points[END_REF]. Thus, we have chosen the parametrization p = ξ. min i,j s(i, j), leaving ξ as the only parameter for AP. Regarding NPSEM, one important parameter is the upper bound on the number of clusters N C max . In all our experiments, we have fixed N C max = 100. Concerning KNNCLUST and KSEM the only tunable parameter is k, the number of NNs, the probability reinforcement parameter α being fixed to 1.2 throughout the experiments.

Another point relates to the complexity of the chosen methods when tackling data sets comprising a high number of objects, which is the case for the chosen hyperspectral images (see below). Since AP is complex in O(N 2 ) which is intractable for high N , we randomly selected throughout the HSI a subset of N ′ objects (or pixels), having the maximal size allowed by the computer environment, and AP was run on this subset. The centroids of the resulting clusters were computed and used to cluster the remaining N -N ′ objects based on a minimum distance rule. The cardinality of the subset was fixed to N ′ = 12962 whatever the HSI processed. Concerning KNNCLUST and KSEM, the spatial sampling scheme described in Section II-C was used instead, allowing their comparison under identical conditions. NPSEM, which originally was proposed in an exhaustive pairwise distance setting, was also adapted to the kNN graph setting by removing the most distant pairs of objects in the computation of posterior distributions. Note that a transposition of this principle has been tried for AP but could not yield satisfactory results, providing a much higher number of clusters than expected. This result is probably due to the kNN graph structure for which message passing remains local and is barely influenced by messages passed outside the scope of each object's kNNs.

2) Clustering assessment: In order to assess the clustering results, we have chosen HSIs with available ground truth data. To obtain clustering performance indices when the number of clusters found is greater than the number of known ground truth classes, it is necessary to find the best match between the cluster labels and the ground truth labels. For this we first construct the confusion matrix (CM) of size N C gt × N C clus , where N C gt is the number of ground truth classes, and N C clus is the number of output clusters. This CM is then augmented with N C clus -N C gt zeroed rows, and the best class-cluster assignment is sought thanks to the Hungarian algorithm [START_REF] Kuhn | The Hungarian method for the assignment problem[END_REF], and applied to permute the columns of the augmented CM, providing a new CM with maximal trace. Therefore, classical CM-based clustering performance indices can be accessed such as the overall correct classification rate (OCCR), i.e. the trace of the new CM divided by the total number of pixels, as well as the class-specific correct classification rate (CSCCR), i.e. for each ground truth class the number of pixels correctly predicted divided by the number of pixels belonging to that ground truth class, and the average correct classification rate (ACCR), i.e. the average of the CSCCRs over the number of ground truth classes. The Cluster Purity and Normalized Mutual Information (NMI) indices [START_REF] Manning | An Introduction to Information Retrieval[END_REF] have also been used for comparison. These indices both have maximal unity value for an error-free clustering result.

Since the number of ground truth pixels is often small with respect to the spatial size of the images to analyze, it can be interesting to assess the quality of each method by counting the number of clusters found within the known ground truth pixels only; this one is expected to be close to the number of known classes for a good clustering result. This is why we have also added for each method the number of clusters found within the ground truth pixels in the Tables providing the classification results.

Finally, in order to statistically assess the performance indices, their averages and standard deviations were computed from 10 or 20 independent runs for each method, depending on the HSI under study.

C. HSI Clustering: results

1) AVIRIS -Salinas: This HSI was acquired by the AVIRIS sensor over agricultural crops in Salinas Valley, California, on October 8, 1998. Its size is 512 lines by 217 samples, and 220 spectral bands are available. The ground resolution is around 4 meters. The ground truth map reports 16 vegetation classes, some of them representing several stages of growth (lettuce) or different agricultural practices (vineyard) [51]. Figure 4 shows a color composite of the Salinas scene, and the corresponding ground truth map.

We first studied the influence of the number of neighbors k on the classification accuracy provided by KNNCLUST, NPSEM and KSEM. For this, we performed 20 independent runs of the three methods for values of k in the range from 10 to 80. Figure 5 displays the box plots of the ACCR versus k for the three methods. One can observe dissimilarities between the three methods in terms of accuracy as k evolves. Firstly, ACCR maxima are obtained for different values of k, and the optimum is found for k ≈ 50 with KNNCLUST, whereas k ≈ 20 is the optimum for NPSEM and k ≈ 40 for KSEM. Secondly, this study provides a comparison of the efficiency of the three clustering methods in terms of ACCR, and shows that KSEM can outperform the two other methods for some adequate range of k, here k ≤ 40. Contrarily, for k > 40, KNNCLUST provides the best results among the three methods, though with significantly decreasing accuracy as k increases. Thirdly, one can observe the lower dispersion of ACCR around their average values with KSEM for k ≤ 40 compared to the other methods, which denotes a higher stability of our approach. This is particularly true for k around 30-40, i.e. in its optimal range. Therefore a careful choice of k must be made before using each method.

Table I reports a detailed comparison of clustering results using the optimal values of k issued from this analysis, i.e. k = 50 for KNNCLUST, k = 20 for NPSEM (N C max = 100), k = 40 for KSEM. Results provided by AP are also included. Yet, 11 out of the 16 classes were better identified by KSEM, giving 82.44% average ACCR, and 79.17% average OCCR over the 20 runs. Also, the median number of clusters found within the labeled data, 18, is close to the actual number of classes. Though its computational complexity is lower and the fact that it does not require random sampling, KNNCLUST provides less accurate results than KSEM, but better than AP and NPSEM. It should be noticed that KSEM could not discriminate the classes Grapes untrained and Vineyard untrained, hence the 0% CSCCR obtained for the latter. This can be explained by the high similarity of these two classes in terms of spectral signatures due to close vegetation species.

Figure 6 shows instances of clustering maps provided by the four methods using the values of k specified as above. Visually, the clustering map obtained with KSEM is closer to the ground truth map than those of the other methods, as confirmed by the corresponding accuracy indices. Also note that two subclasses of Celery were identified by KSEM, though not clearly visible on Figure 6-(a). However, as said above, none of the methods was able to clearly discriminate the Grapes untrained and Vineyard untrained classes, except KNNCLUST, though quite marginally. 8 displays typical clustering maps issued from this experiment, and gives the corresponding correct classification rates.

3) AVIRIS -Hekla: In the last experiment, we used a HSI collected on 17 June 1991 by AVIRIS over the Hekla volcano in Iceland. The image has 560 × 600 pixels, with 157 spectral bands only due to a sensor malfunctioning. The ground resolution is 20 m. Figure 9 shows a color composite image as well as the ground truth patches used for the clustering assessment, which comprises twelve land-cover classes.

Table III displays as above the performance indices of the four methods averaged over 10 runs, using k = 10 for KSEM, k = 30 for KNNCLUST and k = 7 for NPSEM, which were chosen as optimal regarding the average ACCR. In this experiment, AP and NPSEM still provide poor results, whilst KNNCLUST and KSEM provide similar results, with a slightly higher (but non significant) ACCR for KNNCLUST. Despite the higher computational burden of KSEM, one can see from this experiment that a random sampling approach can perform as better as a deterministic approach, by using a reduced kNN 10-(d)) highlights the limitation of the deterministic probability update rule of KNNCLUST, which tends to relax the labeling from seed pixels or regions located far apart, without possibility to merge these labels into a single one, hence providing over clustering. Yet, performing random label assignments according to conditional local distributions allows to gain in clustering robustness thanks to the fact that label propagation from a seed region to another is made possible. efficiency of the proposed approach in retrieving coherent clusters with respect to available ground truth data. 

Fig. 1 . 1 )

 11 Fig. 1. Example of spatial sampling pattern used to limit the k-NN search in images (sliding window size 91 × 91, 185 sampling pixels shown in black). The central point of the window corresponds to the query pixel in the kNN search, whereas the remaining points correspond to the set of potential k-NN pixels.
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 23 Fig. 2. Clustering of synthetic 3-D data. (a): Original data and corresponding true labels; (b): KNNCLUST result; (c): KSEM result.

Fig. 4 .

 4 Fig. 4. Salinas hyperspectral data set.(a): Color composite image (bands 30, 20, 10); (b): Ground truth.2) ROSIS -Pavia University: The Pavia University HSI belongs to a set of hyperspectral images acquired by the ROSIS instrument operated by the German Aerospace Agency

  Fig. 5. Box plots of Average Correct Classification rate (ACCR) for the Salinas HSI as a function of the number of nearest neighbors k. Light gray: KNNCLUST; Gray: NPSEM; Black: KSEM.
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 6 Fig. 6. Unsupervised classification results for the AVIRIS Salinas hyperspectral data set. (a): AP (OCCR: 54.34%, ACCR: 62.51%); (b): KNNCLUST (OCCR: 72.81%, ACCR: 70.23%); (c): NPSEM (OCCR: 45.43%, ACCR: 52.05%); (d): KSEM (OCCR: 78.44%, ACCR: 83.06%).

  (10 RUNS) OF CLASS SPECIFIC, AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND NORMALIZED MUTUAL INFORMATION, NUMBER OF ITERATIONS AND EXECUTION TIME OF CLUSTERING METHODS FOR THE ROSIS Pavia university HYPERSPECTRAL DATA SET (AP: ξ = 3.0; KNNCLUST: k = 60; NPSEM: k = 17, Cmax = 100; KSEM: k = 30).
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 78 Fig. 7. Pavia university hyperspectral data set.(a): Color composite image (bands 60, 33, 9); (b): Ground truth.

  (10 RUNS) OF CLASS SPECIFIC, AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND NORMALIZED MUTUAL INFORMATION, NUMBER OF ITERATIONS AND EXECUTION TIME OF CLUSTERING METHODS FOR THE AVIRIS Hekla HYPERSPECTRAL DATA SET (AP: ξ = 1.0; KNNCLUST: k = 30; NPSEM: k = 7, Cmax = 100; KSEM: k = 10).
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 910 Fig. 9. Hekla hyperspectral data set.(a): Color composite image (bands 29, 15, 9); (b): Ground truth.

TABLE I MEAN

 I AND STANDARD DEVIATION (20 RUNS) OF CLASS SPECIFIC, AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND NORMALIZED MUTUAL INFORMATION, NUMBER OF ITERATIONS AND EXECUTION TIME OF CLUSTERING METHODS FOR THE AVIRIS Salinas HYPERSPECTRAL DATA SET (AP: ξ = 2.0; KNNCLUST: k = 50; NPSEM: k = 20, Cmax = 100; KSEM: k = 40).

				Unsupervised classifier
			AP	KNNCLUST NPSEM	KSEM
		Total # clusters -min	35	27	14	20
		Total # clusters -med	39	32	18	22
		Total # clusters -max	43	37	23	26
		min. # clusters in GT	32	20	14	16
		med. # clusters in GT	36	25	18	18
		max. # clusters in GT	41	30	23	20
		Brocc. gr. wds 1	96.78±1.97	98.53±0.21	68.06±45.73 93.34±21.97
		Brocc. gr. wds 2	49.01±9.68	98.07±7.12	83.34±21.68 99.67±0.01
		Fallow	46.07±3.13	51.92±11.50 36.56±23.39 75.64±22.71
		Fallow rgh pl.	67.32±13.88 63.69±28.97 74.43±39.87 99.19±0.05
		Fallow smooth	82.61±4.81	65.94±23.87 67.64±21.60 91.37±5.66
		Stubble	47.20±3.65	92.61±14.62 94.32±13.75 99.73±0.02
	Classes	Celery Grapes untrained Soil vin. devel. Corn sen. g. wds	55.00±3.67 27.81±4.56 56.52±8.60 55.80±0.79	74.50±19.52 57.24±21.17 77.51±18.76 88.68±19.65 36.62±11.25 99.57±0.02 99.14±0.99 60.52±16.79 95.65±9.32 54.78±13.23 60.31±16.30 63.26±1.14
		Lett. rom. 4 wks	60.73±6.00	60.15±28.61 59.00±39.18 47.07±39.31
		Lett. rom. 5 wks	53.77±5.04	87.18±23.31 55.34±32.12 100
		Lett. rom. 6 wks	91.71±13.34 74.26±43.99 55.58±49.00 88.92±30.41
		Lett. rom. 7 wks	75.71±13.69 78.65±19.68 76.18±32.92 88.94±3.54
		Vineyard untrained	33.27±6.77	41.77±47.51 46.51±12.49 0
		Vineyard ver. tr.	40.25±1.77	96.35±12.39 60.89±38.27 99.22±0.05
		ACCR	58.72±2.99	76.64±4.43	62.03±5.17	82.44±3.08
		OCCR	49.18±3.52	77.98±5.50	57.62±4.44	79.17±2.11
		Cluster purity	0.49±0.04	0.87±0.04	0.63±0.05	0.94±0.02
		NMI	0.69±0.01	0.88±0.01	0.70±0.03	0.89±0.01
		Iterations	251±56	23±5	74±23	107±15
		Exec. time (s)	1722±403	615±106	255±52	1363±176
						Fallow rough plow
						Fallow
						Broccoli gr. wds 2
						Broccoli gr. wds 1
						Unlabeled

  5. Box plots of Average Correct Classification rate (ACCR) for the Salinas HSI as a function of the number of nearest neighbors k. Light gray: KNNCLUST; Gray: NPSEM; Black: KSEM. (DLR) on July 8, 2002 in the framework of the European HySens Project. ROSIS provides 103 spectral bands ranging from 430 to 850 nm, at 1.3 m ground resolution. The Pavia University scene has a spatial size of 610 × 340 pixels. Nine classes are reported in the ground truth map visible in Figure7jointly with a color composite image. TableIIshows the clustering maps and performance indices of the four compared methods. KNNCLUST, NPSEM and KSEM were run using k = 60, k = 17 and k = 30, respectively. These values were selected since because they provide the best average accuracies for each method. A median number of 19 clusters were found by KSEM, with a median number of 16 clusters within the nine ground truth classes, giving an average ACCR of 63.20% over 10 runs, again better than the other compared methods. NPSEM, which is faster than the other methods, does not provide satisfactory results in this experiment, though slightly superior to AP. Here again, Cluster Purity and NMI indices are in accordance with ACCR and OCCR. Figure

TABLE II MEAN

 II AND STANDARD DEVIATION

TABLE III MEAN

 III AND STANDARD DEVIATION

  Andesite lava 1991 II 27.02±7.72 58.22±15.56 47.68±12.37 37.12±19.78 Andesite lava moss cover 62.06±10.17 80.96±12.99 81.08±14.36 95.81±9.42 Hyaloclastite formation 37.28±8.30 84.02±12.35 59.23±20.37 77.75±12.09 Lava tephra covered 73.46±17.67 98.89±1.13 88.76±24.24 79.77±42.05 Rhyolite 29.23±3.38 76.58±15.75 76.56±35.09 100 Scoria 16.98±6.09 43.35±15.11 38.15±18.06 25.40±16.19 Firn-glacier ice 35.68±5.99 75.02±17.92 56.90±16.69 66.90±0.76 Snow 61.64±12.29 72.40±16.17 52.01±10.42 54.36±2.92

			Unsupervised classifier	
		AP	KNNCLUST NPSEM	KSEM
	Total # clusters -min	33	53	30	37
	Total # clusters -med	35	57	35	42
	Total # clusters -max	38	66	39	46
	min. # clusters in GT	33	25	30	21
	med. # clusters in GT	35	29	34	25
	max. # clusters in GT	37	34	39	30
	Andesite lava 1970	82.89±18.21 97.34±5.55	96.08±3.50	98.98±0.57
	Andesite lava 1980 I	53.84±17.87 63.90±5.63	77.73±19.84 80.75±16.46
	Andesite lava 1980 II	81.86±7.63	99.96±0.06	94.88±11.13 99.95±0.04
	Andesite lava 1991 I	58.83±7.76	84.91±19.49 14.65±4.77	96.75±9.64
	Classes				
	ACCR	51.73±3.79	77.96±3.26	65.31±5.29	76.13±4.06
	OCCR	57.01±3.21	81.63±6.12	57.70±5.11	83.27±3.31
	Cluster purity	0.59±0.03	0.82±0.06	0.59±0.05	0.88±0.03
	NMI	0.68±0.02	0.90±0.02	0.69±0.05	0.89±0.02
	Iterations	203±22	26±2	127±41	201±14
	Exec. time (s)	1440±264	1878±92	933±242	7413±562
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