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Unsupervised Nearest

Neighbors Clustering with

Application to Hyperspectral Images

Claude Cariou,

Abstract—We address the problem of unsupervised clustering
of multidimensional data when the number of clusters is not
known a priori. The proposed iterative approach is a stochastic
extension of the kNN density-based clustering KNNCLUST)
method which randomly assigns objects to clusters by samplg
a posterior class label distribution. In our approach, conextual
class-conditional distributions are estimated based on & nearest
neighbors graph, and are iteratively modified to account for
current cluster labeling. Posterior probabilities are al® slightly
reinforced to accelerate convergence to a stationary labielg. A
stopping criterion based on the measure of clustering entay is
defined thanks to the Kozachenko-Leonenko differential erropy
estimator, computed from current class-conditional entrgies.
One major advantage of our approach relies in its ability to
provide an estimate of the number of clusters present in the ata
set. The application of our approach to the clustering of reahy-
perspectral image data is considered. Our algorithm is comared
with other unsupervised clustering approaches, namely affiity
propagation (AP), KNNCLUST and Non Parametric Stochastic
Expectation Maximization (NPSEM), and is shown to improve
the correct classification rate in most experiments.

Index Terms—Data clustering, nearest neighbors, Bayes’ de-
cision rule, stochastic algorithm, differential entropy estimation,
pixel classification, hyperspectral images.

I. INTRODUCTION

Merging automatically objects having similar charactesss

Kacem Chehdi

classificationwhich requires a complete set of labeled data
for training. In the literature, the terrolustering generally
refers to the family of unsupervised methods. The different
groups of objects, characterized by features, are callesieants,
which are formed of the closest objects, according to some
specified distance between objects. Clustering methoas-the
selves can be categorized into several families, comgrisin
centroid clustering (e.gk-means [4], fuzzyc-means [5]);
hierarchical clustering (e.g. based on minimum-variar@le [
or single-link [7]); density-based clustering (e.gBSCAN

[8], opTICSs [9], MeanShift [10]); clustering based on finite
(Em [11], seM/CEM [12], [13]) or countably infinite mixture
resolving and Dirichlet process mixture modelsP{m) (
[14], [15]); spectral clustering (e.g. normalized cuts][18
kernelk-means [17]); and more recently information theoretic
clustering ( [18]-[24]), and clustering by Affinity Propagm
(AP) [25].

Clustering methods can also be distinguished by the degree
of randomness used to achieve the classification objeative i
the algorithms. Among the previously cited approaches,yman
are purely deterministic approaches to clustering (hidviaal
methods,DBSCAN, OPTICS MeanShift, Ap to cite a few);
on the other side are methods based on random partitioning
or labeling 6eEM, DPMM). Mixing cases comprise relaxation
labeling methods, i.e. deterministic algorithms in whieh |

is a very important problem in various research fields such gg probabilities are computed and iteratively updated! unt

computer vision, pattern recognition or information retsll,

convergence to a stationary distribution [26], as well asida

when applied to medicine, genomics, chemistry, forensiod, centroid clustering approaches likemeans which require
more recently Big Data mining to cite a few [1], [2]. Despitgome random object labeling at initialization, though toelp

several decades of research in this area, the task is itk

of the algorithm is purely deterministic.

because of the continual improvement of sensors technologyp, probabilistic methods, a standard approach uses the
and the increase of the size of data _sets to analyzg, bo_tleln Ighyesian paradigm, which classically requires a parametri
number of objects to handle (e.g. in very large size imaggfydeling of class-conditional probability distributiorSach

or videos), and in the number of features that each objefster is modeled by a multivariate distribution goverisd

supports (e.g. DNA sequences or hyperspectral data).

a set of parameters, and the distribution of the objectsén th

Without any prior information about the data under Studyata set is modeled as a linear combination of those condiitio
the grouping of similar objects into coherent groups has {fistributions [27]. A maximization of the likelihood furioh
be done in an unsupervised way. This processing is caligg respect to these parameters is then used to find the best
unsupervised classificationin contrast tosemi-supervised parameters for each cluster. This maximization can be per-
classificationwhich consists of grouping objects with the helggrmed by the iterativem algorithm [11]. Thesem algorithm

of a small amount ofa priori information on the data set,

[27], a stochastic version of them algorithm, can avoid the

e.g. pairWise ConStraintS (must'link / CannOt-link) bme draWbaCkS Of thEEM a|gorithm Such as SlOW Convergence,

objects, or a few number of class labels [3], andupervised
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convergence to local extrema of the likelihood function, or
sensitivity to initial conditions [12]. Both th&m and SEM
algorithms in their original design require the problem to
be formulated as aidentifiablemixture estimation problem,
where the number of classes is knowipriori, and the class-
conditional distributions follow some parametric modelg(e
Gaussian distributions). However, a parametric modelihg o



the conditional distributions is often difficult to assummeréal on both kernel-based pairwise similarities between object
cases because of their complex shapes, therefore jugtifiyen and an estimation of class-conditional entropies, fromcihi
need for non parametric approaches to data clustering.  a posterior distribution (of the cluster assignment given a

Actually, a majority of these clustering methods requirebservation or object) is computed and used to sample the nex
some prior knowledge about the data in the sense that the ndateling statenPSEMwas compared and found experimentally
ber of clusters to be found is explicitly provided by the user to be slightly superior t&-meansFcwm [5], FCM-GK [39], EM
the input of the algorithm. This is particularly true for ¢emd with Gaussian conditional distributions [37], aRdNCLUST,
clustering, mixture resolving, and spectral clusteringhirir on a limited set of data.
baseline implementation. In contrast, there is a more dichit In this paper, we present a new fully unsupervised cluggerin
number offully unsupervisealustering approaches which cantechnique which we namesewm, standing for Kernelem.
automatically estimate the number of clusters, without anksewm is in the spirit ofNPSEMsince it is intended to perform
posterior selection of the number of clusters based onriater unsupervised clustering by iteratively reassigning disjeto
evaluation (like for instance Davies-Bouldin [28] or Dunrtlusters, following a stochastic procedukseM also provides
[29] indices). Among the latter are hierarchical agglontieea an estimate of the number of clusters which, contrarily to
clustering methods, for which a stopping criterion stilhi@ns NPSEM and as an improvement of it, does not require any
to be specified, as well as a number of density-based methagisper bound on the number of clusters, nor any minimum
including BIRCH [30] and DBSCAN [8]. Affinity Propagation number of objects in a clustetSEM is an iterative procedure
(AP) [25] also has the capability to provide the optimal numbeavhich produces at each step a random partition of the data
of clusters at termination of the algorithm. There also teais set objects using local pseudo-posterior distributiomgil @
few number of elaborate centroid clustering methods whizh differential entropy-based criterion is met, revealingtabke
not require the number of clusters, e.g. [31]. Another ganepartition.
framework issued from Bayesian nonparametric statistitck a The paper is organized as follows. Section Il provides a pre-
able to perform unsupervised clustering without knowing thsentation of our algorithm, followed by a discussion foogsi
number of cluster resides in Dirichlet process mixture nt®deits novelty with respect toiPSEM andkKNNCLUST. In Section
(pPMM) [15] [32] [14]. Stochastic processes like the Chinesil we present experimental results focusing the unsupedi
restaurant process [33] and the stick-breaking procesp [#fassification of pixels in hyperspectral images, in which w
aim to produce random partitions of a data set into clustetsmpareksem with three other clustering methods, namely
following a Dirichlet process mixture model. AP, KNNCLUST andNPSEM Finally, a conclusion of this work

In [35], a density-based clustering method named- is given in Section IV.
NCLUST was proposed. This method can be considered as an
iterative unsupervised version of th&Ns (¢ nearest neigh-
bors) algorithm which can automatically estimate the numbe
of clusters, starting from a distinct cluster label for eablect. In this section, we describe the proposed clustering method
At each iteration, for a given object, this method reasstges KSEM, point out several practical issues, and then discuss
cluster label of an object based on the current state of its relationships with thekNNCLUST [35] and NPSEM [38]
kNNs and on its distance to them using Bayes’ decision rulglgorithms.
KNNCLUST was successfully applied to multispectral images
and is shown to outperforrh-means and to provide results
comparable te&M, with a relative insensitivity to the chosenA' Proposed method
number of nearest neighbors. Let X denote the original data set to clust&X =

The present work is inspired from the Stochasti¢x;},x; € R",i = 1,...,N, wherex; is called an object.
Expectation-Maximizationgem) algorithm [27], a precursor X can be thought as a collection @V realizations ofn-
of Markov chain Monte Carlo (MCMC) methods [368em dimensional random vectors. Let us denotedya discrete
is a stochastic extension of the Expectation-Maximizatioandom variable (r.v.) corresponding to the class labetl hel
(em) method [11] which tries to maximize the likelihood ofby objectx;; let ¢; be an outcome label sampled from some
a parametric model from realizations of the missing claslistributiononC;,i =1,..., N. The objective of the proposed
membership data. Althougkem is primarily dedicated to method is to assign a label to each object according to a
parameter estimation, its use in clustering has been steghesnodified maximum likelihood criterion, following a random
as a stochastic version of the Classificatiem algorithm sampling scheme similarly asPsem [38]. From a general
(cem) [13], which was recognized as a generalization ofiewpoint, our method works by iteratively partitioningeth
the k-means algorithm [37]. Botlk-means and the baselineobjects into clusters by sampling from local posterior rilist
CEM share the same drawback of convergence to a Io¢njtion3p(0i|x,-;{xj,cj}j#),i =1,...,N.
optimum or a saddle point of the likelihood function due This general formulation raises several questions, among
to the deterministic nature of the class assignment steghich () what is the set of objects and corresponding labels
whereasseMm is able to avoid such stationary points. In [38], gx;, ¢;} to consider for somex;? (i) how can be estimated
stochastic algorithm named>SeM (non parametriGeM) was the posterior probability distribution used to get the euntr
introduced, which proposes to replace siem, the parametric cluster label of an object? andii] what type of sampling
conditional distributions by non-parametric estimatesdoh scheme can be set up in the algorithm?

1. PROPOSEDCLUSTERING METHOD



The first issue is related to the overall support modaepproaches, as follows [41]:
for label assignment. For instance, a model-based approach
through Conditional Random Fields (CRF) [40] can be used toPa(C(i) = celxi; {x;, Cj}jEn(i)) =
set up a probabilistic dependency restricted to some pbestr [Z (x5, %;) 6 r
neighborhood ofx; with respect to a graph. IRSEM, we jen(i) 9\ Xi) Ocjee
propose to assign_ a label to every pixel, based on the labels S com [Zjen(i) o0, %;) 5cjcmr
of its k nearest neighbor&NSs) in the representation space,
hence to use a nearest neighbors graph modelklst the Ve, € Q(i), 1 <i < N, wherea € [1,4oc[ is a parameter
(fixed) number of nearest neighbors(;) be the set of indices controlling the degree of determinism in the constructién o
of the kNNs of x;, i.e. such thak; is akNN of x; Vj € x(i); the pseudo-sample: = 1 corresponds to theem (stochastic)
let ¢ = [c1,...,cn]” be the vector of cluster labels, wherescheme, whilex — +oo corresponds to theem (determinis-
e c{l,...,N}, Q being the set of distinct labels takerfic) scheme, leading to a labeling scheme which is similar
by the set of all objects; and lg(i) = {c;|j € x(i)} be 1O the k& nearest neighbors decision rule, where distances
the set of distinct labels taken by tHeNNs of x,. Since between objects in the representation space are replaced by
duplicate labels can be held by ti®Ns of an object, we their mutual influence via kernel functions [41]. It can be
have|Q(i)| < k, and consequentli2| < N. mentioned that the AEM algorithm [13] is a generalization of
this principle which considers the exponenas the inverse of
a temperature in an annealing scheme. This parameter is also
to some extent comparable to the fuzziness parameter used in
the semi-supervisedcm algorithm.

®3)

Regarding the second issue, the local posterior labeli-dis
bution in KSeEM can be modelled primarily as:

ﬁ(cz = CZ|X1'§ {Xjacj}jen(i)) X Z g(xjaxi) 503'615 (1)
jer(d) B. Practical issues

Several practical issues must be discussed about the appli-
Vee € Q(i), 1 < i < N, whereg is a (non negative) kernel cability of the proposed method to clustering objects irl rea
function defined orR”, §;; is the Kronecker delta. Thoughdata sets:
many kernel functions can be used, including rectangular,1) Stopping criterion: A general framework to deal with
triangular or Epanechnikov [35], we have restricted oudstu cluster consistency relies in information theory. Reggentl
to the following Gaussian kernel: information theoretic (IT) clustering [18]-[24] has becem
an attractive approach due to its ability to cope with arbi-

2 trary shaped clusters. IT clustering is based on informatio
L L |xxz-||2> @

(V2rdi (i) (7 & (i)

theoretic measures of the cluster consistency, usingerhust
conditional entropy as the within-cluster validation erion,
or the mutual information between the given labels and the

wherex € R, and djs(x;) represents the distance fronclustered data. Several schemes have been proposed to opti-
x; to its kth NN within a subsetS of objects. Clearly, mize these crite_ria_l, including minimum span_ning trees [22]
dy..(x;) is the distance fron; to its kth NN in x(i), and we and convex optimization [23]. It can be noticed that these
have dj, (xi) = max;c.(s ||x; — x||. Therefore, the kernel methods all have the problem of requiring in advance the
K T VIS¢ J AN l : )
function is adapted in aperture to the local density arowutie knowledge of the number of clusters to discover. This was
x;. This modeling is similar to the one described in [35], bu!SO the case of former entropy-based clustering algosithm

is simpler to implement thanks to rotational symmetry. ~ US€d in language modelling [42], [43]. In [44], Kozachenko
and Leonenko have proposed an unbiased estimator of the

Once the above model of the label distribution is ava"ablﬁ_l‘fferential entropy of a random vector from a set of observa
I

g(x,x;) =

we can consider the third question mentioned above aboutthe ™~ ! .
. . . ons inR™, as a function of averaged log-distances between
labeling procedure itself. IKNNCLUST [35], the labeling of

obiectx. is based on Baves decision rule. ie. the labgl objects and their 1-NNs. This estimator has been genedalize
Ject x; Y . e to the case of log-distances #NNs in [45], [46] and its

maximizing Eq. (1) is chosen, and thus= c}. Though this biased d . 4 M isel
rule is very simple to understand and has a strong justitfinatiun 1asedness an consistency were proved. More precisely,
letting S., = {x; € X|¢; = ¢/}, the Kozachenko-Leonenko

in decision theory, and despite its attractive deternimist s : . ) o
nature, it is expected to suffer from the same drawback thg%ndlt'onal differential entropy estimate writes:
the EmM algorithm applied to augmented data for mixture j, .\ — " Ind x

. . K . . K . = — .S i)+ In(Ny — 1
estimation, i.e. of trapping the solution into a local optim (Klee) N Z hS @( ) (Ne —1)

or a saddle point of the likelihood function.

o —¢(k)+InV, (4)
In order to avoid this problem, we propose to replace the
deterministic label selection procedure by a random samgplivVee € Q, where N, = |S.,|, ¢¥(k) = I'(k)/T'(k) is the
procedure in which the label of each object is drawn frosigamma function'(k) is the gamma function and;,, =
the local posterior distribution (1). This distributionrcde #2/11) is the volume of the unit ball iflR™. An overall
modified easily in order to get a trade-off between the puretyustering entropy measure can be obtained from conditiona
stochastic $EMm-like) and the purely deterministicEm-like) entropies (4) as:

’ xiEch



of an object), and approximately minored 6(k.NC.N),
R 1 R where NC' is the number of final clusters.
h(X[c) = N Z Ne h(Xler) (5)  5) ConvergenceFormal convergence properties REEM
e are not easy to establish and will not be investigated herein
. . o . evertheless, the vector of labels drawn from posterior dis
This measure can be used as a stopping criterion during th

iterations quite naturally. In fact, under the assumptidn orIBUtlons can be seen as issued from an aperiodic inho-

a fixed number of clustersi;(X|c) is expected to0 deCreasemogeneous Markov chain with (local) absorbing states due

; . o : to the removal of labels having lowest probabilities during
until a valid partitioning of the data set is found. However, . . .
the iterations. Indeed, labels which are not drawn at all for

the situation is different when the number of clusters is n te whole set of objects simply disappear fréim therefore
given in advance but is decreasing during the course of the ) Py P

labeling procedure. Clearly, since objects are aggregated reducing the state space. However, convergence to a stalle,

. . : : 2 trivial clustering result (i.e. different from a single firduster)
previously formed clusters during the iterations, the vidiial . .
o . ; has been experimentally observed in all encountered cHses.
class-conditional entropies can only increase, and so does

the conditional entropy (5). However, when convergence iS important to notice that the clustering result is indegert

achieved, this measure reaches an upper limit, and there o§r any initial labeling since each object IS assigned a singl
X o . . unique label at the beginning of the algorithm. We also found
a stopping criterion can be set up from its relative magni-

tude variationA,, — |E(X|c(t>) - E(X|c(t*1))|/ﬁ(X|c<t*1>) _expefimen_tally_ (s_e_e below _in Section Ill) that the number of
wherec® is the vector of cluster labels at iteratinin our o adons IS significantly higher than fatnncLusT (by a

experiments, we have used the stopping critetion< 10~4. fagtor around 4), but _only slightly higher 'Fhan forPSEM
o ; ) This fact can be explained by the stochastic naturesEm
It is interesting to mention that (5) has been used as a basis
. : andNPSEM VErsuskNNCLUST.
of several IT clustering methods under different schemes (s
[20], [21], [23] for some recent works), and was proved in
[23] to overcome the main flaw of the mutual information

clustering criterion/ (X ; ¢) which has tendency to ignore the®- APPlication to images

data set structure. Despite the reduction in complexity brought by thBIN

2) Choice ofk: The number of NNsk involved in the search, the case of image segmentation by unsupervised clus
computation of the posterior distribution is actually theyk tering of pixels withksSEM remains computationally difficult;
parameter of the proposed method, similarlyKlONCLUST. indeed, the search for objects\Ns which must be performed
The influence of this parameter can be easily anticipatqénd stored) beforehand still remains quadratic Nn (the
indeed, increasing: will tend to promote a few number of number of pixels), which can severely lower its usage for
labels propagating on theNN graph, whereas decreasikg |arge size images. In the particular domain of multivariate
will tend to produce a high number of clusters since labghagery (multispectral/hyperspectral), the objects dériest
sampling remains local. This issue will be further investéyl are primarily grouped upon their spectral information elcar
in Section Il1. teristics. To help the clustering of image pixels, one makes

3) Choice ofa: Recall that settingy = 1 is equivalent to often use of the spatial information, and of the fact that two
performing the random label assignment following the arédi neighboring pixels are likely to belong to the same cluster
posterior local distribution derived from Bayes’ decisiaie. [47]. In order to further reduce this complexity, we propose
However, it can be observed that this setting generally slowo limit the search of a pixel'$NNs to a subset of itspatial
down the convergence to a final clustering solution. Theeighbors, selected via a predefined sampling pattern. The
probability reinforcement parameter = 1.2 was found to sampling pattern chosen here is non-uniform on the spatial
be a good trade-off between the randomness of the labelintage grid, with a higher sampling density in the vicinity of
scheme and the convergence speed, and was chosen in alltloeirquery pixel, and a lower density as the spatial distaoce t
experiments. the query pixel increases. Figure 1 shows the spatial sampli

4) Complexity:In NPSEM[41], each object of the data set ispattern which was used in our experiments. This pattern has
involved in the labeling decision rule of one particularexij a local sampling density inversely proportional to the atise
Though such a rule remains tractable for small size datg@etérom the central (query) point. Obviously many other samgpli
few thousands objects), it becomes computationally iniéms schemes may apply, however we have not investigated this
for large data sets (several millions of objects or morelhSa issue in the present work. ¥/ is the number of candidate
situation is also encountered in other unsupervised aingte Ssampled pixels {/ = 185 in Figure 1), then thé&NN search
methods such as\p [25] for which pairwise similarities procedure has complexit) (M N), which is dramatically
between objects are required, making the algorithm quiadrdower than a full search over the entire image, even for small
in the number of objectd’. Therefore performing the labelingsize images.
decisions dependent on a reduced set of neighboring object¥he pseudo-code of thesem algorithm is given in Algo-
(given by the kNN search), is highly desirable. Actually,rithm 1. Since only a limited number of pairwise distances
the complexity of a single iteration oksem (as well as (and not the data values themselves) are required to compute
KNNCLUST) is majored byO(k?N) at the beginning of the the posterior distributions, these are first stored into deta
algorithm (sincek different labels are assigned to th&INs which can be easily accessed during the iterations.



procedure withinKkSEM clearly avoids the solution to be

trapped in a local optimum of the likelihogdX; c). As said

above, this is a well known property of tis&m algorithm and

its derivatives [13] in a parametric context. However, itgnu

be noticed thakNNCLUST, although this is a deterministic

algorithm in essence, still offers the possibility to produ

) ) different results from a unique initialization label statwy

e e e < visiting the objects in random order rather than sequéntial
oo ] in turn. We have used this feature in the experimental study

presented below, since it allows to compare the clustering

Fig. 1. Example of spatial sampling pattern used to limitA#HsN search in  performances on a statistical basis from results obtaiged-b

images (sliding window size 9% 91, 185 sampling pixels shown in black). dependent runs of the algorithm. Another difference&xstm

The central point of the window corresponds to the querylgixeéhe kNN ith l in th ificati f th
search, whereas the remaining points correspond to thd petential k-NN with respect toKNNCLUST relies in the specitication of the

pixels. kernel function (2). Indeed, for the Gaussian kernel pregos
in [35], the volume of the bin around each object is adapted
Algorithm 1 KSeM algorithm in scale along each dimension of the representation space to
Input: include its kNNs. Here, the kernel is rotationally symmetric
X ={x;},x;eR"i=1,...,N; and only dependent of the Euclidean distarge. (x;). The
The number of NNsk; motivation for using this particular kernel relies in a redd
The probability reinforcement parameter computational load, and also to a lesser sensitivity to very
The stopping constarnt close objects along a specific dimension, sidgg (x;) is very
Output: The vector of final cluster labets= [c, . .. ,CN]T; unlikely to be close to zero for moderate valueskofa few
1) Compute theN x k matrix D containing the distancestens).
of each object to its NNs up to thieth NN; Second,NPSEM has several remaining problems, among
(in case of image data, use the sampling scheme describéuch the choice of the upper bound of the number of
in Section 1I-C). classes which must be initialized by the user, and the fact
2) Initialize labels c¢(© [CSO)’ o ,CS\?)}T _ that the distance sgparatlng all pairs of.ob_Ject.s is requme
T, © _ . compute the postgr!or I_abel probability distribution. §_tatter
[1,2,..., N7, Let Q) = {1,2,..., N} requirement prohibits its use for large data sets (i.e. \&ith
3) lterations: large number of objects, the dimension of the represenmtatio
t=0; space being not an issue here) due to the quadratic comyplexit
Ah_: L.0; implied by the pairwise distance computation and storage.
while A, > € do N . Contrarily, KSEM (i) does not need the initialization of an
Compute the overall class-conditional entropyX|c) ypper bound on the number of clusters, nor any minimum
(Eq. (5)) using the log of distances stored!in number of objects assigned to a cluster, aidi§ based on a
for i=1:N do kNN graph, therefore requiring much less storage capability

for all ¢, € Q¥ (i) do
Compute the posterior probability:

. [1l. EXPERIMENTS AND RESULTS
Pa(Ci = colx; {Xj7c§'t)}j€n(i)); (Eq. (3))

end for A. Synthetic data set
Draw a new label: » In order to demonstrate the validity of our approach in non-
ci 7~ DalCilxi {X), ¢ Yien(@); linear discriminant clustering, we first illustrate its dipation

end for T to a synthetic data set. In this example, 1000 3-D objects
ct+D) — lcgt“), Al are generated randomly following two distribution modée:
UpdateQ(®+1 by counting the remaining distinct labelsfirSt one is a multivariate Gaussian distribution centertetthe
A, — |(A(X " D) —h(X[c™))] . origin of coordinates, and with covariance mafrix= 64I; the
; Z f4 1 h(X|e®) ' second one is a distribution surrounding the first one, §ipeci

by a radius from the origin following a normal univariate
distribution A/ (50, 64). 500 objects are assigned to each one
of the two distributions.

Figure 2 shows the data set with true labels, as well as
the correspondingNNCLUST andKSEM results. USINgKSEM

KSEM brings some important advantages with respect wth & = 30, = 1.2, two clusters were found, and the
eitherKNNCLUST and NPSEM which it is inspired from. overall classification error rate is 0.8% (8 pixels misdfiesd).

First, the key idea oksSEM is to avoid the limitations of This result compares well to the theoretical classificadmor
KNNCLUST due to crisp decisions taken at each iteration at thate of 0.86%. In compariSorKNNCLUST with the same
object level by allowing the current object label to be chosenumber of NNs provided 15 classes, thus far from the true
among the set of labels of iteNNs. The random sampling number of classes. To get a more precise idea of the clugterin

end while

D. Discussion



stability of these algorithms, we show in Figure 3 compare8l. HSI Clustering: methodology

box plots of the numbers of final clusters and associated ) )
classification rates obtained wittNNCLUST, NPSEM (with Ve provide now an experimental study of the performances

initial number of clustersVCyax = 100) and kSEM. These Of the proposed approach, focusing the segmentation ofrhype
results were obtained from 20 independent runs for eagRectral images (HSIs) by unsupervised clustering for temo

method. Concerning the number of clusters, one can see §@#Sing applications. Airborne and spatial hyperspeirtrad-
the true number of cluster is in average better identified has received much attention since two decades both from

KSEM in the rangel0 < k < 40, which is in agreement with the end-users due to the _richn(_ass of information that HSIs
higher corresponding average classification rates in #rige. €&y, and by the community of image and signal processing
and analysis experts due to the diversity and the complexity
the problems that multivariate image analysis poses teeaehi
end-user objectives in terms of classification, spectrahinn

ing, or anomaly detection. In a HSI, the obje¢is },1 <i <

N, are associated to image pixels, and the entrieg;oére
(positive) radiance or reflectance values collected spectral
wavelengths in the visible (VIS) to near-infrared (NIR) or
short-wave infrared (SWIR) range. HSIs allow to accurately

(@) (b) (c) characterize and distinguish natural and man-made misteria
Fig. 2. Clustering of synthetic 3-D data. (a): Original datai corresponding through absorption/emission, narrow/wide spectral baitds
true labels; (b)XNNCLUST result; (c):KSEM result. is worth mentioning that our experiments were performed

without prior band selection or feature extraction. Evea th
noisy, low average reflectance spectral bands often présent
the HSI at some absorption bands were preserved in the input
data set.

1) Selected methods for comparisdrhe experiments were
sl i designed to assess the performances of the proposed method
in comparison with similar fully unsupervised clustering- a
proaches, i.e. methods which do not require any prior inferm
tion about the data objects to be classified and particutady
true number of clusters to be discovered. Among the variety
of approaches in the domain, we have selected Affinity Prop-
20f 8 agation AP) [25], kNN density-based clusteringNNCLUST
[35], and Non parametric SEMNPSEM) [41]. The choice of
i ] these particular methods was motivated by the fact that they
é‘é‘”i”‘é”é,”‘?m_‘_mémé” .......................... all share the same initial conditions theaewm, since a unique
0 55 2 % W % o s s s w0 65 0 75w label is given to each object of the data set at the beginning
of the algorithm. This allows to compare the four methods on
(@) the same basis, and makes initial conditions a non issueésin th
? ] comparison. The DPMM approach, which requires a greater
7 number of prior parameters than the above methods (among
which a concentration parameter and an upper bound on the
number of clusters), was not included in this study.

Each of the selected methods requires a couple of param-
eters that can be tuned to provide more or less accurate
—————— clustering results. These parameters generally influehee t
number of clusters at the output of the algorithm. Concernin
AP, itis recognized in the literature that this method is stresi
to the choice of thereferenceparameter, which governs the
20f 8 way an object considers itself a better exemplar for a dluste
ol i than any other object. It has been shown recently in [48] that
the rule of thumb of choosing the median value of pairwise
o 15 20 25 3 3B 40 45 S0 S5 60 65 0 75 80 similarities as the preference paramegefor hyperspectral

(b) data generally leads to over-clustering, and that a better

estimate ofp regarding the final number of clusters is closer

Fig. 3. Comparison of the evolution of the number of clustejsand overall {5 the minimum of the similaritie$(z‘ ]) — _||X, _ x'||2
correct classification rates (b) given kwNcLUST (light gray), NPSEM(gray) h hei . | ’ ¢ J h
andksem (black). The horizontal dotted line in (a) represents the umber than to their median value as often recommended [25]. Thus,

of classesNC = 2. we have chosen the parametrizatipn= ¢. min, ; s(4, j),
leaving £ as the only parameter foxp. RegardingNPSEM,
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one important parameter is the upper bound on the numipels only; this one is expected to be close to the number
of clusters NCh,.x. In all our experiments, we have fixedof known classes for a good clustering result. This is why
NChax = 100. ConcerningkNNCLUST and KSEM the only we have also added for each method the number of clusters
tunable parameter i%, the number of NNs, the probability found within the ground truth pixels in the Tables providing
reinforcement parameter being fixed to 1.2 throughout thethe classification results.
experiments. Finally, in order to statistically assess the performance
Another point relates to the complexity of the choseimdices, their averages and standard deviations were dmhpu
methods when tackling data sets comprising a high numidesm 10 or 20 independent runs for each method, depending
of objects, which is the case for the chosen hyperspecteal the HSI under study.
images (see below). Sinae is complex inO(N?) which is
intractable for highV, we randomly selected throughout théc. HSI Clustering: results
HSI a subset oV’ objects (or pixels), having the maximal size 1) AVIRIS - SalinasThis HSI was acquired by the AVIRIS
allowed by the computer environment, amel was run on this sensor over agricultural crops in Salinas Valley, Califayon
subset. The centroids of the resulting clusters were coespuOctober 8, 1998. Its size is 512 lines by 217 samples, and 220
and used to cluster the remainidg — N’ objects based on spectral bands are available. The ground resolution isnarou
a minimum distance rule. The cardinality of the subset wasmeters. The ground truth map reports 16 vegetation classes
fixed to N’ = 12962 whatever the HSI processed. Concerningome of them representing several stages of growth (I§ttuce
KNNCLUST andKSEM, the spatial sampling scheme describedifferent agricultural practices (vineyard) [51]. Figu¥eshows
in Section 1I-C was used instead, allowing their comparisancolor composite of th&alinasscene, and the corresponding
under identical conditionsvPSEM, which originally was pro- ground truth map.
posed in an exhaustive pairwise distance setting, was alsdVe first studied the influence of the number of neighbors
adapted to th&NN graph setting by removing the most distanbn the classification accuracy providedkyNCLUST, NPSEM
pairs of objects in the computation of posterior distribos. andksem. For this, we performed 20 independent runs of the
Note that a transposition of this principle has been trigtiree methods for values df in the range from 10 to 80.
for Ap but could not yield satisfactory results, providing @&igure 5 displays the box plots of the ACCR versudor
much higher number of clusters than expected. This resulttie three methods. One can observe dissimilarities between
probably due to thé&NN graph structure for which messagehe three methods in terms of accuracykasvolves. Firstly,
passing remains local and is barely influenced by messag¢3CR maxima are obtained for different values of and
passed outside the scope of each objedis. the optimum is found fok =~ 50 with KNNCLUST, whereas
2) Clustering assessmenin order to assess the clusterings ~ 20 is the optimum forNPSEM and k ~ 40 for KSEM.
results, we have chosen HSIs with available ground truth.daSecondly, this study provides a comparison of the efficiency
To obtain clustering performance indices when the number of the three clustering methods in terms of ACCR, and shows
clusters found is greater than the number of known groutistht KSEM can outperform the two other methods for some
truth classes, it is necessary to find the best match betweslequate range df, herek < 40. Contrarily, for k > 40,
the cluster labels and the ground truth labels. For this ve¢ fiKkNNCLUST provides the best results among the three methods,
construct the confusion matrix (CM) of siz€Cq x NCeus,  though with significantly decreasing accuracykascreases.
whereN Cy is the number of ground truth classes, aidcus Thirdly, one can observe the lower dispersion of ACCR around
is the number of output clusters. This CM is then augmentékir average values witlksem for £ < 40 compared to
with NCqus — NCy zeroed rows, and the best class-clustehe other methods, which denotes a higher stability of our
assignment is sought thanks to the Hungarian algorithm, [4@pproach. This is particularly true fér around 30-40, i.e. in
and applied to permute the columns of the augmented Cik§ optimal range. Therefore a careful choice ofmust be
providing a new CM with maximal trace. Therefore, classicahade before using each method.
CM-based clustering performance indices can be accessedable | reports a detailed comparison of clustering results
such as the overall correct classification rate (OCCR)the. using the optimal values dfissued from this analysis, i.e.=
trace of the new CM divided by the total number of pixels, &0 for KNNCLUST, k = 20 for NPSEM (N Cpax = 100), k =
well as the class-specific correct classification rate (CBJCC 40 for KSEM. Results provided by AP are also included. Yet,
i.e. for each ground truth class the number of pixels colrectl1 out of the 16 classes were better identifiedkisgMm, giving
predicted divided by the number of pixels belonging to th&®2.44% average ACCR, and 79.17% average OCCR over the
ground truth class, and the average correct classificatiten r20 runs. Also, the median number of clusters found within
(ACCR), i.e. the average of the CSCCRs over the numbitie labeled data, 18, is close to the actual number of classes
of ground truth classes. The Cluster Purity and Normaliz&ithough its computational complexity is lower and the faettth
Mutual Information (NMI) indices [50] have also been used does not require random samplingyNCLUST provides less
for comparison. These indices both have maximal unity valaecurate results thaksem, but better thamp and NPSEM
for an error-free clustering result. It should be noticed thaksem could not discriminate the
Since the number of ground truth pixels is often small withlassesGrapes untrainedand Vineyard untrainedhence the
respect to the spatial size of the images to analyze, it can(¥& CSCCR obtained for the latter. This can be explained by
interesting to assess the quality of each method by countithg high similarity of these two classes in terms of spectral
the number of clusters found within the known ground trutsignatures due to close vegetation species.



Figure 6 shows instances of clustering maps provided by the |
four methods using the valuesotpecified as above. Visually, |
the clustering map obtained witseM is closer to the ground é E3
truth map than those of the other methods, as confirmed by the ™| - 1
corresponding accuracy indices. Also note that two subekas 7or ]
of Celerywere identified byxseM, though not clearly visible
on Figure 6-(a). However, as said above, none of the methodsz _| |
was able to clearly discriminate th@rapes untrainedand
Vineyard untrainedclasses, exceptNNCLUST, though quite = E]Ir:l g

50 —

marginally.

TABLE |
MEAN AND STANDARD DEVIATION (20 RUNS) OF CLASS SPECIFIG
AVERAGE, OVERALL ACCURACIES(IN PERCENT), CLUSTER PURITY AND
NORMALIZED MUTUAL INFORMATION , NUMBER OF ITERATIONS AND
EXECUTION TIME OF CLUSTERING METHODS FOR THRAVIRIS Salinas
HYPERSPECTRAL DATA SET(AP: £ = 2.0; KNNCLUST: k = 50; NPSEM:

k = 20, Cmax = 100; KSEM: k = 40).

Unsupervised classifier

AP KNNCLUST NPSEM KSEM

Total # clusters - min 35 27 14 20

Total # clusters - med 39 32 18 22

Total # clusters - max 43 37 23 26

min. # clusters in GT 32 20 14 16

med. # clusters in GT 36 25 18 18

max. # clusters in GT 41 30 23 20

Brocc. gr. wds 1 96.78:1.97 98531021 68.06:45.73 93.34:21.97

Brocc. gr. wds 2 49.0£9.68 98.07:7.12  83.34:21.68 99.67+0.01

Fallow 46.07:3.13  51.92£11.50 36.56-23.39 75.64+22.71

Fallow rgh pl. 67.32-13.88 63.69:-28.97 74.43-39.87 99.19+0.05

Fallow smooth 82.644.81 65.94-23.87 67.64-21.60 91.371+5.66

Stubble 47.26:365 92.6114.62 94.32-13.75 99.73+0.02
4 Celery 55.00£3.67  74.50+19.52 57.24£21.17 77.511+18.76
2 Grapes untrained 27.814.56  88.68-19.65 36.62-11.25 99.57+0.02
‘6" Soil vin. devel. 56.52-8.60 99.14+-0.99 60.52+16.79 95.65£9.32

Corn sen. g. wds 55.800.79  54.78:13.23 60.3116.30 63.264+1.14

Lett. rom. 4 wks 60.73+:6.00 60.15+28.61 59.08:39.18 47.0#4-39.31

Lett. rom. 5 wks 53.7#45.04  87.18:23.31 55.34:32.12 100

Lett. rom. 6 wks 91.714+13.34 74.26+43.99 55.58:49.00 88.92-30.41

Lett. rom. 7 wks 75.7413.69 78.65:19.68 76.18-32.92 88.94+3.54

Vineyard untrained 33.27+6.77 41.7744751 465111249 0

Vineyard ver. tr. 40.251.77 96.35-12.39 60.89-38.27 99.22+0.05

ACCR 58.72+2.99 76.64E4.43 62.03E5.17 82.44+-3.08

OCCR 49.18£352 77.98:5.50 57.62E4.44 79.1712.11

Cluster purity 0.49+0.04 0.87£0.04 0.63+0.05 0.944-0.02

NMI 0.69+0.01 0.88£0.01 0.7G£0.03 0.89+0.01

Iterations 251456 23+5 74123 107+15

Exec. time (s) 17224403 615+106 255+52 1363+176

;‘.

Fig. 4. Salinashyperspectral data set.(a): Color composite image (ba@ds

20, 10); (b): Ground truth.

2) ROSIS - Pavia UniversityThe Pavia University HSI

Z
)

(b)

Vineyard vert. trellis
Vineyard untrained
Lettuce romaine 7wk
Lettuce romaine 6wk
Lettuce romaine 5wk
Lettuce romaine 4wk
Corn sen. gr. wds
Soil vineyard develop
Grapes untrained
Celery

Stubble

Fallow smooth
Fallow rough plow
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Broccoli gr. wds 2
Broccoli gr. wds 1

Unlabeled
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Fig. 5. Box plots of Average Correct Classification rate (A)Cor the
SalinasHSI as a function of the number of nearest neighbargight gray:
KNNCLUST; Gray: NPSEM, Black: KSEM.

(DLR) on July 8, 2002 in the framework of the European
HySens Project. ROSIS provides 103 spectral bands ranging
from 430 to 850 nm, at 1.3 m ground resolution. TPavia
University scene has a spatial size 60 x 340 pixels.
Nine classes are reported in the ground truth map visible
in Figure 7 jointly with a color composite image. Table I
shows the clustering maps and performance indices of the fou
compared method&NNCLUST, NPSEM and KSEM were run
usingk = 60, k = 17 and k = 30, respectively. These values
were selected since because they provide the best average
accuracies for each method. A median number of 19 clusters
were found byksewm, with a median number of 16 clusters
within the nine ground truth classes, giving an average ACCR
of 63.20% over 10 runs, again better than the other compared
methods.NPSEM, which is faster than the other methods,
does not provide satisfactory results in this experimémoigh
slightly superior toAap. Here again, Cluster Purity and NMI
indices are in accordance with ACCR and OCCR.

Figure 8 displays typical clustering maps issued from this
experiment, and gives the corresponding correct clastidita
rates.

3) AVIRIS - Hekla:In the last experiment, we used a HSI
collected on 17 June 1991 by AVIRIS over the Hekla volcano
in Iceland. The image hass0 x 600 pixels, with 157 spectral
bands only due to a sensor malfunctioning. The ground
resolution is 20 m. Figure 9 shows a color composite image
as well as the ground truth patches used for the clustering
assessment, which comprises twelve land-cover classes.

Table Il displays as above the performance indices of
the four methods averaged over 10 runs, using: 10 for
KSEM, k = 30 for KNNCLUST and k = 7 for NPSEM which
were chosen as optimal regarding the average ACCR. In this
3experiment,AP and NPsSEeM still provide poor results, whilst
KNNCLUST andKSEM provide similar results, with a slightly
higher (but non significant) ACCR fokNNCLUST. Despite
the higher computational burden aBem, one can see from

belongs to a set of hyperspectral images acquired by tiés experiment that a random sampling approach can perform
ROSIS instrument operated by the German Aerospace Agersybetter as a deterministic approach, by using a rediidéd



TABLE I
MEAN AND STANDARD DEVIATION (10 RUNS) OF CLASS SPECIFIG
AVERAGE, OVERALL ACCURACIES(IN PERCENT), CLUSTER PURITY AND
NORMALIZED MUTUAL INFORMATION , NUMBER OF ITERATIONS AND
EXECUTION TIME OF CLUSTERING METHODS FOR THEIROSISPavia
universityHYPERSPECTRAL DATA SET(AP: £ = 3.0; KNNCLUST: k = 60;
NPSEM k = 17, Cmax = 100; KSEM: k = 30).

Unsupervised classifier

AP KNNCLUST NPSEM KSEM

Total # clusters - min 29 21 19 17

Total # clusters - med 33 25 23 19

Total # clusters - max 36 29 27 24

min. # clusters in GT 29 15 19 14

med. # clusters in GT 33 20 23 16

max. # clusters in GT 36 23 27 20

Asphalt 33.5713.87 28.10£8.09 29.114.58 33.26£10.51

Meadows 17.36:4.19  47.84£16.68 23.35:6.43 55.74+4.65
“ Gravel 41.97:10.84 54.15+25.01 41.97+17.00 50.84:32.37
o Trees 28.86-3.62 21.69£10.67 34.84:9.63 52.95+15.56
] (Painted) metal sheets 464®.15 89.10:31.31 84.46£20.75 98.79+-0.58
o Bare soil 16.22-2.34  91.25+13.81 37.514+2.74  80.96+15.34

Bitumen 75.15£18.22 99.8310.06 84.31£18.93 79.86-42.05

Self-blocking bricks 50.65+10.31 49.87+6.75 42.7#5.78  48.07:-5.62

Shadow 97.18+1.33  37.641-18.62 73.58:27.58 68.48-25.11

ACCR 4527+2.48 57.72-4.88 50.213.97 63.20+4.92

OCCR 29.39+2.37 50.92-7.37 3444272 56.404+-3.33

Cluster purity 0.30£0.02 0.54+0.08 0.35£0.03 0.59+0.04

NMI 0.48+0.00 0.61-0.04 0.52+0.03 0.631-0.02

Iterations 251+61 31+4 84+18 93+7

Exec. time (s) 17644512 1733208 546+63 2323+185

Shadow

Self-blocking bricks

Bitumen

Bare soil

(Painted) metal sheets

Trees

Gravel

Meadows

Asphalt

Unlabeled

(d) Fig. 7. Pavia universityhyperspectral data set.(a): Color composite image

Fig. 6. Unsupervised classification results for the AVIRS&linashyper- (Pands 60, 33, 9); (b): Ground truth.
spectral data set. (ajp (OCCR: 54.34%, ACCR: 62.51%); (bkNNCLUST
(OCCR: 72.81%, ACCR: 70.23%); (CNPSEM (OCCR: 45.43%, ACCR:
52.05%): (d):kSEM (OCCR: 78.44%, ACCR: 83.06%).

IV. CONCLUSION

In this paper, we proposed a new unsupervised clustering
graph. It is also noticeable that the median number of dlsistenethod, name&sem, which is based on iteratively sampling
found by Ksem within the ground truth pixels26) is closer label states via pseudo-posterior label distributionsneged at
to the true number of known classes than any of the othgie objects’ local level. Contrarily to many clustering inads,
methods. KSEM is fully unsupervised since it has the ability to provide

Examples of clustering maps provided by the four clusteriran estimate of the number of clusters in the data, starting
methods are shown in Figure 10, with associated OCCR afndm one distinct cluster label by object. The local posteri
ACCR values. From these examples, a comparison of thistributions account for the number of similar labels amon
behavior ofkNNCLUST andkSEM results for the specific classthe kNNs of each object, and class-conditional differential
Andesite lava 1991 (large region at top right, in yellow on entropies computed thanks to the Kozachenko-Leonenko esti
Figure 10-(d)) highlights the limitation of the determitids mator are used to elaborate a stopping criterion. A prolabil
probability update rule okNNCLUST, which tends to relax reinforcement rule is set up to accelerate the convergenae t
the labeling from seed pixels or regions located far apastable partitioning of the objects. The method is compared
without possibility to merge these labels into a single onwijth three other fully unsupervised clustering methods for
hence providing over clustering. Yet, performing randobela purposes of pixel clustering in hyperspectral images. Aifige
assignments according to conditional local distributialh®wvs processing is set up IRSEM (and also adapted tONNCLUST
to gain in clustering robustness thanks to the fact thatl lakmndNPSEM) to make the priokNN search procedure tractable
propagation from a seed region to another is made possiblar (possibly large) image data sets. The results show the



10

TABLE Il
MEAN AND STANDARD DEVIATION (10 RUNS) OF CLASS SPECIFIG
AVERAGE, OVERALL ACCURACIES (IN PERCENT), CLUSTER PURITY AND
NORMALIZED MUTUAL INFORMATION , NUMBER OF ITERATIONS AND
EXECUTION TIME OF CLUSTERING METHODS FOR THRAVIRIS Hekla
HYPERSPECTRAL DATA SET(AP: £ = 1.0; KNNCLUST: k = 30; NPSEM:
k =7,Cmax = 100; KSEM: k = 10).

Unsupervised classifier

AP KNNCLUST NPSEM KSEM

Total # clusters - min 33 53 30 37

Total # clusters - med 35 57 35 42

Total # clusters - max 38 66 39 46

min. # clusters in GT 33 25 30 21

med. # clusters in GT 35 29 34 25

max. # clusters in GT 37 34 39 30

Andesite lava 1970 82.8918.21 97.34:555 96.08E3.50 98.98+0.57

Andesite lava 1980 | 53.8417.87 63.90:5.63 77.73:19.84 80.75+16.46

Andesite lava 1980 II 81.867.63 99.96-0.06 94.88+11.13 99.95-0.04

Andesite lava 1991 | 58.887.76  84.9119.49 14.65:4.77 96.75+9.64
4 Andesite lava 1991 Il 27.027.72 582241556 47.68+12.37 37.12:19.78
2 Andesite lava moss cover 62.0610.17 80.96£12.99 81.08-14.36 95.81+9.42
g Hyaloclastite formation 37.288.30 84.02£12.35 59.23+-20.37 77.75£12.09

Lava tephra covered 73.4617.67 98.89+-1.13 88.76+24.24 79.77#:42.05

Rhyolite 29.23-3.38  76.58:15.75 76.56£35.09 100

Scoria 16.98-6.09 43.35+-15.11 38.15+18.06 25.40:16.19

Firn-glacier ice 35.68-5.99 75.02+-17.92 56.90+16.69 66.96:0.76

Snow 61.64-12.29 72.40+16.17 52.01£10.42 54.36-2.92

ACCR 51.73£3.79 77.96-3.26 65.314+5.29  76.13t4.06

OCCR 57.01+3.21 81.63t6.12 57.7t5.11 83.27+3.31

Cluster purity 0.59+0.03 0.82£0.06 0.59t0.05 0.8840.03

NMI 0.68+0.02 0.90+0.02 0.69+0.05 0.89+0.02

Iterations 203+22 262 127441 201+ 14

Exec. time (s) 1440+ 264 187892 933+242 7413£562

(a)

Snow

Fig. 8. Unsupervised classification results for the ROB#ia University
hyperspectral data set. (adP (OCCR: 28.98%, ACCR: 41.91%); (bkN-
NCLUST (OCCR: 55.97%, ACCR: 62.82%); (cNPSEM (OCCR: 39.89%,
ACCR: 54.12%); (d):kSEM (OCCR: 58.04%, ACCR: 64.68%).

Firn—glacier ice

Scoria

Rhyolite

Lava covered w/ tephra
Hyaloclastite formation
Andesite lava moss cover
Andesite lava 1991 Il

efficiency of the proposed approach in retrieving coherent
clusters with respect to available ground truth data.

Andesite lava 1991 |
Andesite lava 1980 Il
Andesite lava 1980 |
Andesite lava 1970

ACKNOWLEDGEMENTS

Authors wish to thank Prof. J. A. Benediktsson from the (b)

University of Iceland, Reykjavik, Iceland, for providinhe . o
AVIRIS Hekla data set, and to Prof. P. Gamba from th%g'gg)'_ (g?'g?ohj’r?:rtfﬂﬁftral data set.(a): Color composite image (badds 2
University of Pavia, Italy, for providing the ROSI®avia ~ '

University data set.

Unlabeled

[6] J. Ward, “Hierarchical grouping to optimize an objeetifunction,”
Journal of the American Statistical Associatiorol. 58, pp. 236-244,

REFERENCES
1963.

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:review,”  [7] P. Sneath and R. SokaNumerical Taxonomy. The Principles and

ACM Computing Surveysol. 31, no. 3, pp. 264-323, 1999. Practice of Numerical Classification London, UK: Freeman, 1973.
[2] A. K. Jain, “Data clustering: 50 years beyond k-mearattern Recog- [8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A denditysed algorithm

nition Letters vol. 31, no. 8, pp. 651-666, 2010. for discovering clusters in large spatial databases witlsajbin Pro-
[3] S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervidedtering ceedings of the 2nd international conference on Knowledpedvery

by seeding.” inlCML, C. Sammut and A. G. Hoffmann, Eds. Morgan and Data mining KDD'96 1996, pp. 226-231.

Kaufmann, 2002, pp. 27-34. [9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sandedptics: Order-
[4] J. B. MacQueen, “Some methods for classification and yaisalof ing points to identify the clustering structure,” Rroc. ACM SIGMOD

multivariate observations,” ifProc. of the fifth Berkeley Symposium on Int. Conf. on Management of Data (SIGMOD’'9%hiladelphia, PA,

Mathematical Statistics and Probabiljity. M. L. Cam and J. Neyman, 1999, pp. 49-60.

Eds., vol. 1. University of California Press, 1967, pp. 283# [10] K. Fukunaga and L. D. Hostetler, “The estimation of theadient

[5] J. Bezdek,Pattern Recognition With Fuzzy Objective Function Algo- of a density function, with applications in pattern recdigm.” IEEE
rithms  Plenum Press, New York, 1981. Transactions on Information Theaqryol. 21, no. 1, pp. 32-40, 1975.



[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
Fig. 10. Unsupervised classification results for the AVIRi8kla hyper-
spectral data set. (axp (OCCR: 55.56%, ACCR: 50.26%); (bknNcLUST  [33]
(OCCR: 72.00%, ACCR: 72.07%); (cNPSEM (OCCR: 52.99%, ACCR:
58.87%); (d):kSEM (OCCR: 80.96%, ACCR: 72.60%).
[34]
[35]
[11] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum dikhood
from incomplete data via the EM algorithmJournal of the Royal
Statistical Societyvol. 39, no. 1, pp. 1-38, 1977, series B. [36]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

[23]

G. Celeux and J. Diebolt, “A probabilistic teacher aigun for iterative
maximum likelihood estimation,” irClassification and related methods

of data analysisH. H. Bock, Ed. North-Holland: Elsevier, 1988, pp.[37]
617-623.

G. Celeux and G. Govaert, “A classification EM algoritfion clustering
and two stochastic versiongC'omputational Statistics & Data Analysis
vol. 14, no. 3, pp. 315-332, Oct. 1992.

C. E. Rasmussen, “The infinite Gaussian mixture modelAdvances
in Neural Information Processing Systems (NIPS) A. Solla, T. K.
Leen, and K. R. Muller, Eds. MIT Press, 2000, pp. 554-560.

C. Antoniak, “Mixtures of Dirichlet processes with digations to
Bayesian nonparametric problem3he Annals of Statisticwol. 2, pp.
1152-1174, 1974.

J. Shi and J. Malik, “Normalized cuts and image segntentd IEEE
Transactions on Pattern Analysis and Machine Intelligeneel. 22,
no. 8, pp. 888—905, 2000.

B. Scholkopf, A. Smola, and K.-R. Miller, “Nonlineacomponent
analysis as a kernel eigenvalue probleid¢ural Computationvol. 10,
no. 5, pp. 1299-1319, 1998.

I. S. Dhillon, S. Mallela, and R. Kumar, “A divisive infmation theoretic
feature clustering algorithm for text classificatiod@urnal of Machine
Learning Researchvol. 3, pp. 1265-1287, 2003.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, ‘§2&ring with
Bregman divergencesJournal of Machine Learning Researctol. 6,
pp. 1705-1749, 2005.

L. Faivishevsky and J. Goldberger, “A Nonparametrifotmation The-
oretic Clustering Algorithm,” ininternational Conference on Machine
Learning Haifa, Israel, 2010.

M. Wang and F. Sha, “Information theoretical clustgriria semidefinite
programming.” ininternational Conference on Atrtificial Intelligence and
Statistics ser. JMLR Proceedings, G. J. Gordon, D. B. Dunson, and4]
M. Dudk, Eds., vol. 15. Ft. Lauderdale, FL, USA: JMLR.org,120
pp. 761-769.

A. C. Muller, S. Nowozin, and C. H. Lampert, “Informati theoretic
clustering using minimum spanning trees.” PAGM/OAGM Sympo-
sium ser. Lecture Notes in Computer Science, A. Pinz, T. Pock,
H. Bischof, and F. Leberl, Eds., vol. 7476. Springer, 2012,305-215.
G. Ver Steeg, A. Galstyan, F. Sha, and S. DeDeo, “Deriyyst
information-theoretic clustering,” innternational Conference on Ma-
chine Learning Beijing, China, 2014.

(38]

(39]

[40]

[41]

[42]

[43]

[45]

[46]

11

M. Sugiyama, G. Niu, M. Yamada, M. Kimura, and H. Hachiya
“Information-maximization clustering based on squaressl mutual
information.” Neural Computationvol. 26, no. 1, pp. 84-131, 2014.
B. J. Frey and D. Dueck, “Clustering by passing messagéseen data
points,” Science vol. 315, no. 5814, pp. 972-976, February 2007.
J. Kittler and J. lllingworth, “Relaxation labellindgorithms - a review.”
Image and Vision Computingol. 3, no. 4, pp. 206-216, 1985.

G. Celeux and J. Diebolt, “The SEM algorithm: A probdgiit teacher
algorithm derived from the EM algorithm for the mixture plem.”
Comput. Statist. Quartervol. 2, pp. 73-82, 1985.

D. L. Davies and D. W. Bouldin, “A cluster separation reeee,” |[EEE
Transactions on Pattern Analysis and Machine Intelligena#. 1, no. 2,
pp. 224-227, 1979.

J. Dunn, “A fuzzy relative of the isodata process andige in detecting
compact well-separated clusterggurnal of Cybernetigsvol. 3, no. 3,
pp. 32-57, September 1973.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efitt data
clustering method for very large databases,” Rmoceedings of the
1996 ACM SIGMOD International Conference on ManagementafD
(SIGMOD’96) 1996, pp. 103-114.

A. Lorette, X. Descombes, and J. Zerubia, “Fully unsujzed fuzzy
clustering with entropy criterion.” iProc. 15th International Conference
on Pattern Recognition (ICPR 20Q0yol. 3, Barcelona, Spain, Sept.
2000, pp. 986-989.

T. S. Ferguson, “Bayesian density estimation by miguof normal
distributions,” in Recent Advances in Statisticsl. Rizvi, J. Rustagi,
and D. Siegmund, Eds. New York: Academic Press, 1983, pp- 287
302.

D. Aldous, “Exchangeability and related topics,” cole d'éte de
probabilites de Saint-Flour, X11l—1983 Berlin: Springer, 1985, pp.
1-198.

J. Sethuraman, “A constructive definition of Dirichletiors,” Statistica
Sinica vol. 4, pp. 639-650, 1994.

T. N. Tran, R. Wehrens, and L. M. C. Buydens, “Knn-keraeinsity-
based clustering for high-dimensional multivariate da@gmputational
Statistics & Data Analysisvol. 51, no. 2, pp. 513-525, Nov. 2006.
C. Robert and G. Casella, “A short history of Markov Ghailonte
Carlo: Subjective recollections from incomplete dat8fatistical Sci-
ence vol. 26, no. 1, pp. 102-115, 2011.

A. Samé, G. Govaert, and C. Ambroise, “A mixture mobased on-line
CEM algorithm.” inIDA, ser. Lecture Notes in Computer Science, A. F.
Famili, J. N. Kok, J. M. Pea, A. Siebes, and A. J. Feelders, ,Rds.
3646. Springer, 2005, pp. 373-384.

G. Bougeniere, C. Cariou, K. Chehdi, and A. Gay, “Unswsed
non parametric data clustering by means of Bayesian infereand
information theory.” INSIGMAR, S. M. M. de Faria and P. A. A. Assuno,
Eds. INSTICC Press, 2007, pp. 101-108.

D. Gustafson and W. Kessel, “Fuzzy clustering with azfuzovariance
matrix,” in IEEE Conference on Decision and Contrebl. 17, Jan 1978,
pp. 761-766.

J. Lafferty, A. McCallum, and F. Pereira, “Conditionedndom fields:
Probabilistic models for segmenting and labeling sequetat@,” in
Proc. 18th International Conf. on Machine LearningMorgan Kauf-
mann, San Francisco, CA, 2001, pp. 282-289.

G. Bougeniere, C. Cariou, K. Chehdi, and A. Gay, “Norrgaetric
stochastic expectation maximization for data clusteting,E-business
and Telecommunicationser. Communications in Computer and Infor-
mation Science, J. Filipe and M. S. Obaidat, Eds.  SpringetirBe
Heidelberg, 2009, vol. 23, pp. 293-303.

M. Jardino, “Unsupervised non-hierarchical entrdmased clustering,”
in Data Analysis, Classification, and Related Methossr. Studies in
Classification, Data Analysis, and Knowledge Organizatidn A. L.
Kiers, J.-P. Rasson, P. J. F. Groenen, and M. Schader, Eals.).v
Springer, 2000, pp. 29-34.

R. Kneser and H. Ney, “Improved clustering techniquesdass-based
statistical language modelling,” iRroc. Eurospeech 93993, pp. 973—
976.

L. F. Kozachenko and N. N. Leonenko, “Sample estimatthefentropy
of a random vector,Problemy Peredachi Informatsivol. 23, no. 2, pp.
9-16, 1987, [in Russian].

M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L. N. Imeedi,
“A new class of random vector entropy estimators and its ieatbns
in testing statistical hypothesesJournal of Nonparametric Statistics
vol. 17, no. 3, pp. 277-297, 2005.

N. Leonenko, L. Pronzato, and V. Savani, “Estimation esftropies
and divergences via nearest neighboif@tra Mountains Mathematical
Publications vol. 39, pp. 265-273, 2008.



12

[47] Y. Tarabalka, J. A. Benediktsson, and J. Chanussote¢Bal-spatial
classification of hyperspectral imagery based on parttfiariustering
techniques,”IEEE Transactions on Geoscience and Remote Sensing
vol. 47, no. 8, pp. 2973-2987, Aug. 2009.

[48] K. Chehdi, M. Soltani, and C. Cariou, “Pixel classificat of large
size hyperspectral images by affinity propagatiolgurnal of Applied
Remote Sensingol. 8, no. 1, August 2014.

[49] H. Kuhn, “The Hungarian method for the assignment peobf Naval
Research Logistics Quarterlyol. 2, no. 1-2, pp. 83-97, 1955.

[50] C. D. Manning, P. Raghavan, and H. SchitZe Introduction to
Information Retrieval Cambridge University Press, 2008.

[51] http://www.ehu.es/ccwintco/index.php/HyperspattRemote Sensing
Scenes.

Claude Cariou received the Ph.D. degree in Elec-
tronics from the University of Brest, France, in 1991.
Since 1992, he has been with the Engineering School
of Applied Sciences and Technology (ENSSAT),
where he is currently with the Institute of Elec-
tronics and Telecommunications of Rennes, France.
His research interests include image analysis, pat-
tern recognition, unsupervised classification, tex-
ture modeling and segmentation, image registration
and feature extraction/selection, mostly dedicated to
multispectral and hyperspectral imagery.

Kacem Chehdireceived the Ph.D. and the "Habil-
itation a diriger des Recherches” degrees in Sig-
nal Processing and Telecommunications from the
University of Rennes 1, France, in 1986 and 1992,
respectively. From 1986 to 1992, he was an Assis-
tant Professor at the University of Rennes 1. Since
1993, he has been a Professor of signal and image
processing at the same institution. From 1998 to
2003, he was the Head of the laboratory "Analysis
Systems of Information Processing”. Since 2004,
he is the Head of the TSI2M Laboratory (Signal
and Multicomponent/Multimodal Image Processing). Hiseegsh activities
concern adaptive processing at every level in the patterogrétion chain
by vision. In the framework of blind restoration and blinddiing, his main
interests are the identification of the physical nature afgmdegradations and
the development of adaptive algorithms. In the segmemtatitd registration
topics, his research concerns the development of unsseelvcooperative
and adaptive systems. The main application under curremestigation are
multispectral and hyperspectral image processing ang/sisal




